精华内容
下载资源
问答
  • 做包的机器有哪些
    千次阅读
    2021-05-14 19:39:03

    机器视觉作为全球智能的智慧之眼,很大程度上影响着人工智能的进步,无人驾驶、无人机、智能机器人等近期热点中的热点也以机器视觉的发展为前提。

    人工智能机器视觉技术应用有哪些?

    作为人工智能发展前提的机器视觉技术,其主要有五大典型应用:

    图像识别应用。图像识别,是利用机器视觉对图像进行处理、分析和理解,以识别各种不同模式的目标和对象。图像识别在机器视觉工业领域中最典型的应用就是二维码的识别。将大量的数据信息存储在二维码中,通过条码对产品进行跟踪管理,通过机器视觉系统,可以方便的对各种材质表面的条码进行识别读取,大大提高了现代化生产的效率。

    图像检测应用。检测是机器视觉工业领域最主要的应用之一。几乎所有产品都需要检测,而人工检测存在着较多的弊端,因此,具有诸多优点的机器视觉在图像检测的应用方面也非常的广泛。

    人工智能机器视觉技术应用有哪些?

    视觉定位应用。视觉定位要求机器视觉系统能够快速准确的找到被测零件并确认其位置。在半导体封装领域,设备需要根据机器视觉取得的芯片位置信息调整拾取头,准确拾取芯片并进行绑定,这就是视觉定位在机器视觉工业领域最基本的应用。

    物体测量应用。机器视觉工业应用最大的特点就是其非接触测量技术,同样具有高精度和高速度的性能,但非接触无磨损,消除了接触测量可能造成的二次损伤隐患。常见的测量应用包括齿轮、接插件、汽车零部件、IC元件管脚、麻花钻、罗定螺纹检测等。

    物体分拣应用。实际上,物体分拣应用是建立在识别、检测之后一个环节,通过机器视觉系统将图像进行处理,实现分拣。在机器视觉工业应用中常用于食品分拣、零件表面瑕疵自动分拣、棉花纤维分拣等。

    免费领取人工智能学习资料

    在这里插入图片描述

    更多相关内容
  • [量化学院]机器学习有哪些常用算法

    千次阅读 2019-01-12 10:58:19
    导语:通过文章《什么是机器学习》我们大概知晓了机器学习,那么机器学习里面究竟多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。...

    导语:通过文章《什么是机器学习》我们大概知晓了机器学习,那么机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。

    机器学习是一门实践学科,只有不断做实验才能有所进步。BigQuant人工智能量化投资平台 集成了众多深度学习/机器学习开源框架,是一站式的python+机器学习+量化投资平台,可以直接在BigQuant上开启你的深度学习之旅!

    1、回归算法

    在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归逻辑回归

    线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是这样的,假设我们拟合出的直线代表数据的真实值,而观测到的数据代表拥有误差的值。为了尽可能减小误差的影响,需要求解一条直线使所有误差的平方和最小。最小二乘法将最优问题转化为求函数极值问题。函数极值在数学上我们一般会采用求导数为0的方法。但这种做法并不适合计算机,可能求解不出来,也可能计算量太大。

    计算机科学界专门有一个学科叫“数值计算”,专门用来提升计算机进行各类计算时的准确性和效率问题。例如,著名的“梯度下降”以及“牛顿法”就是数值计算中的经典算法,也非常适合来处理求解函数极值的问题。梯度下降法是解决回归模型中最简单且有效的方法之一。从严格意义上来说,由于后文中的神经网络和推荐算法中都有线性回归的因子,因此梯度下降法在后面的算法实现中也有应用。

    逻辑回归是一种与线性回归非常类似的算法,但是,从本质上讲,线型回归处理的问题类型与逻辑回归不一致。线性回归处理的是数值问题,也就是最后预测出的结果是数字,例如房价。而逻辑回归属于分类算法,也就是说,逻辑回归预测结果是离散的分类,例如判断这封邮件是否是垃圾邮件,以及用户是否会点击此广告等等。

