精华内容
下载资源
问答
  • 整理的图像处理离散傅里叶变换频谱相位谱幅度谱关系ppt,及matlab代码
  • 频谱幅度谱、功率和能量

    千次阅读 2018-11-16 10:36:45
    在信号处理的学习中,有一些与谱有关的概念,如频谱幅度谱、功率谱和能量谱等,常常让人很糊涂,搞不清其中的关系。这里主要从概念上厘清其间的区别。 对一个时域信号进行傅里叶变换,就可以得到的信号的频谱,...

    在信号处理的学习中,有一些与谱有关的概念,如频谱、幅度谱、功率谱和能量谱等,常常让人很糊涂,搞不清其中的关系。这里主要从概念上厘清其间的区别。
    对一个时域信号进行傅里叶变换,就可以得到的信号的频谱,信号的频谱由两部分构成:幅度谱和相位谱。这个关系倒还是简单。那么,什么是功率谱呢?什么又是能量谱呢?功率谱或能量谱与信号的频谱有什么关系呢?
    要区分功率谱和能量谱,首先要清楚两种不同类型的信号:功率信号和能量信号。我们从一个具体的物理系统来引出能量信号和功率信号的概念。已知阻值为R的电阻上的电压和电流分别为v(t) 和 i(t),则此电信号的瞬时功率为: p(t) = v2(t)/R = i2(t)R。在作定性分析时,为了方便起见,通常假设电阻R为1欧姆而得到归一化 (Normolized) 的功率值。作定量计算时可以通过去归一化,即将实际的电阻值代入即可得到实际的功率值。将上面的概念做一个抽象,对信号 x(t) 定义其瞬时功率为 |f (t)|2,在时间间隔 (-T/2 T/2) 内的能量为:
    E=int(|f (t)|2 ,-T/2,T/2) (1)
    上式表示对|f (t)|2积分,积分限为(-T/2 T/2)。 该间隔内的平均功率为:
    p = E/T (2)
    当且仅当f(t)在所有时间上的能量不为0且有限时,该信号为能量信号,即(1)式中的 T 趋于无穷大的时候E为有限。典型的能量信号如方波信号、三角波信号等。但是有些信号不满足能量信号的条件,如周期信号和能量无限的随机信号,此时就需要用功率来描述这类信号。当且仅当x(t)在所有时间上的功率不为0且有限时,该信号为功率信号,即 (2) 式中的 T 趋于无穷大的时候 p 为有限。系统中的波形要么具有能量值,要么具有功率值,因为能量有限的信号功率为0,而功率有限的信号能量为无穷大。一般来说,周期信号和随机信号是功率信号,而非周期的确定信号是能量信号。将信号区分为能量信号和功率信号可以简化对各种信号和噪声的数学分析。还有一类信号其功率和能量都是无限的,如 f(t) = t,这类信号很少会用到。
    了解信号可能是能量信号,也可能是功率信号后,就可以很好地理解功率谱和能量谱的概念。对于能量信号,常用能量谱来描述。所谓的能量谱,也称为能量谱密度,是指用密度的概念表示信号能量在各频率点的分布情况。也即是说,对能量谱在频域上积分就可以得到信号的能量。能量谱是信号幅度谱的模的平方,其量纲是焦/赫。对于功率信号,常用功率谱来描述。所谓的功率谱,也称为功率谱密度,是指用密度的概念表示信号功率在各频率点的分布情况。也就是说,对功率谱在频域上积分就可以得到信号的功率。从理论上来说,功率谱是信号自相关函数的傅里叶变换。因为功率信号不满足傅里叶变换的条件,其频谱通常不存在,维纳-辛钦定理证明了自相关函数和傅里叶变换之间对应关系。在工程实际中,即便是功率信号,由于持续的时间有限,可以直接对信号进行傅里叶变换,然后对得到的幅度谱的模求平方,再除以持续时间来估计信号的功率谱。
    对确定性的信号,特别是非周期的确定性信号,常用能量谱来描述。而对于随机信号,由于持续期时间无限长,不满足绝对可积与能量可积的条件,因此不存在傅立叶变换,所以通常用功率谱来描述。周期性的信号,也同样是不满足傅里叶变换的条件,常用功率谱来描述,这些在前面已经有所说明。只有如单频正弦信号等很少的特殊的信号,在引入delta函数之后,才可以求解信号的傅里叶变换。
    对于用功率谱描述的随机信号而言,白噪声是一个特例。根据定义,白噪声是指功率谱密度在整个频域内均匀分布的噪声。严格地说,白噪声只是一种理想化模型,因为实际噪声的功率谱密度不可能具有无限宽的带宽,否则它的功率将是无限大,是物理上不可实现的。然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。

