精华内容
下载资源
问答
  • 倒着的?
    千次阅读
    2021-08-03 15:56:36

    原文链接:https://www.lianxh.cn/news/c36ef8e23a704.html

    目录

    1. 非线性关系简介

    在实证分析中我们常常假设解释变量和被解释变量存在线性关系。然而,在很多情况下,解释变量和被解释变量可能存在非线性关系。在模型中加入平方项,甚至是高阶项 (断点回归分析 RDD 中常用的处理方法),是文献中常用的模型设定方法。典型的模型设定方式为:

    其中,  是常数项,  是线性关系的系数,  是平方项的系数 (说明:为了便于表述,这里省去了控制变量和干扰项)。

    本文的目的在于分析加入平方项后我们该如何解释系数的含义?有哪些需要特别注意的地方?

    平方项显著就一定意味着存在 U 形关系吗?

    浏览现有的期刊论文,我们经常发现不少作者只要发现平方项的系数  在统计上显著,便声称  和  之间存在「U 形关系」() 或「倒 U 形关系」() 。这并不严谨,有时甚至是错误的。

    在社会科学研究中,我们必须考虑变量的经济含义和取值范围,这就使得我们不能像做初中代数习题那样来分析包含平方项的模型。比如,研究「收入 (Income) 与年龄 (Age) 」的非线性关系时,Age 就不可能取负值,甚至不可能小于 18。同时,Age 的最大值也有限制,取决于研究对象及样本特征。

    一旦考虑到  的取值范围,再配合二次曲线转折点的位置,我们便会发现,在样本区间内 , 和  之间的关系可能仅仅是 U 形曲线的左半支或右半支,也即, 和  之间的关系仍然是单调关系,只是  对  的边际影响在变化 (递增或递减)。

    图 1 呈现了一些典型的状况,我们可以可以通过在线性回归模型中添加二次项来拟合每一种情形。在 Stata 中,使用 regress 命令即可为所有以上曲线提供了线性和二次系数的最佳估计。

    下面,举一些例子来具体说明。

    参考文献

    更多相关内容
  • 什么是排索引?

    万次阅读 多人点赞 2019-02-17 11:09:08
    什么是排索引?    不多说,直接上干货!        见其名知其意,有排索引,对应肯定,有正向索引。  正向索引(forward index),反向索引(inverted index)更熟悉的名字是排索引。    在...

    什么是倒排索引?

     

      不多说,直接上干货!

     

     

     

      见其名知其意,有倒排索引,对应肯定,有正向索引。

         正向索引(forward index),反向索引(inverted index)更熟悉的名字是倒排索引。

     

         在搜索引擎中每个文件都对应一个文件ID,文件内容被表示为一系列关键词的集合(实际上在搜索引擎索引库中,关键词也已经转换为关键词ID)。例如“文档1”经过分词,提取了20个关键词,每个关键词都会记录它在文档中的出现次数和出现位置。

     

     

     

     

     

         得到正向索引的结构如下:

           “文档1”的ID > 单词1:出现次数,出现位置列表;单词2:出现次数,出现位置列表;…………。

           “文档2”的ID > 此文档出现的关键词列表。

     

      一般是通过key,去找value。

     

     

     

     

     

     

     

          当用户在主页上搜索关键词“华为手机”时,假设只存在正向索引(forward index),那么就需要扫描索引库中的所有文档,找出所有包含关键词“华为手机”的文档,再根据打分模型进行打分,排出名次后呈现给用户。因为互联网上收录在搜索引擎中的文档的数目是个天文数字,这样的索引结构根本无法满足实时返回排名结果的要求。

           所以,搜索引擎会将正向索引重新构建为倒排索引,即把文件ID对应到关键词的映射转换为关键词到文件ID的映射,每个关键词都对应着一系列的文件,这些文件中都出现这个关键词。

           得到倒排索引的结构如下:

           “关键词1”:“文档1”的ID,“文档2”的ID,…………。

           “关键词2”:带有此关键词的文档ID列表。

     

      从词的关键字,去找文档。

     

     

     

     

     

     

     

     

     

    1.单词——文档矩阵

          单词-文档矩阵是表达两者之间所具有的一种包含关系的概念模型,图1展示了其含义。图3-1的每列代表一个文档,每行代表一个单词,打对勾的位置代表包含关系。

                

                              图1 单词-文档矩阵

     

