精华内容
下载资源
问答
  • e成科技人岗匹配中的匹配模型

    千次阅读 2019-07-23 16:14:50
    随着网络招聘的发展壮大,网聘渠道积攒着数亿份...传统人岗匹配中通过对求职者简历的工作经历文本和JD岗位信息进行文本挖掘,两者的技能和能力是否契合作为判断JD和CV是否匹配的重要依据。早期的人岗匹配版本基于t...

    随着网络招聘的发展与壮大,网聘渠道积攒着数亿份个人简历以及上千万份企业招聘信息。如何将这些简历和岗位进行精准匹配是各大招聘平台面临的重大挑战。

    问题描述
    在人岗匹配中,JD文档由多句工作描述和岗位要求组成,CV文档主要由求职者的工作经历组成。传统人岗匹配中通过对求职者简历的工作经历文本和JD岗位信息进行文本挖掘,两者的技能和能力是否契合作为判断JD和CV是否匹配的重要依据。早期的人岗匹配版本基于term重要性,bm25以及职能标签等信息做简单的匹配模型,但是这些方法很难挖掘特征与特征之间的关系以及潜在的信息交互特征,难以表达完整的岗位(JD)和简历(CV)的语义信息。鉴于此,本文提出了基于LSTM+double Attention网络的语义匹配模型[1]。

    模型介绍
    句子相似度计算是自然语言处理中重要而又基础的研究工作。例如:在对话系统中,用于查找最可能的答案;在文档检索中,用于查找最为相似的文档;在双句关系判断任务中,用于判断两个句子之间关系的类别等。目前常见的句子相似度计算方法大体上可以分为三类:

    (1)基于表层信息的相似度计算,其主要是通过句子中词性相似度、词序相似度和句长相似度等信息来综合计算两个句子的相似度[2]。

    (2)基于句子结构的相似度计算。这种方法主要考查量句子在结构上的相似性,如基于本体机构、词类串结构、词性及词性依存关系等进行相似度计算[3]。

    (3)基于词向量的语义表征来计算相似度。其通过垂直领域的文本数据训练得到word embedding, 借助词向量得到句子表征,然后计算cosine距离[4]。

    JD和CV的语义相似度计算,其本质是双文档关系判断任务或是长文本相似度匹配问题,和句子相似度计算不同之处在于文档是由多个句子组成。句子表征是文档表征的基础,本文的句子表征学习通过LSTM网络[5-6]学习到每个词或字语义表示,同时通过attention 机制[7-8]学习到每个词语义的权重。长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM通过对文本序列的不断迭代有选择继承历史信息以获得当前更好的语义表征,所以其能够在更长的序列中有更好的表现。attention 机制的作用是给不同的词或字分配不同的注意力,比如“高级java开发工程师”,显然“java”这个词更重要,需要分配更多的注意力,相反,如果对其进行简单的语义叠加,那么重要词的信息就会被抑制,从而会丢掉很多关键的语义特征,造成信息损失。

    得到句子的语义表征后,同样可以利用attention机制得到文档的语义表征,通过对JD和CV 的数据分析发现,其实JD和CV是否相关,其重要特征多集中在title和内容的几个句子当中,并不会分布在所有的句子当中,也就是说捕获那些含有重要语义特征的句子是关键,这也是为何要在句子层面引入attention机制的原因。

    目的:

    判断JD和CV 的语义相关程度,分为0:不相关,1:内容相关,2:内容和领域都相关。

    技术方案:LSTM+double Attention 孪生网络模型,如图一所示。

    1 捕获关键句子和关键词, double+attention 机制。

    2 利用LSTM模型提取句子的语义特征。

    在这里插入图片描述
    图一↑

    实现流程:

    1 构建训练数据(JD, CV)对,构造合理负样本(JD, CV)对。

    2 对JD和CV进行分句,以句子为单位进行分词,去除停用词,JD和CV的title进行char cut操作,id化。

    3 加载pre_trained embedding,通过embedding layer 得到 word embedding。

    4 通过LSTM+attention 得到 sentence vector。

    5 得到JD和CV的sentence vector后,继续加一层attention layer,得到document vector。

    6 全连接+softmax, 得到分类结果。

    结果分析
    模型经过训练后,在测试集上分类准确率为89.36%,f1 score为83.96%,如果不考虑领域是否相关,即语义相关和不相关,二分类准确率为96.39%,f1 score为96.25%。稍加改造在实际应用也有不错效果。图二是一个“自动驾驶深度学习算法工程师”的岗位信息及推荐系统推荐的结果展示,可以发现推荐结果排名靠前的CV其内容和领域都是和JD语义很相关的,这也验证了模型的效果。

    图二↑

    图三是JD和CV的sentence attention的可视化热力图,左侧是JD sentence attention热力图,右侧是CV sentence attention热力图,颜色越深表明句子的权重越高。可以看出JD和CV的title的句子权重比较高,其实在一般的JD和CV中title都是权重比较高的部分,但是像:“技术经理”,“研发小微主”,“专员”,“工程师”等JD case,其title 句子权重比较小,重要的句子要在描述内容中寻找。从图三中可以看出,JD, CV内容中和“算法”,“自动驾驶”相关的句子权重都比较高,说明sentence level 的attention机制是符合预期的。
    在这里插入图片描述
    图三↑

    在这里插入图片描述
    图四↑

    图四是JD, CV 句子层面的char level或word level的attention可视化热力图 ,其中只展示了部分重要句子中词的权重分布,颜色越深,表示字或词的权重越高。通过简单的计算term weight = sentence_attention*char_attention 即可得到top words,展示如下:

    JD top words: [(深度学习, 20.822678), (自动驾驶, 12.59064), (三维点云, 6.618764), (环境感知, 5.927), (cloud, 3.1689138), (算法, 3.0718648), (模块, 2.660974), (计算机视觉, 2.4465554), (立体视觉, 2.443054), (网络结构设计, 2.0044193), (物体检测, 1.897428)]

    CV top words:[(算法, 17.713745), (深度学习, 10.472152), (研究, 9.460823), (惯导, 3.709963), (导航算法, 2.04389), (嵌入式, 1.4608734), (无人驾驶, 1.1148125), (总体设计, 0.6105186), (gps, 0.5366095)]

    char level attention 机制的作用就是找出句子中的关键语义特征,通过热力图可以发现,在重要的句子中相关的关键词权重确实比较高。

    总结
    句子相似度计算在自然语言处理领域中是一项基础性研究工作,并衍生出文档相似度计算任务。本文对前人的研究进行了总结和归类,并提出了LSTM+double attention孪生网络模型,通过对结果的分析,表明了本方法在人岗匹配中对候选人的简历和企业招聘岗位进行精准匹配的有效性,有助于提升人岗匹配推荐系统的效果。

    参考文献:

    [1] Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM international conference on Information & Knowledge Management. ACM, 2013: 2333-2338.

    [2] Zhang Lin, Hu Jie. Sentence similarity computing for FAQ question answering system[J]. Journal of Zhengzhou University: Natural Science Edition, 2010, 42(1): 57-61.

    [3] Lan Yanling, Chen Jianchao. Chinese sentence structures similarity computation based on POS and POS dependency[J]. Computer Engineering, 2011, 37(10): 47-49.

    [4] Chen Lisha. The research and implementation on WordNetbased sentence similarity of automatic question answering system[D]. Guangzhou: South China University of Technology, 2014.

    [5] Sundermeyer M, Schlüter R, Ney H. LSTM neural networks for language modeling[C]//Thirteenth annual conference of the international speech communication association. 2012.

    [6] Karpathy A, Joulin A, Fei-Fei L F. Deep fragment embeddings for bidirectional image sentence mapping[C]//Advances in neural information processing systems. 2014: 1889-1897.

    [7] Cho K, Van Merriënboer B, Bahdanau D, et al. On the properties of neural machine translation: Encoder-decoder approaches[J]. arXiv preprint arXiv:1409.1259, 2014.

    [8] Yin W, Schütze H, Xiang B, et al. Abcnn: Attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 259-272.