    转自:频谱、幅度谱、功率谱和能量谱

    展开全文
  • 功率谱与频谱

    千次阅读 2014-12-10 14:26:41
    1、 一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已, 而功率是从能量的观点对信号进行的研究,其实频谱和功率关系归根揭底还是信号和功率,能量等之间的关系。...

    1、 一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已,   而功率谱是从能量的观点对信号进行的研究,其实频谱和功率谱的关系归根揭底还是信号和功率,能量等之间的关系。

    2、 频谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念;功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。

    3、功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)
    4、功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。

    联系

    1、功率谱可以从两方面来定义,一个是自相关函数的傅立叶变换,另一个是时域信号傅氏变换模平方然后除以时间长度。第一种定义就是常说的维纳辛钦定理,而第二种其实从能量谱密度来的。根据parseval定理,信号傅氏变换模平方被定义为能量谱,能量谱密度在时间上平均就得到了功率谱。

    2、在频域分析信号分两种:
    (1).对确定性信号进行傅里叶变换,分析频谱信息。
    (2).随机信号的傅里叶信号不存在,转向研究它的功率谱。随机信号的功率谱和自相关函数是傅里叶变换对(即维纳辛钦定理)。功率谱估计有很多种方法
     

    以下转自小木虫。有些概念还不太明白,留作以后研究用。
    最近听老师讲课,提到功率谱是把信号的自相关作FFT,我才发现自己概念上的一个误区:我一直以为功率谱和频谱是同一个概念,以为都是直接作FFT就可以了。
    那么功率谱:信号先自相关再作FFT
             频谱:信号直接作FFT。
    这两者从公式上看是不同的,那么从物理意义上呢?哪个表示信号在各个频率上的能量?那另一个又是什么呢?
    欢迎大家讨论:P
    [ Last edited by bslt on 2009-5-18 at 11:06 ]


    作者:Yorkxu
    (1)信号通常分为两类:能量信号和功率信号;
    (2)一般来讲,能量信号其傅氏变换收敛(即存在),而功率信号傅氏变换通常不收敛,当然,若信号存在周期性,可引入特殊数学函数(Delta)表征傅氏变换的这种非收敛性;
    (3)信号是信息的搭载工具,而信息与随机性紧密相关,所以实际信号多为随机信号,这类信号的特点是状态随机性随时间无限延伸,其样本能量无限。换句话说,随机信号(样本)大多属于功率信号而非能量信号,它并不存在傅氏变换,亦即不存在频谱;
    (4)若撇开搭载信息的有用与否,随机信号又称随机过程,很多噪声属于特殊的随机过程,它们的某些统计特性具有平稳性,其均值和自相关函数具有平稳性。对于这样的随机过程,自相关函数蜕化为一维确定函数,前人证明该确定相关函数存在傅氏变换;
    (5)能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱(密度),它描述了信号能量的频域分布;功率信号的功率谱(密度)描述了信号功率随频率的分布特点(密度:单位频率上的功率),业已证明,平稳信号功率谱密度恰好是其自相关函数的傅氏变换。对于非平稳信号,其自相关函数的时间平均(对时间积分,随时变性消失而再次退变成一维函数)与功率谱密度仍是傅氏变换对;
    (6)实际中我们获得的往往仅仅是信号的一段支撑,此时即使信号为功率信号,截断之后其傅氏变换收敛,但此变换结果严格来讲不属于任何“谱”(进一步分析可知它是样本真实频谱的平滑:卷积谱);
    (7)对于(6)中所述变换若取其幅度平方,可作为平稳信号功率谱(密度)的近似,是为经典的“周期图法”;
    (8)FFT是DFT的快速实现,DFT是DTFT的频域采样,DTFT是FT的频域延拓。人们不得已才利用DFT近似完成本属于FT的任务。若仅提FFT,是非常不专业的
    [ Last edited by Yorkxu on 2009-9-21 at 12:05 ]
    作者:嵌入式
    弱弱的问下,二楼中第八条,ft,dtft是指什么?
    作者:evertime
    ft:傅里叶变换(Fourier transform)
    dtft:离散时间傅里叶变换
    作者:yunyan1067
    回复二楼
    谢谢!很长见识!;)
    作者:pper1837
    二楼为信号达人啊!佩服!
    作者:sunyuanxin
    功率谱指的是信号在每个频率分量上的功率,频谱其实是一个幅度谱,只信号在各个分量上的幅度值。因为通信中一般对于信号的分析都是把信号看作电压值。所以功率就是电压的平方再除以电阻值。为了分析简单归一化,令R=1,这时候功率谱就是频谱模的平方了。模也就是实部分量和虚部分量平方和的开方。
    作者:gyy_0303
    :o,学到好多,呵呵
    作者:sanxiabb
    :):) 温故而知新
    作者:shamozhihu9378
    讲的很好啊
    作者:giftdreamer
    楼上几位讲的太好了,茅塞顿开!:D