         从纵向即文档这个维度来看,每列代表文档包含了哪些单词,比如文档1包含了词汇1和词汇4,而不包含其它单词。从横向即单词这个维度来看,每行代表了哪些文档包含了某个单词。比如对于词汇1来说,文档1和文档4中出现过单词1,而其它文档不包含词汇1。矩阵中其它的行列也可作此种解读。

        搜索引擎的索引其实就是实现“单词-文档矩阵”的具体数据结构。可以有不同的方式来实现上述概念模型,比如“倒排索引”、“签名文件”、“后缀树”等方式。但是各项实验数据表明,“倒排索引”是实现单词到文档映射关系的最佳实现方式,所以本博文主要介绍“倒排索引”的技术细节。

     

     

     

    2.倒排索引基本概念

           文档(Document):一般搜索引擎的处理对象是互联网网页,而文档这个概念要更宽泛些,代表以文本形式存在的存储对象,相比网页来说,涵盖更多种形式,比如Word,PDF,html,XML等不同格式的文件都可以称之为文档。再比如一封邮件,一条短信,一条微博也可以称之为文档。在本书后续内容,很多情况下会使用文档来表征文本信息。

           文档集合(Document Collection):由若干文档构成的集合称之为文档集合。比如海量的互联网网页或者说大量的电子邮件都是文档集合的具体例子。

           文档编号(Document ID):在搜索引擎内部,会将文档集合内每个文档赋予一个唯一的内部编号,以此编号来作为这个文档的唯一标识,这样方便内部处理,每个文档的内部编号即称之为“文档编号”,后文有时会用DocID来便捷地代表文档编号。

           单词编号(Word ID):与文档编号类似,搜索引擎内部以唯一的编号来表征某个单词,单词编号可以作为某个单词的唯一表征。

           倒排索引(Inverted Index):倒排索引是实现“单词-文档矩阵”的一种具体存储形式,通过倒排索引,可以根据单词快速获取包含这个单词的文档列表。倒排索引主要由两个部分组成:“单词词典”和“倒排文件”。

           单词词典(Lexicon):搜索引擎的通常索引单位是单词,单词词典是由文档集合中出现过的所有单词构成的字符串集合,单词词典内每条索引项记载单词本身的一些信息以及指向“倒排列表”的指针。

           倒排列表(PostingList):倒排列表记载了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。

           倒排文件(Inverted File):所有单词的倒排列表往往顺序地存储在磁盘的某个文件里,这个文件即被称之为倒排文件,倒排文件是存储倒排索引的物理文件。

         关于这些概念之间的关系,通过图2可以比较清晰的看出来。

                  

     

     

     

    3.倒排索引简单实例

          倒排索引从逻辑结构和基本思路上来讲非常简单。下面我们通过具体实例来进行说明,使得读者能够对倒排索引有一个宏观而直接的感受。

          假设文档集合包含五个文档,每个文档内容如图3所示,在图中最左端一栏是每个文档对应的文档编号。我们的任务就是对这个文档集合建立倒排索引。

                  

                               图3   文档集合

     

      中文和英文等语言不同,单词之间没有明确分隔符号,所以首先要用分词系统将文档自动切分成单词序列。这样每个文档就转换为由单词序列构成的数据流,为了系统后续处理方便,需要对每个不同的单词赋予唯一的单词编号,同时记录下哪些文档包含这个单词,在如此处理结束后,我们可以得到最简单的倒排索引(参考图3-4)。在图4中,“单词ID”一栏记录了每个单词的单词编号,第二栏是对应的单词,第三栏即每个单词对应的倒排列表。比如单词“谷歌”,其单词编号为1,倒排列表为{1,2,3,4,5},说明文档集合中每个文档都包含了这个单词。

                  

                                图4   简单的倒排索引

      之所以说图4所示倒排索引是最简单的,是因为这个索引系统只记载了哪些文档包含某个单词,而事实上,索引系统还可以记录除此之外的更多信息。图5是一个相对复杂些的倒排索引,与图4的基本索引系统比,在单词对应的倒排列表中不仅记录了文档编号,还记载了单词频率信息(TF),即这个单词在某个文档中的出现次数,之所以要记录这个信息,是因为词频信息在搜索结果排序时,计算查询和文档相似度是很重要的一个计算因子,所以将其记录在倒排列表中,以方便后续排序时进行分值计算。在图5的例子里,单词“创始人”的单词编号为7,对应的倒排列表内容为:(3:1),其中的3代表文档编号为3的文档包含这个单词,数字1代表词频信息,即这个单词在3号文档中只出现过1次,其它单词对应的倒排列表所代表含义与此相同。