    实现方面的话,逻辑回归只是对对线性回归的计算结果加上了一个Sigmoid函数,将数值结果转化为了0到1之间的概率(Sigmoid函数的图像一般来说并不直观,你只需要理解对数值越大,函数越逼近1,数值越小,函数越逼近0),接着我们根据这个概率可以做预测,例如概率大于0.5,则这封邮件就是垃圾邮件,或者肿瘤是否是恶性的等等。从直观上来说,逻辑回归是画出了一条分类线,见图1。

    在这里插入图片描述
    </ div>

    图 1    逻 辑 回 归 的 直 观 解 释 图1 \ \ 逻辑回归的直观解释 1  

    假设我们有一组肿瘤患者的数据,这些患者的肿瘤中有些是良性的(图中的蓝色点),有些是恶性的(图中的红色点)。这里肿瘤的红蓝色可以被称作数据的“标签”。同时每个数据包括两个“特征”:患者的年龄与肿瘤的大小。我们将这两个特征与标签映射到这个二维空间上,形成了我上图的数据。

    当我有一个绿色的点时,我该判断这个肿瘤是恶性的还是良性的呢?根据红蓝点我们训练出了一个逻辑回归模型,也就是图中的分类线。这时,根据绿点出现在分类线的右侧,因此我们判断它的标签应该是红色,也就是说属于恶性肿瘤。

    逻辑回归算法划出的分类线基本都是线性的(也有划出非线性分类线的逻辑回归,不过那样的模型在处理数据量较大的时候效率会很低),这意味着当两类之间的界线不是线性时,逻辑回归的表达能力就不足。下面的两个算法是机器学习界最强大且重要的算法,都可以拟合出非线性的分类线。

    2、神经网络

    神经网络(也称之为人工神经网络,ANN)算法是80年代机器学习界非常流行的算法,不过在90年代中途衰落。现在,携着“深度学习”之势,神经网络重装归来,重新成为最强大的机器学习算法之一。

    神经网络的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。在BP算法(加速神经网络训练过程的数值算法)诞生以后,神经网络的发展进入了一个热潮。BP算法的发明人之一是前面介绍的机器学习大牛Geoffrey Hinton(图1中的中间者)。

    具体说来,神经网络的学习机理是什么?简单来说,就是 分解与整合。在著名的Hubel-Wiesel试验中,学者们研究猫的视觉分析机理是这样的。(如图2)

    在这里插入图片描述
    </ div>

    图 2    H u b e l − W i e s e l 试 验 与 大 脑 视 觉 机 理 图2 \ \ Hubel-Wiesel试验与大脑视觉机理 2  HubelWiesel

    比方说,一个正方形,分解为四个折线进入视觉处理的下一层中。四个神经元分别处理一个折线。每个折线再继续被分解为两条直线,每条直线再被分解为黑白两个面。于是,一个复杂的图像变成了大量的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正方形的结论。这就是大脑视觉识别的机理,也是神经网络工作的机理。

    让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是”神经网络”(图3)。

    在这里插入图片描述
    </ div>

    图 3    神 经 网 络 的 逻 辑 架 构 图3 \ \ 神经网络的逻辑架构 3  

    在神经网络中,每个处理单元事实上就是一个逻辑回归模型,逻辑回归模型接收上层的输入,把模型的预测结果作为输出传输到下一个层次。通过这样的过程,神经网络可以完成非常复杂的非线性分类。

    下图会演示神经网络在图像识别领域的一个著名应用,这个程序叫做LeNet,是一个基于多个隐层构建的神经网络。通过LeNet可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。(见图4)

    在这里插入图片描述
    </ div>

    图 4    L e N e t 的 效 果 展 示 图4 \ \ LeNet的效果展示 4  LeNet

    右下方的方形中显示的是输入计算机的图像,方形上方的红色字样“answer”后面显示的是计算机的输出。左边的三条竖直的图像列显示的是神经网络中三个隐藏层的输出,可以看出,随着层次的不断深入,越深的层次处理的细节越低,例如层3基本处理的都已经是线的细节了。LeNet的发明人就是前文介绍过的机器学习的大牛Yann LeCun(图1右者)。

    进入90年代,神经网络的发展进入了一个瓶颈期。其主要原因是尽管有BP算法的加速,神经网络的训练过程仍然很困难。因此90年代后期支持向量机(SVM)算法取代了神经网络的地位。

