精华内容
下载资源
问答
  • 数学建模13种常见方法

    万次阅读 多人点赞 2018-11-24 10:22:00
    下面来介绍一下数学建模大赛中常用的13中建模方法: 1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、...课题时,应用网络系统理论和多目标综合评价方法,提出的一层次权重决策分析方法。 2、多...

    下面来介绍一下数学建模大赛中常用的13中建模方法:

    1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

    2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

    3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

    4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到其它所有顶点的最短路径。
    Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

    5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

    6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

    7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

    8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

    9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

    10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

    11、主成分分析(Principal Component Analysis,PCA),将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分:由原始指标综合形成的几个新指标。依据主成分所含信息量的大小成为第一主成分,第二主成分等等。

    12、聚类分析是统计学中研究这种“物以类聚”问题的一种有效方法,它属于统计分析的范畴。聚类分析的实质是建立一种分类方
    法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具
    有相似性的个体的集合,不同类之间具有明显的区别。

    13、回归分析是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。回归分析思想:回归分析的基本思想是: 虽然自变量和因变量之间没有严格的、确定性的函数关系,但可以设法找出最能代表它们之间关系的数学表达形式。

    至此,关于数学建模的基本方面就介绍完毕了,请大家继续关注!!!

    展开全文
  • 常见分类方法

    万次阅读 2016-12-30 10:29:19
    本文只对几种常见分类方法做简单介绍,详细的讲解和算法网上有很多资源,文中会给出推荐链接。 Content 1. 决策树分类(链接:http://blog.csdn.net/github_36299736/article/details/52749999) 2. 基于规则...

    本文只对几种常见的分类方法做简单介绍,详细的讲解和算法网上有很多资源,文中会给出推荐链接。

    Content

    1.      决策树分类(链接:http://blog.csdn.net/github_36299736/article/details/52749999

    2.      基于规则分类

    3.      最邻近分类(K-NN)

    4.      朴素贝叶斯分类器

    5.      人工神经网络

    6.      支持向量机(SVM)

     

    1. 基于规则的分类器

    简单来说,基于规则的分类器就是使用一组“if… then …”的组合来进行分类的技术。通常用R =( r1˅ r2 ˅ … ˅ rk)来表示,其中 ri 就是分类的规则。

    以上图为例,r1  类就可以用如下规则判断:

            If (胎生 = 否 & 飞行动物 = 是)then (类别 = 鸟类)

    度量分类规则的质量可以用覆盖率(coverage)和准确率(accuracy)。覆盖率就是满足规则的记录数占总记录数的比例,准确率就是使用该规则正确分类的比例。

    基于规则分类还有以下两个重要的规则:

            互斥规则(Mutually Exclusive Rule)和穷举规则(Exhaustive Rule)

    互斥规则:规则集中不存在两条规则被同一条记录触发。简单说就是保证同一条记录不会同时属于两个类别。

    穷举规则:对于属性值的任一组合,R中都存在一条规则加以覆盖。即每一条记录都保证能以其中一种规则加以分类。

    这两个性质就可以保证每条记录被且仅被一条规则覆盖。但是实际情况下,分类器可能无法满足这两条性质。对于不能穷举的规则集,我们可以通过设定一个默认规则来覆盖不能被分类的记录。对于不互斥的规则集,我们可以通过建立优先级或者为规则加权等方式来解决。

     

    2. 最邻近分类器

    最邻近分类器是一种简单且常用的分类器。也就是我们常说的K-NN分类算法。它的原理非常简单,即根据与测试数据最近的K个点的类别,采用多数表决方案来确定该测试数据的分类

    以上图为例,1-最邻近(图a)中可以看到与测试数据最近的一个点为负,所以该测试点被指派到负类。2-最邻近(图b)中,与测试数据最近的两点为一正一负,可以随机选择其中一个类别。3-最邻近(图c)中,最近的三个点为两正一负,根据多数表决方案,该点被指派为正。

    从上述例子中就可以看到该算法中k值的选取非常关键。K值太小,结果容易受到数据中噪声的影响从而产生过拟合。K值太大,容易导致误分类,因为结果可能会受到距离测试数据点非常远的数据的影响。(如下图)