                  

                                图 5 带有单词频率信息的倒排索引

       实用的倒排索引还可以记载更多的信息,图6所示索引系统除了记录文档编号和单词频率信息外,额外记载了两类信息,即每个单词对应的“文档频率信息”(对应图6的第三栏)以及在倒排列表中记录单词在某个文档出现的位置信息。

                      

                           图6   带有单词频率、文档频率和出现位置信息的倒排索引

       “文档频率信息”代表了在文档集合中有多少个文档包含某个单词,之所以要记录这个信息,其原因与单词频率信息一样,这个信息在搜索结果排序计算中是非常重要的一个因子。而单词在某个文档中出现的位置信息并非索引系统一定要记录的,在实际的索引系统里可以包含,也可以选择不包含这个信息,之所以如此,因为这个信息对于搜索系统来说并非必需的,位置信息只有在支持“短语查询”的时候才能够派上用场。

         以单词“拉斯”为例,其单词编号为8,文档频率为2,代表整个文档集合中有两个文档包含这个单词,对应的倒排列表为:{(3;1;<4>),(5;1;<4>)},其含义为在文档3和文档5出现过这个单词,单词频率都为1,单词“拉斯”在两个文档中的出现位置都是4,即文档中第四个单词是“拉斯”。

         图6所示倒排索引已经是一个非常完备的索引系统,实际搜索系统的索引结构基本如此,区别无非是采取哪些具体的数据结构来实现上述逻辑结构。

         有了这个索引系统,搜索引擎可以很方便地响应用户的查询,比如用户输入查询词“Facebook”,搜索系统查找倒排索引,从中可以读出包含这个单词的文档,这些文档就是提供给用户的搜索结果,而利用单词频率信息、文档频率信息即可以对这些候选搜索结果进行排序,计算文档和查询的相似性,按照相似性得分由高到低排序输出,此即为搜索系统的部分内部流程,具体实现方案本书第五章会做详细描述。

     

     

     

     

     

     

     

     

    4. 单词词典

      单词词典是倒排索引中非常重要的组成部分,它用来维护文档集合中出现过的所有单词的相关信息,同时用来记载某个单词对应的倒排列表在倒排文件中的位置信息。在支持搜索时,根据用户的查询词,去单词词典里查询,就能够获得相应的倒排列表,并以此作为后续排序的基础。
           对于一个规模很大的文档集合来说,可能包含几十万甚至上百万的不同单词,能否快速定位某个单词,这直接影响搜索时的响应速度,所以需要高效的数据结构来对单词词典进行构建和查找,常用的数据结构包括哈希加链表结构和树形词典结构。
    4.1   哈希加链表
           图7是这种词典结构的示意图。这种词典结构主要由两个部分构成:

            主体部分是哈希表,每个哈希表项保存一个指针,指针指向冲突链表,在冲突链表里,相同哈希值的单词形成链表结构。之所以会有冲突链表,是因为两个不同单词获得相同的哈希值,如果是这样,在哈希方法里被称做是一次冲突,可以将相同哈希值的单词存储在链表里,以供后续查找。

                          

      在建立索引的过程中,词典结构也会相应地被构建出来。比如在解析一个新文档的时候,对于某个在文档中出现的单词T,首先利用哈希函数获得其哈希值,之后根据哈希值对应的哈希表项读取其中保存的指针,就找到了对应的冲突链表。如果冲突链表里已经存在这个单词,说明单词在之前解析的文档里已经出现过。如果在冲突链表里没有发现这个单词,说明该单词是首次碰到,则将其加入冲突链表里。通过这种方式,当文档集合内所有文档解析完毕时,相应的词典结构也就建立起来了。

           在响应用户查询请求时,其过程与建立词典类似,不同点在于即使词典里没出现过某个单词,也不会添加到词典内。以图7为例,假设用户输入的查询请求为单词3,对这个单词进行哈希,定位到哈希表内的2号槽,从其保留的指针可以获得冲突链表,依次将单词3和冲突链表内的单词比较,发现单词3在冲突链表内,于是找到这个单词,之后可以读出这个单词对应的倒排列表来进行后续的工作,如果没有找到这个单词,说明文档集合内没有任何文档包含单词,则搜索结果为空。