    展开全文
  • 阻抗匹配是什么意思?阻抗匹配原理详解

    万次阅读 多人点赞 2019-06-12 20:00:53
    阻抗匹配是什么意思_阻抗匹配原理详解 -------本文轉載自<http://m.elecfans.com/article/671550.html>  本文主要详解什么是阻抗匹配,首先介绍了输入及输出阻抗是什么,其次介绍了阻抗匹配的原理,最后...

                           阻抗匹配是什么意思_阻抗匹配原理详解

                                             -------本文轉載自<http://m.elecfans.com/article/671550.html>

      本文主要详解什么是阻抗匹配,首先介绍了输入及输出阻抗是什么,其次介绍了阻抗匹配的原理,最后阐述了阻抗匹配的应用领域,具体的跟随小编一起来了解一下吧。

      一、输入阻抗

      输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。

      输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题),另外如果要获取最大输出功率时,也要考虑 阻抗匹配问题

      二、输出阻抗

      无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)内阻了。当这个电压源给负载供电时,就会有电流 I 从这个负载上流过,并在这个电阻上产生 I×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的。

      三、阻抗匹配

      阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:

      

      对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。

      在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以300Ω的馈线将与其不能匹配。

      实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300Ω到75Ω的阻抗转换器(一个塑料封装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大)。它里面其实就是一个传输线变压器,将300Ω的阻抗,变换成75Ω的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。影響特征電阻的因素有很多,比如倒顯得材料和導線與地板之間的距離。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配,如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。

      当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。(始端串联匹配,终端并联匹配)

      为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况

      四、阻抗匹配的原理

      阻抗匹配的基本原理:

      1、纯电阻电路

      在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上,在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。

                                                   

       2、电抗电路

      电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感。元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而。容抗和感抗的值除了与电容和电感本身大小有关之外,还与所工作的交流电的频率有关。值得注意的是,在电抗电路中,电阻R,感抗而与容抗双的值不能用简单的算术相加,而常用阻抗三角形法来计算(见图 2)。因而电抗电路要做到匹配比纯电阻电路要复杂一些,除了输人和输出电路中的电阻成分要求相等外,还要求电抗成分大小相等符号相反(共轭匹配);或者电阻成分和电抗成分均分别相等(无反射匹配)。这里指的电抗X即感抗XL和容抗XC之差(仅指串联电路来讲,若并联电路则 计算更为复杂)。满足上述条件即称为阻抗匹配,负载即能得到最大的功率。

      阻抗匹配的关键是前级的输出阻抗与后级的输人阻抗相等。而输人阻抗与输出阻抗广泛 存在于各级电子电路、各类测量仪器及各种电子元器件中。那么什么是输人阻抗和输出阻抗呢?输人阻抗是指电路对着信号源讲的阻抗。如图3所示的放大器,它的输人阻抗就是去掉信号源E及内电阻r时,从AB两端看进去的等效阻抗。其值为Z=UI/I1, 即输人电压与输人电流之比。对于信号源来讲,放大器成为其负载。从数值上看,放大器的等效负载值即为输人阻抗值。输人阻抗值的大小,对于不同的电路要求不 一样。

      例如:万用表中电压挡的输人阻抗(称为电压灵敏度)越高,对被测电路的分流就越小,测量误差也就小。而电流挡的输人阻抗越低,对被测电路的分压就越 小,因而测量误差也越小。对于功率放大器,当信号源的输出阻抗与放大电路的输人阻抗相等时即称阻抗匹配,这时放大电路就能在输出端获得最大功率。输出阻抗 是指电路对着负载讲的阻抗。如图4中,将电路输人端的电源短路,输出端去掉负载后,从输出端CD看进去的等效阻抗称为输出阻抗。如果负载阻抗与输出阻抗不相等,称阻抗不匹配,负载就不能获得最大的功率输出。输出电压U2和输出电流I2之 比即称为输出阻抗。输出阻抗的大小视不同的电路有不同的要求。