    算法描述如下:

    也可以对不同距离的数据点进行加权,从而提高分类的准确率。

     

    3. 朴素贝叶斯分类器

    了解朴素贝叶斯分类,首先要知道贝叶斯定理,也就是我们比较熟悉的条件概率。参考:http://blog.csdn.net/github_36299736/article/details/52800394

    朴素贝叶斯分类器的工作原理就是计算测试数据被分给各个类别的条件概率(后验概率),并将该记录指派给概率最大的分类。

    让我们用之前在决策树分类中使用过的例子来分析:

    假定一个测试数据,该测试数据的属性集可以表示为:X= {有房=否,婚姻状况=已婚,年收入=120k},我们需要将该数据分类到两个类别之一,即 Y = {拖欠贷款=是,拖欠贷款=否}。那么我们需要做的就是分别计算两种分类情况下的后验概率 P (Y|X) 。 P1 = P (拖欠贷款 = 是|X) 和P2 = P (拖欠贷款 = 否|X) ,如果P1 >P2,则记录分类为拖欠贷款 = 是,反之分类为拖欠贷款 = 否。

    朴素贝叶斯分类器更通常的表示方法:给定类标号 y,朴素贝叶斯分类器在估计条件概率时假设属性之间条件独立,若每个属性集(数据)包含d个属性X = { X1,X2,…,Xd } ,那么每个类Y的后验概率计算公式为:

    由于P(X)是固定值,因此只要找出分子最大的类就可以了。

    对于连续属性的条件概率,可以用以下两种方法来估计它的类条件概率:

    1.      把连续的属性离散化,然后用相应区间来替代连续的属性值;

    2.      假设连续变量服从某种概率分布(例如:高斯分布),然后使用训练数据估计分布的参数。

     

    4. 人工神经网络(ANN)

    类似于人脑由神经元及轴突构成的结构,人工神经网络由相互连接的结点和有向链构成。最简单的ANN模型是感知器(perceptron)。

    以上图为例,b即为一个感知器,其中,x1, x2, x3 分别为三个输入结点,在本例中表示三个输入的布尔值,还有一个输出结点。结点通常叫做神经元或单元。感知器中,每个输入结点都通过一个加权链连接到输出结点。加权链就像神经元间连接的强度,训练一个感知器模型就相当于不断调整链的权值,直到能拟合训练数据的输入输出关系为止

    感知器对输入加权求和,再减去偏置因子 t,然后考察得到的结果,得到输出值 ŷ。

    上图中分类依据为如果三个输入值中至少两个0,y取-1,至少有两个1时,y取1. 它的感知器的输出计算公式如下:

    更通用的数学表达方式是:

    其中,w1, w2, …, wd 是输入链的权值,x1, x2, …, xd 是输入属性值。

    还可以写成更简洁的形式:

    其中,w0 = -t,x0 = 1. w · x 是权值向量 w 和输入属性向量 x 的点积。

     

    多层人工神经网络

    多层神经网络相比于感知器要复杂得多,首先,网络的输入层和输出层之间可能包含多个隐藏层,隐藏层中包含隐藏结点。这种结构就叫做多层神经网络。感知器就是一个单层的神经网络

    除此之外,网络还可以使用其他激活函数(如S型函数,双曲线正切函数,符号函数等)使得隐藏结点和输出结点的输出值和输入参数呈非线性关系。

    直观上,我们可以把每个隐藏结点看成一个感知器,而每个感知器可以构造出一个超平面用于分类。如下图a中所构造的两个超平面。

    ANN学习算法的目标函数是找出一组权值w,使得误差平方和最小:

     

    对于激活函数是线性函数的情况,可以将ŷ =w · x 带入上式将其变成参数的二次函数,就可以找出全局最小解。当输出是参数的非线性函数的时候,可以采用梯度下降法来优化。

    关于神经网络的更多内容,我推荐这一篇文章,来自知乎专栏,作者:YJango,链接:https://zhuanlan.zhihu.com/p/22888385

     

    5. 支持向量机(SVM)