    4.2   树形结构
           B树(或者B+树)是另外一种高效查找结构,图8是一个 B树结构示意图。B树与哈希方式查找不同,需要字典项能够按照大小排序(数字或者字符序),而哈希方式则无须数据满足此项要求。
           B树形成了层级查找结构,中间节点用于指出一定顺序范围的词典项目存储在哪个子树中,起到根据词典项比较大小进行导航的作用,最底层的叶子节点存储单词的地址信息,根据这个地址就可以提取出单词字符串。

                    

                               图8   B树查找结构 

     

     

     

     

     

     

     

     

     

    总结

     

     

     

    单词ID:记录每个单词的单词编号;
    单词:对应的单词;
    文档频率:代表文档集合中有多少个文档包含某个单词
    倒排列表:包含单词ID及其他必要信息
    DocId:单词出现的文档id
    TF:单词在某个文档中出现的次数
    POS:单词在文档中出现的位置
         以单词“加盟”为例,其单词编号为6,文档频率为3,代表整个文档集合中有三个文档包含这个单词,对应的倒排列表为{(2;1;<4>),(3;1;<7>),(5;1;<5>)},含义是在文档2,3,5出现过这个单词,在每个文档的出现过1次,单词“加盟”在第一个文档的POS是4,即文档的第四个单词是“加盟”,其他的类似。
    这个倒排索引已经是一个非常完备的索引系统,实际搜索系统的索引结构基本如此。

    展开全文
  • [转]倒着播放音乐

    2019-03-22 02:58:30
    倒着播放音乐.rar,PSound.as,倒着播放音乐.swf,倒着播放音乐.fla
  • 如何用PHOTOSHOP倒置文字?

    千次阅读 2018-01-02 18:19:06
    Photoshop旋转文字方法: 一、在图层中选择需要旋转的文字图层; 二:依次点击菜单栏中的“编辑(E)”-“自由变换(F)”或者使用快捷键“Ctrl+T”对...要想实现倒影的效果,直接先单击左边菜单栏的

    Photoshop旋转文字方法:

    一、在图层中选择需要旋转的文字图层;

    二:依次点击菜单栏中的“编辑(E)”-“自由变换(F)”或者使用快捷键“Ctrl+T”对文字进行旋转;

    三:在属性栏的角度“∠”中输入需要选装的角度按回车确定即可。

    要想实现倒影的效果,直接先单击左边菜单栏的T --横排文字工具,选中要实现倒影的文字(最好是一个一个字来弄)后,ctrl+s先保存,单击最上方导航栏的编辑按钮,选择变换-->垂直翻转-->最后在保存即可,实现倒影效果。
    选中图片 按ctrl+t 这个是自由变换 再右键选择垂直变换 OK 完工


    选择文字或图片的所在图层,然后再打开编辑选项,选择里面有个自由变换,这时候你要变换的文字或图片就被选中啦,再然后你就可以随意的变换角度、变形、倒置,随你个人要求啦

    展开全文
  • 问号怎么输问号怎么打?问号来自于西班牙语。倒立的问号代表的是接下来的句子或者从句时一个问题。下面就和小编一起来看看问号怎么打出来的。1、点击你想要插入问号的位置。在输入问号之前,请确保光标...

    倒问号怎么输倒问号怎么打?倒问号来自于西班牙语。倒立的问号代表的是接下来的句子或者从句时一个问题。下面就和小编一起来看看倒问号怎么打出来的。

    b6e01802f036ca945ddea8ec1affd6f5.png

    1、点击你想要插入倒问号的位置。在输入倒问号之前,请确保光标位于屏幕中正确的位置。

    5a014b9ef317591c8db6daa95cac4eed.png

    2、找到键盘上的Alt键。在空格键的两侧各有一个Alt键。你只需要使用其中一个Alt键即可

    5f7db3dde29cc3317044b7b75302a092.png

    3、按下Alt键不松开。然后用另一只手,在键盘的数字区敲击0191键。

    27e576c9833378e1230dd52218beed18.png

    4、如果这个组合键不起作用,可以尝试按住Alt键,依次输入数字168。

    67c522e0490f58516b230f41b14e16c9.png

    5、松开Alt键。接着,倒问号就会出现在屏幕中光标所在的位置。

    f6a52e82692770597c7a98db1b341c4d.png

    1、点击你想要插入倒问号的位置

    在输入倒问号之前,请确保光标位于屏幕中正确的位置。例如,你正在使用西班牙语书写问句,你需要将光标放在问句的开头位置,并单击鼠标左键。

    2、找到键盘上的Alt键

    看一下键盘的左下角和右下角位置,在空格键的两侧各有一个Alt键。你只需要使用其中一个Alt键即可,可以根据你的用手偏好选择使用其中一侧的Alt键。例如,如果你是个右撇子,你可能倾向于使用左侧的Alt按键。