      例如:电压源要求输出阻抗要低,而电流源的输出阻抗要高。对于放大电路来讲,输出阻抗的值表 示其承担负载的能力。通常输出阻抗小,承担负载的能力就强。如果输出阻抗与负载不能匹配时,可加接变压器或网络电路来达到匹配。例如:晶体管放大器与扬声 器之间通常接有输出变压器,放大器的输出阻抗与变压器的初级阻抗相匹配,变压器的次级阻抗与扬声器的阻抗相匹配。而变压器通过初次级绕组的匝数比来变换阻 抗比。在实际的电子电路中,常会遇到信号源与放大电路或放大电路与负载的阻抗不相等的情况,因而不能把它们直接相连。解决的办法是在它们之间加人一个匹配 电路或匹配网络。最后要说明一点,阻抗匹配仅适用于电子电路。因为电子电路中传输的信号功率本身较弱,需用匹配来提高输出功率。而在电工电路中一般不考虑 匹配,否则会导致输出电流过大,损坏用电器。

      五、阻抗匹配的应用

      对于一般的高频信号领域,比如时钟信号,总线信号,甚至高达几百兆的DDR信号等,一般器件的收发端的感抗和容抗都比较小,相对电阻(即阻抗中的实部) 来说可以忽略不记,这时,阻抗匹配就只需要考虑实数部分就可以了。

      在射频领域,很多器件如天线,功放等其输入输出阻抗是非实数的(非纯电阻),并且其虚部(容抗或者感抗) 很大以至于不可忽略,这时就要采用共轭匹配的方法。

                                                                                                           

    展开全文
  • 影像匹配方法

    千次阅读 2016-07-17 16:40:26
    影像匹配方法

    一、图像匹配方法

    图像匹配的方法很多,一般分为两大类,一类是基于灰度匹配的方法,另一类是基于特征匹配的方法。

    (1)基于灰度匹配的方法。也称作相关匹配算法,用空间二维滑动模板进行图像匹配,不同算法的区别主要体现在模板及相关准则的选择方面。

    已有的基于灰度的匹配方法很多,如:Leese于1971年提出的MAD算法;为使模板匹配高速化,Barnea于1972年提出了序贯相似性检测法—SSDA法,这种算法速度有了较大提高,但是其精度低,匹配效果不好,而且易受噪声影响。随后陈宁江等提出的归一化灰度组合相关法(NIC),山海涛等提出基于灰度区域相关的归一化灰度(Nprod)匹配法等。其中,归一化积相关匹配法较其他方法更具有优势。

    设参考图S是大小为M*M的图像,实时图T是大小为N*N的图像,并且M>N。图像匹配是将实时图T叠放在参考图S上平移,模板覆盖下的那块大小为N*N的搜索图叫做子图Suv。(u,v)为这块子图的左上角像点在图中的坐标,称为参考点,(u,v)的取值范围为:

    这里写图片描述

     
    基于灰度相关匹配能获得较高的定位精度,但是它的运算量大,难以达到实时性要求。

    (2)基于特征匹配的方法。首先在原始图像中提取特征,然后再建立两幅图像之间特征的匹配对应关系。

      常用的特征匹配基元包括点、线、区域等显著特征。图像特征相比像素点数量杀过少很多,特征间的匹配度量随位置变化尖锐,容易找出准确的匹配位置,特征提取能大大减少噪声影响,对灰度变化、形变和遮挡有较强的适应力。基于特征的图像匹配方法在实际中的应用越来越广泛,也取得了很大的成果,基于图像特征的匹配方法主要有以下四种:

    图像点匹配技术。图像点匹配技术可以分为两类:一类是建立模板和待匹配图像的特征点集之间的点点对应关系,然后计算对应点之间的相似性度量来确定图像匹配与否;另一类是无须建立显示的点点对应关系,主要有最小均方差匹配、快速点匹配、Haussdorff点距离匹配等。

    边缘线匹配技术。边缘线可以通过区域分割、边缘检测等得到。采用边缘线段的优点是孤立边缘点的偏差对边缘线段的影响很小,还加入了边缘连接性约束。主要的方法有HYPER匹配技术、chafer匹配技术等。