    SVM是现在倍受关注的分类技术,可以很好地适用于高维数据。它的特点是,使用训练实例的一个子集来表示决策边界,该子集就是支持向量。那么为什么把一个决策边界叫做“向量”呢?首先从最大边缘超平面这个概念开始了解。

    假设这是一个数据集,其中包含两类数据,分别用方块和圆来表示。非常直观地看到,我们很容易在两组数据之间找到无限个超平面(本例中是一条直线),使得不同类的数据分别在这个超平面的两侧。

    但是,有一些超平面的选择在测试未知数据时的效果可能并不好,比如下图中的红色线:

    可以看到,只要测试数据稍稍偏离一点,就容易导致分类错误。因此,我们要在这无数条分界线中找到一条最优解,使它到两边的边距最大。(如下图)

    如果将这些数据点放在坐标系中,边缘的点可以以向量的形式来表示:

     

    其中,用红色圈起来的数据点就是support vector,这也就是SVM这个算法名称的由来。

    关于支持向量机,有一系列非常好的博客可以参考,作者:pluskid,链接:http://blog.pluskid.org/?page_id=683

     

    其实常用分类方法还有很多,例如AdaBoost,以及不同分类方法的组合。本文只是参考书中内容对几种常见分类算法做了入门级介绍,可以根据实际的学习和工作需要做深入研究并择优使用。 感谢阅读。

     

    参考:《数据挖掘导论》第五章 分类:其他技术

    展开全文
  • 测试常见种方法

    千次阅读 2019-12-14 00:12:07
    测试用例常见的设计方法有:等价类划分法、边界值分析法、错误推测法、判定表法、正交实验法。 一、等价类划分法 顾名思义,顾名思义,等价类划分,就是将测试的范围划分成几个互不相交的子集,他们的并集是全集,从...

    测试用例常见的设计方法有:等价类划分法、边界值分析法、错误推测法、判定表法、正交实验法。

    一、等价类划分法

    顾名思义,顾名思义,等价类划分,就是将测试的范围划分成几个互不相交的子集,他们的并集是全集,从每个子集选出若干个有代表性的值作为测试用例。
      例如,我们要测试一个用户名是否合法,用户名的定义为:8位数字组成的字符。
      我们可以先划分子集:空用户名,1-7位数字,8位数字,9位或以上数字,非数字。
      然后从每个子集选出若干个有代表性的值:
      空用户名:“” (无效等价类实例,指对于软件规格说明而言,没有意义的、不合理的输入)
      1-7位数字:”234” (无效等价类实例)
      8位数字:”00000000” (有效等价类实例,能检验程序是否实现了规格说明中所规定的功能和性能)
      9位或以上数字:”1234567890” (无效等价类实例)
      非数字:”abc&!!!” (无效等价类实例)
      他们5个,就是用等价类划分选出的测试用例。实际上,对于1-7位数字的子集来说,选“234”和“11111”没有本质的区别。
      等价类的划分,最关键的是子集的划分。实际上,非数字还可以继续划分子集:字母,特殊字符。

    二、边界值分析法

    长期的测试工作经验告诉我们,大量的错误是发生在输入或输出范围的边界上,而不是发生在输入输出范围的内部。因此针对各种边界情况设计测试用例,可以查出更多的错误。选出的测试用例,应选取正好等于、刚刚大于、刚刚小于边界的值,例如,对于在区间min,max的值,测试用例可以记为min,min+,max,max-。
      例如,假定 X 为整数,10≤X≤100,那么 X 在测试中应该取的边界值为:10,11,99,100。
      注:上面只是说边界值,如果是完整的测试,除了边界值外,还需要一个正常值,即12-98之间的任意值。
    三.错误推测法
      错误推测法是指:在测试程序时,人们可以根据经验或直觉推测程序中可能存在的各种错误,从而有针对性地编写检查这些错误的测试用例的方法。
      这种方法没有固定的形式,依靠的是经验和直觉,很多时候,我们都会不知不觉的使用到。

    三、错误推测

    错误推测法是指:在测试程序时,人们可以根据经验或直觉推测程序中可能存在的各种错误,从而有针对性地编写检查这些错误的测试用例的方法。
      这种方法没有固定的形式,依靠的是经验和直觉,很多时候,我们都会不知不觉的使用到。