    3、按下Alt键不松开

    4、松开Alt键

    1、点击你想要插入倒问号的位置

    在输入倒问号之前,请确保光标位于屏幕中正确的位置。例如,你正在使用西班牙语书写问句,你需要将光标放在问句的开头位置,并单击鼠标左键。

    2、按下键盘上的开始按钮

    在屏幕的左下方位置,有一个圆形的彩色Windows的图标。这就是开始按钮。

    3、从开始菜单中选择所有程序

    一旦你点击开始菜单,屏幕中就会出现几个选项。依次选择所有程序,然后是附件,接着选择系统工具选项,最后选择字符映射表。

    接着会出现一个窗口,窗口中有一个大网格,其中列有各种系列的字符和符号。

    4、点击字符映射表

    5、选择倒问号

    6、点击选择按钮来输入你选择的符号

    按下Ctrl和V键来复制倒问号,按下Ctrl和V键来将倒问号粘贴到别的地方。或者,右键点击鼠标(可能不适用于某些程序),然后点击粘贴。

    以上就是关于怎么在电脑上打出倒问号的详细介绍,希望能帮助到您。

    一般手机中都自带有很多新奇有趣的符号,比如反向问号,那么手机反向问号怎么打?想知道的话就来看看今天的视频吧。

    b6898a57a68a8deb8e5d221be6a3e11f.png

    然后选择英文模式,在英文模式找到问号,长按问号符号即会出现反向问号弹窗,点击即可成功输入反向问号。

    关键词:  电脑倒过来的问号怎么打?特殊符号倒问号输入的方法

    展开全文
  • Python小工具之计时锁屏 当你准备离开电脑时,又不想马上锁屏,但是屏幕亮又想保护隐私,怎么办呢? 直接写一个Python脚本进行计时锁屏,小巧简单,哈哈~
  • CAXA怎么画角和圆角?

    千次阅读 2020-12-20 12:00:21
    在CAXA制图中,有时需要画轴什么的,这时需要用到角,甚至是圆角等。那么如何根据要求画出呢?下面我来教大家一种简单的方法。软件名称:caxa2015电子图板 简体中文官方正式版软件大小:966.7MB更新时间:2015-01-...
  • 前言 以前就有人问过这样一个问题:如果一个tableView的很多或者所有...根据”高内聚,低耦合”的思想,我首先想直接让cell自己来实现计时功能:每个cell添加一个NSTimer,没隔1秒,让其显示的时间减少一秒. - (void)ti
  • Java eclipse中,汉字都是了的,旋转了90度,怎么解决? 方法一:Window--Perferences--java--Code Style--Formatter--Restore Defaults试试看,如果不行的话,试试下边的 方法二:可能跟使用的字体有关,可以换个...
  • Hello,在项目中我们经常遇到 手机验证码的计时60秒!网上一艘一大片,为什么我们不能动脑思考去实现呢?今天分享一个计时30分钟的demo,也是我这个项目中遇到的一个。虽然不难,但是理解,思路最重要!上图看...
  • Java中如何实现数组反转,将数组元素过来排列?【含详细解析】 数组元素反转:本来的样子{1,2,3,4,5},反转后{5,4,3,2,1}。要求,不能使用新数组。 分析过程 数组元素反转其实就是对称位置的元素交换。 ...
  • C++倒着打印九九乘法表

    千次阅读 2021-05-09 15:08:42
    @C++倒着打印九九乘法表TOC 代码如下 #include using namespace std; int main() { for (int i = 9; i >0; i–) { for (int j = 1; j <= i; j++) { cout << j << “*” << i << “=”...
  • 育儿笔记 感叹号过来像什么?