    闭合轮廓匹配技术。轮廓匹配,是模式识别和三维重建的一个最基本问题,常用的有Fourier描述子、HRP描述子等。Fourier描述子反映的是轮廓线的全局特征。HRP描述子相比则反映了闭合边界的局部特征,能够很好的处理轮廓线的局部变化和遮掩性,降低了算法的复杂度。

    使用高级特征的匹配技术。利用图像特征间的几何约束,将特征属性值之间简单比较的结果作为相似性度量,从而进一步提高匹配算法的速度。主要有图像匹配法、松弛法和能量最小化法等。

    基于特征匹配方法,一般都具有较好抗几何失真和灰度失真的能力,对抗噪声干扰也有一定的抑制能力,其难点在于自动、稳定、一致的特征提取,并且特征提取过程会损失大量的图像信息,因而不易硬件实现。目前,对自然环境下的景物图像进行分割或特征提取任然是一项困难的工作。

    二、图像匹配算法性能评价指标

    匹配算法的性能评价指标主要有:匹配概率、匹配精度、匹配速度。

    匹配概率,是正确匹配次数与总的匹配次数之比。

    匹配精度,是正确匹配的匹配误差均方差,描述了匹配的准确性。由于噪声和其他误差因素的影响,图像匹配时最终得出的匹配位置和真正的匹配位置是不同的,估计匹配点和真正匹配点之间存在一定的随机偏差,该偏差称为匹配误差。显然匹配误差的方差越小,则定位精度越高。

    匹配速度,是指匹配算法的快慢程度,说明了搜索的快速性。

    一个好的匹配算法要求匹配概率尽可能高,匹配误差小,算法计算快,能满足应用环境对实时性的要求。

    展开全文
  • 射频基础之阻抗匹配与Smith图

    万次阅读 多人点赞 2017-09-06 10:57:09
    一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出...

    基本概念

    信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

     

    匹配条件

      ①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。
      ②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。 
      阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态对于不同特性的电路,匹配条件是不一样的在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配
      当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。这种匹配条件称为共扼匹配
      阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。史密夫图表上。电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

     

    共轭匹配

      在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。然而阻抗匹配的概念可以推广到交流电路,当负载阻抗与信号源阻抗共轭时,能够实现功率的最大传输,如果负载阻抗不满足共轭匹配的条件,就要在负载和信号源之间加一个阻抗变换网络,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配

     

    匹配分类

      大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。

      要匹配一组线路,首先把负载点的阻抗值除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
      1. 改变阻抗力

      把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重复以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
      2. 调整传输线
      由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。
      阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为 100欧姆,只是取个整而已,为了匹配方便。

     

    何为阻抗

    阻抗是电阻与电抗在向量上的和。高频电路的阻抗匹配由于高频功率放大器工作于非线性状态,所以线性电路和阻抗匹配(即:负载阻抗与电源内阻相等)这一概念不能适用于它。因为在非线性(如:丙类)工作的时候,电子器件的内阻变动剧烈:通流的时候,内阻很小;截止的时候,内阻接近无穷大。因此输出电阻不是常数。所以所谓匹配的时候内阻等于外阻,也就失去了意义。因此,高频功率放大的阻抗匹配概念是:在给定的电路条件下,改变负载回路的可调元件,使电子器件送出额定的输出功率至负载。这就叫做达到了匹配状态。

     

    ------------------------------------------------------

    怎样理解阻抗匹配

    阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。

    我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:
    P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)
                               =U*U*R/[(R-r)*(R-r)+4*R*r]
                               =U*U/{[(R-r)*(R-r)/R]+4*r}
    对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配

    在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等


    当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻
    为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。另一个例子,不知道大家有没有过这样的经历:就是看不清楼梯时上/下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了。当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的反射情况。  

     

    ------------------------------------------------------

     

    高速PCB设计中的阻抗匹配(资料整理)

     

    阻抗匹配

    阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失在高速PCB设计中,阻抗的匹配与否关系到信号的质量优劣

    PCB走线什么时候需要做阻抗匹配?