    四、判定表法

    又称为策略表,基于策略表的测试,是功能测试中最严密的测试方法。该方法适合于逻辑判断复杂的场景,通过穷举条件获得结果,对结果再进行优化合并,会得到一个判断清晰的策略表。
      例如,某公司对客户分类标准如下:
      顾客每次订货额在1000元以上(含1000元),信誉好的,订单设“优先”标志;
      信誉不好,但是老客户的,订单设“优先”标志;
      信誉不好,但是新客户的,订单设“正常”标志;
      每次订货额在 1000元以下,订单设“正常”标志。
      绘制的决策表如下:
      这里写图片描述
      此表分两大行,两大列,分别用不同的颜色区别。
      浅蓝:列出所有条件(或称为输入)
      浅灰:列出所有结果(或称为输出,行动或决策)
      浅黄:穷举所有条件的组合
      浅绿:根据每一列的条件,判断出结果

    五.正交实验法

    用语言描述正交实验法会很抽象难懂,简单说,就是在各因素互相独立的情况下,设计出一种特殊的表格,找出能以少数替代全面的测试用例。
      其中,上面所说的特殊表格就是正交表,是按照一定规则生成的表。
      虽然说是特殊的表格,实际表现形式跟一般的表格没有什么区别,正交表的主要特征是,“均匀分布,整齐划一”,正是因为“均匀”的,所以才能以少数代替全部。

    展开全文
  • 数据预处理 常见的几种方法

    万次阅读 2018-08-20 10:05:14
    在进行决策时,一般要进行属性值的规范化,主要有如下三个作用:①属性值有多种类型,上述三属性放在同一个表中不便于直接从数值大小判断方案的优劣,因此需要对数据进行预处理,使得表中任一属性下性能约优的方案...

    给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)

    PS:巨方便简单上手,貌似现在是免费

    官网:www.mpaidata.com   mpai数据科学平台

     

     

    数据的预处理又称属性值的规范化。

    属性值具有多种类型,包括效益型、成本型、以及区间型等。这三种属性,效益型属性越大越好,成本型属性越小越好,区间型属性是在某个区间最佳。

    在进行决策时,一般要进行属性值的规范化,主要有如下三个作用:①属性值有多种类型,上述三种属性放在同一个表中不便于直接从数值大小判断方案的优劣,因此需要对数据进行预处理,使得表中任一属性下性能约优的方案变换后的属性值越大。②非量纲化,多属性决策与评估的困难之一是属性间的不可公度性,即在属性值表中的每一列数具有不同的单位(量纲)。即使对同一属性,采用不同的计量单位,表中的数值也就不同。在用各种多属性决策方法进行分析评价时需要排除量纲的选用对决策或评估结果的影响,这就是非量纲化。③归一化,属性值表中不同指标的属性值的数值大小差别很大,为了直观,更为了便于采用各种多属性决策与评估方法进行评价,需要把属性值表中的数值归一化,即把表中数值均变换到[0,1]区间上。

    此外,还可在属性规范时用非线性变换或其他办法,来解决或部分解决某些目标的达到程度与属性值之间的非线性关系,以及目标间的不完全补偿性。常用的属性规范化方法有以下几种。

    (1)线性变换。原始的决策矩阵为A = {\left( {​{a_{ij}}} \right)_{m \times n}},变换后的决策矩阵记为B = {\left( {​{b_{ij}}} \right)_{m \times n}},i = 1, \cdots ,m;j = 1, \cdots ,n,设a_j^{\max }是决策矩阵第 j 列中的最大值,a_j^{\max }是决策矩阵第中的 j 最小值。若为效益型属性,则

                                                                                      {b_{ij}} = {a_{ij}}/a_j^{\max }

    采用上式进行属性规范化时,经过变换的最差属性值不一定为0,最优属性值为1。

    若为成本型属性,则

                                                                                   {b_{ij}} = 1 - {a_{ij}}/a_j^{\max }

     