    以下转自新浪梅子的博客

    频谱是个很不严格的东西,常常指信号的Fourier变换,
    是一个时间平均(time average)概念
    功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别:
    1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)
    2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;
    而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
     
    功率谱
    周期运动在功率谱中对应尖锋,混沌的特征是谱中出现"噪声背景"和宽锋。它是研究系统从分岔走向混沌的重要方法。在很多实际问题中(尤其是对非线性电路的研究)常常只给出观测到的离散的时间序列X1, X2, X3,...Xn,那么如何从这些时间序列中提取前述的四种吸引子(零维不动点、一维极限环、二维环面、奇怪吸引子)的不同状态的信息呢?我们可以运用数学上已经严格证明的结论,即拟合。我们将N个采样值加上周期条件Xn+i=Xi,则自关联函数(即离散卷积)为然后对Cj完成离散傅氏变换,计算傅氏系数。 Pk说明第k个频率分量对Xi的贡献,这就是功率谱的定义。当采用快速傅氏变换算法后,可直接由Xi作快速傅氏变换,得到系数 然后计算,由许多组{Xi}得一批{Pk'},求平均后即趋近前面定义的功率谱Pk。 从功率谱上,四种吸引子是容易区分的,如图12 (a),(b)对应的是周期函数,功率谱是分离的离散谱 (c)对应的是准周期函数,各频率中间的间隔分布不像(b)那样有规律。 (d)图是混沌的功率谱,表现为"噪声背景"及宽锋。考虑到实际计算中,数据只能取有限个,谱也总以有限分辨度表示出来,从物理实验和数值计算的角度看,一个周期十分长的解和一个混沌解是难于区分的,这也正是功率谱研究的主要弊端。
    转自:http://hi.baidu.com/nianshaowushi/blog/item/4507fe36283e4c310b55a991.html

    展开全文
  • [转]频谱幅度谱、功率和能量

    千次阅读 2010-11-29 09:42:00
    转自:http://longer.spaces.eepw.com.cn/articles/article/item/71979# 在信号处理的学习中,有一些与谱有关的概念,如频谱幅度谱、功率谱和能量谱等,常常让人很糊涂,搞不清其中的关系。这里主要从概念上厘清...

    转自:http://longer.spaces.eepw.com.cn/articles/article/item/71979# 

    在信号处理的学习中,有一些与谱有关的概念,如频谱、幅度谱、功率谱和能量谱等,常常让人很糊涂,搞不清其中的关系。这里主要从概念上厘清其间的区别。

           对一个时域信号进行傅里叶变换,就可以得到的信号的频谱,信号的频谱由两部分构成:幅度谱和相位谱。这个关系倒还是简单。那么,什么是功率谱呢?什么又是能量谱呢?功率谱或能量谱与信号的频谱有什么关系呢?