    不主要看频率,而关键是看信号的边沿陡峭程度,即信号的上升/下降时间一般认为如果信号的上升/下降时间(按10%~90%计)小于6倍导线延时,就是高速信号,必须注意阻抗匹配的问题。导线延时一般取值为150ps/inch

     

    特征阻抗

    信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。特征阻抗是指信号沿传输线传播时,信号看到的瞬间阻抗的值。特征阻抗与PCB导线所在的板层、PCB所用的材质(介电常数)、走线宽度、导线与平面的距离等因素有关,与走线长度无关。特征阻抗可以使用软件计算。高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆,这是个大约的数字。一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为100欧姆。

     

    常见阻抗匹配的方式

    1、串联终端匹配

    信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射

    匹配电阻选择原则:匹配电阻值与驱动器的输出阻抗之和等于传输线的特征阻抗常见的CMOS和TTL驱动器,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端

    串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗,而且只需要一个电阻元件。

    常见应用:一般的CMOS、TTL电路的阻抗匹配。USB信号也采样这种方法做阻抗匹配。

    2、并联终端匹配

    信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。

    匹配电阻选择原则:在芯片的输入阻抗很高的情况下,对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等对双电阻形式来说,每个并联电阻值为传输线特征阻抗的两倍

    并联终端匹配优点是简单易行,显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关;双电阻方式则无论信号是高电平还是低电平都有直流功耗,但电流比单电阻方式少一半。

    常见应用:以高速信号应用较多。

    (1)DDR、DDR2等SSTL驱动器。采用单电阻形式,并联到VTT(一般为IOVDD的一半)。其中DDR2数据信号的并联匹配电阻是内置在芯片中的。

    (2)TMDS等高速串行数据接口。采用单电阻形式,在接收设备端并联到IOVDD,单端阻抗为50欧姆(差分对间为100欧姆)

     

    ------------------------------------------------------

    什么是阻抗匹配以及为什么要阻抗匹配...

    阻抗匹配在高频设计中是一个常用的概念,这篇文章对这个“阻抗匹配”进行了比较好的解析。回答了什么是阻抗匹配。
    阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 

    大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 

    要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 

    改变阻抗力 
    把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 

    调整传输线 
    由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 

    阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速 PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 

    阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 

    阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 
    在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 
    当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 
    一.阻抗匹配的研究 
    在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 
    例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 

    1、 串联终端匹配 
    串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 
    串联终端匹配后的信号传输具有以下特点: 
    A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; 
    B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 
    C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同;
    D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? 
    E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 

    相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 

    选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为 37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS 电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 
    链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 
    串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 

    2、 并联终端匹配 

    并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 
    并联终端匹配后的信号传输具有以下特点: 
    A 驱动信号近似以满幅度沿传输线传播; 
    B 所有的反射都被匹配电阻吸收; 
    C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。 
    在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω,则R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。 
    双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则: 
    ⑴. 两电阻的并联值与传输线的特征阻抗相等; 
    ⑵. 与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大; 
    ⑶. 与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大。 

    并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平都有直流功耗。因而不适用于电池供电系统等对功耗要求高的系统。另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有应用,而双电阻方式需要两个元件,这就对PCB的板面积提出了要求,因此不适合用于高密度印刷电路板。 

    当然还有:AC终端匹配; 基于二极管的电压钳位等匹配方式。 

    二 .将讯号的传输看成软管送水浇花 

    2.1 数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。一端于手握处加压使其射出水柱,另一端接在水龙头。当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命,岂非一种得心应手的小小成就? 

    2.2 然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任务失败横生挫折,而且还大捅纰漏满脸豆花呢! 