    采用上式进行属性规范化时,经过变换的最优属性值不一定为1,最差属性值为0。

    (2)标准0—1变换。为了使每个属性变换后的最优值为1且最差值为0,可以进行标准0—1变换。对效益型属性,令

                                                                                  {b_{ij}} = \frac{​{​{a_{ij}} - a_j^{\min }}}{​{a_j^{\max } - a_j^{\min }}}

    对成本性属性{x_j},令

                                                                                  {b_{ij}} = \frac{​{a_j^{\max } - {a_{ij}}}}{​{a_j^{\max } - a_j^{\min }}}

     

    (3)区间型属性的变换。有些属性既非效益性又非成本型,如师生比。显然这种属性不能采用前面介绍的两种方法处理。

    设给定的最优属性 \left[ {a_j^0,a_j^ * } \right], a_j^'为无法容忍下限,a_j^{'{\kern 1pt} '}为无法容忍上限,则

                                                     

    变换后的属性值b_{ij}与原属性值a_{ij}之间的函数图形为一般梯形。当属性值最优区间的上下限相等时,最优区间退化为一个点时,函数图形退化为三角形。

    (4)向量规范化

    无论成本型属性还是效益型属性,向量规范化均用下式进行变换:

                                                                        {b_{ij}} = {a_{ij}}/\sqrt {\sum\limits_{i = 1}^m {a_{ij}^2} } ,i = 1, \cdots ,m,j = 1, \cdots ,n

    它与前面介绍的几种变换不同,从变换后的属性值的大小上无法分辨属性值的优劣。它的最大特点是,规范化后,各方案的同一属性值的平方和为1,因此常用于计算各种方案与某种虚拟方案(如理想点或负理想点)的欧几里得距离的场合。

    (5)标准化处理。在实际问题中,不同变量的测量单位往往是不一样的。为了消除变量的量纲效应,使每个变量都具有同等的表现力,数据分析中常对数据进行标准化处理,即

                                                                                        

                              式中

                                                         

     

     

     

    展开全文
  • 常见分类方法

    千次阅读 2016-09-27 17:32:08
    主要分类方法介绍解决分类问题的方法很多[40-42] ,单一的分类方法主要包括:决策树、贝叶斯、人工神经网络、K-近邻、支持向量机和基于关联规则的分类等;另外还有用于组合单一分类方法的集成学习算法,如Bagging和...
  • 常见的几优化方法

    千次阅读 2016-12-12 11:27:14
    常见的几最优化方法 1. 梯度下降法(Gradient Descent)  梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般...
  • 种常见的Graph Embedding方法

    万次阅读 多人点赞 2018-10-31 20:15:43
    图(Graph)是一个常见的数据结构,现实世界中有很多很多任务可以抽象成图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网络结构数据(如图像,视频等)也是图数据的一特殊形式...
  • 机器学习中常见的几优化方法

    万次阅读 2016-06-08 15:11:36
    机器学习中常见的几优化方法 声明:本文为转载,原文作者为:Poll的笔记,原文链接为:http://www.cnblogs.com/maybe2030/p/4751804.html#rd,尊重原创 阅读目录 1. 梯度下降法(Gradient ...
  • 数据分析常见方法及模型分类

    千次阅读 2020-08-05 10:33:26
    今天跟大家分享一下比较常见的数据分析方法以及模型分类。 在工作中,有很多的数据分析方法和模型,但是对于新入门的人来说,可能不能够一下子就找到合适的数据分析方法以及模型,进而影响到工作的进度。所以今天...
  • 常见的9大数据分析方法

    万次阅读 2019-01-23 16:01:30
    数据分析是从数据中提取有价值信息的过程,过程中需要对数据进行各种处理和归类,只有掌握了正确的数据分类方法和数据处理模式,才能起到事半功倍的效果,以下是数据分析员必备的9数据分析思维模式: 1. 分类 ...
  • 测试用例的几种常见设计方法

    千次阅读 2018-04-11 12:30:50
    测试用例的几种常见设计方法 测试用例常见的设计方法有:等价类划分法、边界值分析法、错误推测法、判定表法、正交实验法。 一.等价类划分法 顾名思义,等价类划分,就是将测试的范围划分成几个互不相交的子集,...
  • 常见的图像分割方法有以下几