           要区分功率谱和能量谱,首先要清楚两种不同类型的信号:功率信号和能量信号。我们从一个具体的物理系统来引出能量信号和功率信号的概念。已知阻值为R的电阻上的电压和电流分别为v(t) 和 i(t),则此电信号的瞬时功率为: p(t) = v2(t)/R = i2(t)R。在作定性分析时,为了方便起见,通常假设电阻R为1欧姆而得到归一化 (Normolized) 的功率值。作定量计算时可以通过去归一化,即将实际的电阻值代入即可得到实际的功率值。将上面的概念做一个抽象,对信号 x(t) 定义其瞬时功率为 |f (t)|2,在时间间隔 (-T/2  T/2) 内的能量为:

                                                                E=int(|f (t)|2 ,-T/2,T/2)                       (1)

    上式表示对|f (t)|2积分,积分限为(-T/2  T/2)。

    该间隔内的平均功率为:

                                                                            p = E/T                                  (2)

           当且仅当f(t)在所有时间上的能量不为0且有限时,该信号为能量信号,即(1)式中的 T 趋于无穷大的时候E为有限。典型的能量信号如方波信号、三角波信号等。但是有些信号不满足能量信号的条件,如周期信号和能量无限的随机信号,此时就需要用功率来描述这类信号。当且仅当x(t)在所有时间上的功率不为0且有限时,该信号为功率信号,即 (2) 式中的 T 趋于无穷大的时候 p 为有限。系统中的波形要么具有能量值,要么具有功率值,因为能量有限的信号功率为0,而功率有限的信号能量为无穷大。一般来说,周期信号和随机信号是功率信号,而非周期的确定信号是能量信号。将信号区分为能量信号和功率信号可以简化对各种信号和噪声的数学分析。还有一类信号其功率和能量都是无限的,如 f(t) = t,这类信号很少会用到。

           了解信号可能是能量信号,也可能是功率信号后,就可以很好地理解功率谱和能量谱的概念。对于能量信号,常用能量谱来描述。所谓的能量谱,也称为能量谱密度,是指用密度的概念表示信号能量在各频率点的分布情况。也即是说,对能量谱在频域上积分就可以得到信号的能量。能量谱是信号幅度谱的模的平方,其量纲是焦/赫。对于功率信号,常用功率谱来描述。所谓的功率谱,也称为功率谱密度,是指用密度的概念表示信号功率在各频率点的分布情况。也就是说,对功率谱在频域上积分就可以得到信号的功率。从理论上来说,功率谱是信号自相关函数的傅里叶变换。因为功率信号不满足傅里叶变换的条件,其频谱通常不存在,维纳-辛钦定理证明了自相关函数和傅里叶变换之间对应关系。在工程实际中,即便是功率信号,由于持续的时间有限,可以直接对信号进行傅里叶变换,然后对得到的幅度谱的模求平方,再除以持续时间来估计信号的功率谱。

           对确定性的信号,特别是非周期的确定性信号,常用能量谱来描述。而对于随机信号,由于持续期时间无限长,不满足绝对可积与能量可积的条件,因此不存在傅立叶变换,所以通常用功率谱来描述。周期性的信号,也同样是不满足傅里叶变换的条件,常用功率谱来描述,这些在前面已经有所说明。只有如单频正弦信号等很少的特殊的信号,在引入delta函数之后,才可以求解信号的傅里叶变换。

           对于用功率谱描述的随机信号而言,白噪声是一个特例。根据定义,白噪声是指功率谱密度在整个频域内均匀分布的噪声。严格地说,白噪声只是一种理想化模型,因为实际噪声的功率谱密度不可能具有无限宽的带宽,否则它的功率将是无限大,是物理上不可实现的。然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。