    3、SVM(支持向量机)

    支持向量机算法是诞生于统计学习界,同时在机器学习界大放光彩的经典算法。

    支持向量机算法从某种意义上来说是逻辑回归算法的强化:**通过给予逻辑回归算法更严格的优化条件,支持向量机算法可以获得比逻辑回归更好的分类界线。**但是如果没有某类函数技术,则支持向量机算法最多算是一种更好的线性分类技术。

    但是,通过跟高斯“核”的结合,支持向量机可以表达出非常复杂的分类界线,从而达成很好的的分类效果。“核”事实上就是一种特殊的函数,最典型的特征就是可以将低维的空间映射到高维的空间。

    例如图5所示:

    在这里插入图片描述
    </ div>

    图 5    支 持 向 量 机 图 例 图5 \ \ 支持向量机图例 5  

    我们如何在二维平面划分出一个圆形的分类界线?在二维平面可能会很困难,但是通过“核”可以将二维空间映射到三维空间,然后使用一个线性平面就可以达成类似效果。也就是说,二维平面划分出的非线性分类界线可以等价于三维平面的线性分类界线。于是,我们可以通过在三维空间中进行简单的线性划分就可以达到在二维平面中的非线性划分效果。(见图6)

    在这里插入图片描述
    </ div>

    图 6    三 维 空 间 的 切 割 图6 \ \ 三维空间的切割 6  

    支持向量机是一种数学成分很浓的机器学习算法(相对的,神经网络则有生物科学成分)。在算法的核心步骤中,有一步证明,即将数据从低维映射到高维不会带来最后计算复杂性的提升。于是,通过支持向量机算法,既可以保持计算效率,又可以获得非常好的分类效果。因此支持向量机在90年代后期一直占据着机器学习中最核心的地位,基本取代了神经网络算法。直到现在神经网络借着深度学习重新兴起,两者之间才又发生了微妙的平衡转变。

    4、聚类算法

    前面的算法中的一个显著特征就是我的训练数据中包含了标签,训练出的模型可以对其他未知数据预测标签。在下面的算法中,训练数据都是不含标签的,而算法的目的则是通过训练,推测出这些数据的标签。这类算法有一个统称,即无监督算法(前面有标签的数据的算法则是有监督算法)。无监督算法中最典型的代表就是聚类算法。

    让我们还是拿一个二维的数据来说,某一个数据包含两个特征。我希望通过聚类算法,给他们中不同的种类打上标签,我该怎么做呢?简单来说,聚类算法就是计算种群中的距离,根据距离的远近将数据划分为多个族群。

    聚类算法中最典型的代表就是K-Means算法。

    5、降维算法

    降维算法也是一种无监督学习算法,其主要特征是 将数据从高维降低到低维层次。在这里,维度其实表示的是数据的特征量的大小,例如,房价包含房子的长、宽、面积与房间数量四个特征,也就是维度为4维的数据。可以看出来,长与宽事实上与面积表示的信息重叠了,例如面积=长 × 宽。通过降维算法我们就可以去除冗余信息,将特征减少为面积与房间数量两个特征,即从4维的数据压缩到2维。于是我们将数据从高维降低到低维,不仅利于表示,同时在计算上也能带来加速。

    刚才说的降维过程中减少的维度属于肉眼可视的层次,同时压缩也不会带来信息的损失(因为信息冗余了)。如果肉眼不可视,或者没有冗余的特征,降维算法也能工作,不过这样会带来一些信息的损失。但是,降维算法可以从数学上证明,从高维压缩到的低维中最大程度地保留了数据的信息。因此,使用降维算法仍然有很多的好处。

    降维算法的主要作用是压缩数据与提升机器学习其他算法的效率。通过降维算法,可以将具有几千个特征的数据压缩至若干个特征。另外,降维算法的另一个好处是数据的可视化,例如将5维的数据压缩至2维,然后可以用二维平面来可视。降维算法的主要代表是PCA算法(即主成分分析算法)。

    6、推荐算法

    推荐算法是目前业界非常火的一种算法,在电商界,如亚马逊,天猫,京东等得到了广泛的运用。推荐算法的主要特征就是可以自动向用户推荐他们最感兴趣的东西,从而增加购买率,提升效益。推荐算法有两个主要的类别:

    一类是基于物品内容的推荐,是将与用户购买的内容近似的物品推荐给用户,这样的前提是每个物品都得有若干个标签,因此才可以找出与用户购买物品类似的物品,这样推荐的好处是关联程度较大,但是由于每个物品都需要贴标签,因此工作量较大。

    另一类是基于用户相似度的推荐,则是将与目标用户兴趣相同的其他用户购买的东西推荐给目标用户,例如小A历史上买了物品B和C,经过算法分析,发现另一个与小A近似的用户小D购买了物品E,于是将物品E推荐给小A。

    两类推荐都有各自的优缺点,在一般的电商应用中,一般是两类混合使用。推荐算法中最有名的算法就是协同过滤算法。

    7、其他

    除了以上算法之外,机器学习界还有其他的如高斯判别,朴素贝叶斯,决策树等等算法。但是上面列的六个算法是使用最多,影响最广,种类最全的典型。机器学习界的一个特色就是算法众多,发展百花齐放。

    下面做一个总结,按照训练的数据有无标签,可以将上面算法分为监督学习算法和无监督学习算法,但推荐算法较为特殊,既不属于监督学习,也不属于非监督学习,是单独的一类。

    监督学习算法:线性回归,逻辑回归,神经网络,SVM

    无监督学习算法:聚类算法,降维算法

    特殊算法:推荐算法

    除了这些算法以外,有一些算法的名字在机器学习领域中也经常出现。但他们本身并不算是一个机器学习算法,而是为了解决某个子问题而诞生的。你可以理解他们为以上算法的子算法,用于大幅度提高训练过程。其中的代表有:梯度下降法,主要运用在线型回归,逻辑回归,神经网络,推荐算法中;牛顿法,主要运用在线型回归中;BP算法,主要运用在神经网络中;SMO算法,主要运用在SVM中。

    原文链接:《[量化学院]机器学习有哪些常用算法


    本文由BigQuant人工智能量化投资平台原创推出,版权归BigQuant所有,转载请注明出处。

    展开全文
  • 每种数据类型对应的合法操作有哪些?为什么? 机器学习中数据的常见类型为如下四种: 大的来说两类: 数值型:连续属性 (continuous attribute)在定义域上无穷多个可能的取值。属于定量数据...

    机器学习的数据类型有哪几种?每种数据类型对应的合法操作有哪些?为什么?

    机器学习中数据的常见类型为如下四种:

    大的来说有两类:

    • 数值型:连续属性 (continuous attribute)在定义域上有无穷多个可能的取值。属于定量数据(Quantitative data)包含定距数据(interval data)和定比数据(ratio data);
    • 标称型或者分类型:离散属性 (categorical attribute)在定义域上是有限个可能的取值。属于定性数据(Qualitative data)包含定类数据和定序数据;

    小的来说有四类:


    Nominal,Ordinal,Interval and Ratio分别是定类、定序、定距、定比数据。

    等距数据&#x

    展开全文
  • 机器学习在银行有哪些应用场景?

    千次阅读 2020-10-21 08:46:13
    但是由于近期银行在大数据方面发力迅猛,对在银行业的建模(机器学习)的影响较大,主要方面三: 一是大数据平台为机器学习平台提供了大数据支撑。好的模型是通过数据不断的分析、迭代、优化出来的,大数据平台的...

     一、机器学习平台与大数据平台的关系澄清

    机器学习平台和大数据平台没有硬性的关系,比如很多同业在没有大数据平台之前就借助 SAS 、 SPSS 等建模工作进行建模,且在相关领域也取得了不错的成绩,比如评分卡等。在我们看来大数据平台和 SAS 等传统的建模平台有以下差别:

    但是由于近期银行在大数据方面发力迅猛,对在银行业的建模(机器学习)的影响较大,主要方面有三:

    一是大数据平台为机器学习平台提供了大数据支撑。好的模型是通过数据不断的分析、迭代、优化出来的,大数据平台的海量数据为模型的探索提供了丰富的原材料;

    二是大数据平台上的 KAFKA 等实时数据工具为机器学习平台提供了实时数据以及实时场景,比如在线推荐、反欺诈、实施风控等场景;

    三是大数据平台为机器学习提供强大的算力以及处理能力。大数据采用 SPARK 方式等分布式的机器学习算法较 SAS 等单机版的计算性能有较大的提升,使得计算能力更加强大。且大数据平台更易于图数据库结合,应用图算法将某些场景下的机器学习能力提升。

    二、机器学习平台是银行的建设趋势吗?