    万次阅读 多人点赞 2018-04-19 18:33:08
    常见的图像分割方法有以下几:1.基于阈值的分割方法 灰度阈值分割法是一最常用的并行区域技术,它是图像分割中应用数量最多的一类。阈值分割方法实际上是输入图像f到输出图像g的如下变换: 其中,T为阈值;...
  • 种常见的聚类方法

    千次阅读 2019-10-17 18:51:55
    作为无监督学习的一个重要方法,聚类的思想就是把属性相似的样本归到一类。对于每一个数据点,我们可以把它归到一个特定的类,同时每个类之间的所有数据点在某种程度上有着共性,比如空间位置接近等特性。多用于数据...
  • 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。1、分类分类是找出数据库中一组数据对象的共同特点并按照...
  • 种常见的离群点检验方法

    万次阅读 2019-04-19 10:50:18
    在一组平行测定中,若有个别数据与平均值差别较大...1 离群值检验方法简介 设有一组正态样本的观测值,按其大小顺序排列为x1,x2,x3,……,xn。其中最小值x1或最大值xn为离群值(xout)。对于离群值的统计检验,大...
  • 常见的几最优化方法

    千次阅读 2016-12-03 13:36:30
    阅读目录 1. 梯度下降法(Gradient Descent) ...2. 牛顿法和拟牛顿法(Newton's method...4. 启发式优化方法  我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都
  • 深度学习数据标签处理的两种常见方式:LabelEncoder 和 OneHotEncoderOne-Hot 编码即独热编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,...
  • 防止过拟合的几种常见方法

    万次阅读 2018-08-14 17:13:18
    防止过拟合的处理方法 何时会发生过拟合?    我们都知道,在进行数据挖掘或者机器学习模型建立的时候,因为在统计学习中,假设数据满足独立同分布(i.i.d,independently and identically distributed),即...
  • 模型的几种常见融合方法

    千次阅读 2019-12-03 10:46:38
    但是怎样进行有效的融合,充分发挥各个算法的长处呢,这里总结一些常见的融合方法: 1) 线性加权融合法 线性加权是最简单易用的融合算法,工程实现非常方便,只需要汇总单一模型的结果,然后按不同算法赋予不同...
  • 两种常见电商sku的设计

    万次阅读 2016-06-29 16:43:39
    在电商系统中,商品sku和sku模型至关重要,是整个电商系统的重要组成部分之一,下面通过一些简单的知识整理和分析,讲解一下sku属性管理和常见的建模方式。 一、sku的定义及概念的统一 1、什么是sku? sku = Stock ...
  • 11种常见的多变量分析方法

    万次阅读 多人点赞 2018-10-09 09:31:06
    在社会科学研究中,主要的多变量分析方法包括多变量方差分析(Multivariate analysis of variance,MANOVA)、主成分分析(Principal component analysis)、因子分析(Factor analysis)、典型相关(Canonical ...
  • Linux 添加开机启动项的两种方法

    千次阅读 2014-11-06 10:29:17
    Linux 添加开机启动项的两种方法  2011-08-26 12:13:41| 分类: linux入门 | 标签:linux 常见问题  1、编辑文件 /etc/rc.local vim /etc/rc.local #!/bin/sh # # This script will be...
  • 分类常见的类别不平衡问题解决方法

    万次阅读 多人点赞 2017-08-29 11:01:32
    常见的类别不平衡问题解决方法 通常的分类学习方法中都有一个共同的假设,即不同类别的训练样例数目相同。如果不同类别的训练样例数目稍有差别,通常对分类影响不大,但是若差别很大,则会对学习造成影响,测试结果...
  • 下面笔者将介绍一些方法,可以让你的网络排错工作更快捷更标准化。由于每次网络故障都有所不同,所以并不是每一个小技巧都能够派的上用场。但是遵从一定的系统性规范,可以让你更快的解决问题。   1: 从客户端...
  • 机器学习中常见的几最优化方法

    万次阅读 2016-06-07 10:02:17
    1. 梯度下降法(Gradient Descent) ...4. 启发式优化方法  5. 解决约束优化问题——拉格朗日乘数法 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 285,491
精华内容 114,196
关键字:

常见的两种分类方法