    展开全文
  • 信号频谱幅度、功率和能量

    千次阅读 2019-09-26 10:56:14
    信号的频谱幅度、功率和能量的区别

    信号的频谱、幅度、功率谱和能量谱的区别
    在这里插入图片描述

    展开全文
  • 功率频谱的区别

    万次阅读 多人点赞 2017-08-10 09:38:26
    频谱也是相似的一种信号变化曲线,在科学的领域里,功率频谱有着一定的联系,但是它们之间还是不一样的,是有区别的。 功率的密度 在物理学中,信号通常是波的形式表示,例如电磁波、随机
  • 第一:频谱一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行分析时注意:(1)函数FFT返回值的数据结构具有对称性。例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000 -10.7782...
  • 频谱与功率

    万次阅读 多人点赞 2019-07-03 19:31:10
    频谱频谱是频率密度的简称,是频率的分布曲线。复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱频谱将对信号的研究从时域引入到频域,从而带来更直观的认识。 功率:...
  • 功率频谱的区别、联系

    千次阅读 2018-02-28 15:58:09
    区别:1、 一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已, 而功率是从能量的观点对信号进行的研究,其实频谱和功率关系归根揭底还是信号和功率,能量等之间的关系...
  • 在信号处理的学习中,有一些与谱有关的概念,如频谱幅度谱、功率谱和能量谱等,常常让人很糊涂,搞不清其中的关系。这里主要从概念上厘清其间的区别。 对一个时域信号进行傅里叶变换,就可以得到的信号的频谱,...
  • 声音的特性可由三个要素来描述,即响度、音调和音色。 1、音调 声音的高低称为音调。音调取决于声源振动的频率。 物体在1秒内振动的次数叫频率。其单位是赫兹,简称赫,符号为Hz。... 响度振幅的关系...
  • 一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已,而功率是从能量的观点对信号进行的研究,其实频谱和功率关系归根结底还是信号和功率、能量等之间的关系。...
  • 信号 功率频谱的区别,联系

    万次阅读 2018-04-13 11:09:19
    区别:1、一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已, 而功率是从能量的观点对信号进行的研究,其实频谱和功率关系归根揭底还是信号和功率,能量等之间的关系。...
  • 功率频谱: 功率:信号自相关后FFT 频谱:信号直接FFT 功率: 信号的传播都是看不见的,但是它以波的形式存在着,这类信号会产生功率,单位频带的信号功率就被称之为功率。它可以显示在一定的区域中...
  • 在信号处理的学习中,有一些与谱有关的概念,如频谱幅度谱、功率谱和能量谱等,常常让人很糊涂,搞不清其中的关系。这里主要从概念上厘清其间的区别。 对一个时域信号进行傅里叶变换,就可以得到的信号的频谱,...
  • 频谱功率

    2019-01-07 15:46:21
    第一:频谱 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) → Xk = ...
  • 幅度谱和相位的理解

    千次阅读 2020-07-21 11:22:53
    幅度谱,也就是频谱,从构成这个波形的各个频率分量的侧面看过去,每一个频率分量都会在侧面投影成一个高度为幅值的线段,构成频谱。 相位,则是从频率分量的下方往上看,选择一个基准点,那么各个频率分量的波形...
  • 基于能量守恒原理,建立了SST-11星间距离变率观测噪声谱与重力场误差关系,以GRACE相关指标模拟分析了卫星间距、卫星高度和距离变率精度对恢复地球重力场的影响。结果表明,增大卫星间距可提高恢复低阶次位系数...
  • 信号频谱幅度、功率和能量

    万次阅读 多人点赞 2019-07-20 12:22:38
    (3)一个复数由模和辐角唯一地确定,所以可将频谱分解为幅度谱(即复数的模关于频率的函数)和相位(即复数的辐角关于频率的函数)。 2.幅度 (1)在英文中,amplitude和magnitude均可表示幅度,其中: amplitude...
  • #知识青年# #宅在家充电# 更多通信类文章,关注班长:主页→“文章”关于功率、功率密度、频谱密度,多数同学认为是同一回事,图形看起来也很像......(见文末)写这篇文章,最大的难点就是编辑公式。而公式,恰恰...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 4,938
精华内容 1,975
关键字:

幅度谱与频谱的关系