    从以上情况看来机器学习平台是大数据的一个重要的发力点,模型比传统的业务系统有更强的场景驱动性,业务穿透性更强。建设机器学习平台有可能是银行整体规划,也有可能是偶然性的项目需求中提出的。但建议银行可以尽早的了解学习此类平台、技术和算法等,建立人才储备和项目管理(建模类)机制,应对未来的业务需求和项目风险。

    银行如何引入机器学习平台?情况大多是科技部驱动,较项目驱动比例略低。比如审计、分析平台、营销类、风控类项目都可能包含机器学习平台的引入,主要看业务需求是否能由传统方式实现。

    三 . 机器学习在银行的主要应用场景

    常用的机器学习算法都可能用到,比如分类,聚类,关联,也会用到深度学习和图算法等。应用场景见下表:

    结合以上的场景分析,希望给大家同行在机器学习领域的场景研究提供参考。

    展开全文
  • 十大机器学习算法

    万次阅读 多人点赞 2022-03-08 22:55:09
    初学者应该知道的十大机器学习算法 来源:https://builtin.com/data-science/tour-top-10-algorithms-machine-learning-newbies 机器学习算法被描述为学习一个目标函数 (f),它最好地将输入变量 (X) 映射到输出...
  • 压缩包包含—— 1. 实习报告 2. 仿真文件(Multisim) 3. DDB文件
  • 机器学习基本概念

    千次阅读 2018-09-21 22:26:40
    本文首先介绍机器学习的基本流程,然后针对机器学习涉及的数据、算法和评估这三个方面用到的基础概念进行介绍。 1.机器学习流程  机器学习是一个数据流转、分析以及得到结果的过程,它的整个流程大致可以分为六个...
  • 导读:本文首先介绍何谓机器学习,以及与机器学习相关的基本概念,这是学习和理解机器学习的基础。按照学习方式的不同,机器学习可以分为不同类型,如监督学习、无监督学习、强化学习等,本文会详细介...
  • 导读:本文从大数据的概念讲起,主要介绍机器学习的基础概念,以及机器学习的发展过程,用一个形象的例子讲解大数据生态中的机器学习,并按照传统机器学习(包括分类、聚类、回归、关...
  • 原文:... 作者:知乎用户 ...来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 在我的理解: 机器视觉当前的比较流行的开发模式是“软件平台...
  • 1. 课程简介 2. 本节课内容大纲 3. 机器学习编译的定义 4. 机器学习编译的目标 5. 为什么要学习机器学习编译? 6. 机器学习编译的核心要素 6.1. 备注:抽象和实现 7. 总结
  • 5 大常用机器学习模型类型总结

    千次阅读 2022-03-29 10:06:56
    本文介绍了 5 大常用机器学习模型类型:集合学习算法,解释型算法,聚类算法,降维算法,相似性算法,并简要介绍了每种类型中最广泛使用的算法模型。我们希望本文可以做到以下三点:1、应用性。 涉及到应用问题时,...
  • 统计学和机器学习之间的界定一直很模糊。 无论是业界还是学界一直认为机器学习只是统计学批了一层光鲜的外衣。 而机器学习支撑的人工智能也被称为“统计学的外延” 例如,诺奖得主托马斯·萨金特曾经说过人工智能...
  • 常用Python机器学习库有哪些

    千次阅读 2018-05-10 15:07:32
    机器学习应该算是人工智能里面的一个子领域,而其中一块是对文本进行分析,对数据进行深入的挖掘提取一些特征值,然后用一些算法去学习,训练,分析,甚至还能预测,那么Python中常用的机器学习库有哪些呢?...
  • 2021十大 Python 机器学习库