    千次阅读 2020-12-23 16:56:08
    育儿笔记之感叹号过来像什么?2013/5/28这是今天早上发生的事情,让我大吃一惊,同时也暗暗地欣喜。早上六点刚睡醒,冬冬听到爸爸在看ipad视频,声音有点大,他说:爸爸又看电视呢,电脑、电视、手机都不好,对...
  • 原标题:iPhone拍出来的视频过来了怎么办?这个系统自带工具全搞定,它还有更多神奇绝技!这是设计私生活主题的第7期推送。本馆客人泰迪粥将介绍一个苹果系统MAC OS自带工具里,容易被遗忘的小神器。看完你会发现...
  • 在进入docker里面时,加一个环境语言的配置 docker exec -it contain_name env LANG=C.UTF-8 bash
  • 每一台机器称为一个Node节点,节点内保存多个Index的部分Shard。每个Shard实际上是一个Lucene Index,里面被分成了数个Segment,而Segment即为我们存储数据的最小单位。 我们将一个Index分成了多个Shard,分布在...
  • OV9650 寄存器 0x1e将0x14或者0x34改为0x00。
  • ”马欣嘴里嘀咕:“一大早就被这个问题给困扰,真是一天都没有好心情。”使用华为手机的用户当中,遇到像马欣这样情况的人还不在少数,那么华为手机日历日程提醒不响怎么解决呢?针对这一问题,今天来给大家全面的...
  • **文章简介 **:本篇文章主要讲解本次利用Pillow库,实现化新年生成新年计时图片。 ???? **文章源码获取 **:为了感谢每一个关注我的小可爱????每篇文章的项目源码都是无偿分 享滴???????????????? 点这里蓝色...
  • 小小纹枰,不过一尺见方,竟蕴藏万千气象,着实令人为之着迷。少年时代的我,曾经有一段时间醉心于围棋。标准的围棋盘由横竖各19道线组成网格,共有361个交叉点,每个交叉点上有白子、黑子和无子等三种可能的状态...
  • 什么是正向索引、什么是排索引? 正向索引(forward index),反向索引(inverted index)更熟悉的名字是排索引。 在搜索引擎中每个文件都对应一个文件ID,文件内容被表示为一系列关键词的集合(实际上在搜索...
  • 是这样的,项目需要一个这样的效果我先上个图 ...大神们,这可真难了,这到底该怎么玩呢??? 这个需求是销售公司规定员工在规定时间内完成组装便可以得到奖励金,超过便没有,该怎么实现呢???...
  • 随着区块链技术的发展,外界的态度也逐渐从好奇转为审视,大家都期待区块链技术能更好地解决人们日常各项事务的问题。DApp的出现,让区块链技术应用落地有了更完整的体现,但依旧未曾出现让业界乃至世界惊艳的表现...
  • 对计算机专业来说学历真的重要吗?

    万次阅读 多人点赞 2019-09-27 09:21:37
    节目播出之后,立刻引起网友热议,局面却是一边的站在了张雪峰老师这边。 @RNQJ666:什么时候学历都是重要的?到社会工作才深刻理解书到用时方恨少。 @蜗詹: 你总是嘲笑我念书没用,我却永远不会嘲笑你没念...
  • 字符串匹配算法知多少?

    千次阅读 多人点赞 2021-07-03 10:00:09
    坏字符 BM 算法的匹配顺序比较特别,它是按照模式串下标从大到小的顺序,倒着匹配的。 我们从模式串的末尾往前倒着匹配,当我们发现某个字符没法匹配的时候。我们把这个没有匹配的字符叫作坏字符(主串中的字符) ...
  • 计时代码

    千次阅读 2022-03-08 20:27:14
    后来又想到比赛考试,2小时计时的例子,也试实现了。现分享如下: 一、电商网站计时 一到了双十一或双十二或者聚划算店铺庆典活动等,电商网站都会出现计时的场景,如图所示,“距离结束07:53:58”,每秒钟...
  • 这个世界上人真的分三六九等,你信吗?

    万次阅读 多人点赞 2020-02-04 22:16:21
    两班,负责从冰冻仓库里,把黄桃运到流水线上。 第一晚,就给浇了盆冷水。说好的包吃包住,吃的是清水白菜,住的是大通铺。你能想像,一个大厂房里,至少三十张双层床,齐齐地摆在一起,从这头都能滚到那头。 ...
  • 目录抖音时光倒流原理 抖音时光倒流原理 抖音的时光倒流原理,应该来说最好理解,也就是将视频放。如果你是掌握PR或者AE的用户,那么视频...下面,我们来一步步掌握视频的整体放,以及部分放的操作代码。 ...
  • 电驴,去专卖店 “你好,要送去检修需要24小时” 作为一个有点知识背景的工程师,我深刻地了解到 一个进水的主板,在24小时就可以废了,特别水还有杂质的情况下 我默默搜了一下我这款的电脑主板价格...
  • 微分方程的阶数、任意常数个数、特征根个数的关系,以及由解求各种类型微分方程的方法:推法、行列式法、特解代入法、消C法、综合法。

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 297,047
精华内容 118,818
关键字:

倒着的?