    千次阅读 2022-03-09 00:16:58
    Python 之于机器学习,可以说是最为锋利的武器;而机器学习之于 Python,则有着扩大影响再造辉煌的助力。二者相辅相成,以至于一提到机器学习,人们自然而然的就想到了 Python,虽...
  • 导读:人工智能的快速发展,带动了相关技术的繁荣。近些年,国内外的科技公司对机器学习人才都大量需求。怎样入行机器学习?本文带你从0开始学起。作者:星环科技人工智能平台团队来源:大数据DT...
  • 而且企业主也需要知道程序员能否高效开发 ML 应用程序,其中包括熟悉 Java 中的机器学习。此外,如果您希望在技术讨论中拥有发言权,则了解该文章内容是必要的。 对于Java机器学习的关注反映了Java语言的普及。...
  • 机器学习中用来防止过拟合的方法有哪些? 本文作者:qqfly 编辑:贾智龙 2017-05-16 15:48 导语:给《机器视觉与应用》课程出大作业的时候,正好涉及到这方面内容,所以简单整理了一下(参考 ...
  • 自己动手个DIY波士顿机器

    千次阅读 多人点赞 2020-09-10 12:17:18
    我想来整个DIY波士顿机器狗。 中文的介绍: https://www.qbitai.com/2020/08/17572.html 软件安装: https://github.com/mike4192/spotMicro 硬件制作: https://www.thingiverse.com/thing:3445283 中文介绍...
  • 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已的知识结构使之不断改善自身的...
  • 机器学习的基本概念和相关术语

    万次阅读 多人点赞 2020-06-18 11:07:18
    机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已...
  • 机器学习开发框架

    千次阅读 2021-11-12 09:28:02
    机器学习开发框架本质上是一种编程库或工具,目的是能够让开发人员更容易、更快速地构建机器学习模型。 机器学习开发框架封装了大量的可重用代码,可以直接调用,目的是避免“重复造轮子”,大幅降低开发人员的开发...
  • 1.Anaconda和python的关系 Anaconda包括Conda、Python以及一大堆安装好的工具,比如:...那么Anaconda在机器学习方面有哪些优势呢。 优点: 包含conda:conda是一个环境管理器,其功能依靠conda来实现,该环境
  • 本文覆盖机器学习常见知识要点,包括机器学习流程、算法分类(监督学习、无监督学习、强化学习)、依托的问题场景(分类、回归、聚类、降维)、机器学习模型评估与选择等。
  • 机器学习必备,sklearn的安装教程,小白看懂无压力
  • 什么是机器学习?机器学习与AI的关系?

    千次阅读 热门讨论 2021-02-26 11:56:15
    而这类问题正是机器学习所能够解决的。 传统上来讲,计算机编程指在结构化的数据上执行明确的程序规则。软件开发人员动手编写程序,告诉计算机如何对数据执行一组指令,并输出预期的结果,如图1-1所示。这个过程与...
  • 适合初学者的 10 大机器学习项目

    千次阅读 2021-12-01 11:34:39
    随着机器学习的激增,越来越多的专业人士选择从事机器学习工程师的职业。而成为机器学习工程师最好的入门方法之一就是亲自动手开发一个项目,今天我们就来简单聊一聊10个机器学习项目。
  • 机器学习和深度学习的区别是什么?随着业内对数据科学和机器学习使用的日益增长的趋势,对于每个想要生存下来的公司来说,重视机器学习将变得非常重要。今天小编从应用场景、所需数据量、数据依赖性、硬件依赖、特征...
  • 机器学习:监督和无监督之间什么区别

    千次阅读 多人点赞 2020-06-05 12:47:57
    机器学习是人工智能的一个子集,它通过示例...但是机器学习许多不同的风格。在这篇文章中,我们将探讨监督和无监督学习,这是机器学习算法的两个主要类别。每个子集由许多适合各种任务的不同算法组成。 关于机器
  • 机器学习中的七种分类算法

    千次阅读 多人点赞 2021-10-03 20:35:27
    文档分类: 识别写在类似主题上的文档 7 如何决定选择哪种分类算法 下面我们一个列表,可以帮助您了解应该使用哪些分类算法来解决业务问题。 问题识别: 首先要的是彻底了解手头的任务。如果是监督的分类...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,338,344
精华内容 535,337
热门标签
关键字:

做包的机器有哪些