    2.3 反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。 

    2.4 上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Transmission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver)元件所并联到Gnd的电阻器一般,可用以调节其终点的特性阻抗(Characteristic Impedance),使匹配接受端元件内部的需求。 


    三. 传输线之终端控管技术(Termination) 

    3.1 由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件(如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失败白忙一场。用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。一旦彼此未能匹配时,则必将会有少许能量回头朝向“发送端”反弹,进而形成反射杂讯(Noise)的烦恼。 

    3.2 当传输线本身的特性阻抗(Z0)被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm,如此才能协助传输线对Z0的保持,使整体得以稳定在28 ohm的设计数值。也唯有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(Signal Integrity,为讯号品质之专用术语)也才最好。 


    四.特性阻抗(Characteristic Impedance) 

    4.1 当某讯号方波,在传输线组合体的讯号线中,以高准位(High Level)的正压讯号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的回归路径 Return Path),如此将可完成整体性的回路(Loop)系统。该“讯号”前行中若将其飞行时间暂短加以冻结,即可想象其所遭受到来自讯号线、介质层与参考层等所共同呈现的瞬间阻抗值(Instantanious Impedance),此即所谓的“特性阻抗”。  是故该“特性阻抗”应与讯号线之线宽(w)、线厚(t)、介质厚度(h)与介质常数(Dk)都扯上了关系。 

    4.2 阻抗匹配不良的后果  由于高频讯号的“特性阻抗”(Z0)原词甚长,故一般均简称之为“阻抗”。读者千万要小心,此与低频AC交流电(60Hz)其电线(并非传输线)中,所出现的阻抗值(Z)并不完全相同。数位系统当整条传输线的Z0都能管理妥善,而控制在某一范围内(±10﹪或 ±5﹪)者,此品质良好的传输线,将可使得杂讯减少,而误动作也可避免。  但当上述微带线中Z0的四种变数(w、t、h、 r)有任一项发生异常,例如讯号线出现缺口时,将使得原来的Z0突然上升(见上述公式中之Z0与W成反比的事实),而无法继续维持应有的稳定均匀(Continuous)时,则其讯号的能量必然会发生部分前进,而部分却反弹反射的缺失。如此将无法避免杂讯及误动作了。例如浇花的软管突然被踩住,造成软管两端都出现异常,正好可说明上述特性阻抗匹配不良的问题。 

    4.3 阻抗匹配不良造成杂讯  上述部分讯号能量的反弹,将造成原来良好品质的方波讯号,立即出现异常的变形(即发生高准位向上的Overshoot,与低准位向下的Undershoot,以及二者后续的Ringing)。此等高频杂讯严重时还会引发误动作,而且当时脉速度愈快时杂讯愈多也愈容易出错。
    那么是否什么时候都要考虑阻抗匹配?
    在普通的宽频带放大器中,因为输出阻抗为50Ω,所以需要考虑在功率传输电路中进行阻抗匹配。但是,实际上当电缆的长度对于信号的波长来说可以忽略不计时,就勿需阻抗匹配的。 
    考虑信号频率为1MHz,其波长在空气中为300m,在同轴电缆中约为200m。在通常使用的长度为1m左右的同轴电缆中,是在完全可忽略的范围之内。(图H) 

    如果存在阻抗,那么在阻抗上就会产生功率消耗,所以不做阻抗匹配其结果就会使放大器的输出功率发生无用的浪费。(图J)

    ----------------------------------------

    阻抗匹配与史密斯(Smith)圆图:基本原理

     

    摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。

    事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。
     

    在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

    在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。

    有很多种阻抗匹配的方法,包括

    • 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
    • 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
    • 经验: 只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。
    • 史密斯圆图:本文要重点讨论的内容。

    本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

    图1. 阻抗和史密斯圆图基础
    图1. 阻抗和史密斯圆图基础

    基础知识

    在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。

    大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:

    RS + jXS = RL - jXL

    图2. 表达式RS + jXS = RL - jXL的等效图
    图2. 表达式RS + jXS = RL - jXL的等效图

    在这个条件下,从信号源到负载传输的能量最大。另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。

    史密斯圆图

    史密斯圆图是由很多圆周交织在一起的一个图。正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。

    史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。反射系数也可以从数学上定义为单端口散射参数,即s11

    史密斯圆图是通过验证阻抗匹配的负载产生的。这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时ΓL更加有用。

    我们知道反射系数定义为反射波电压与入射波电压之比:

    图3. 负载阻抗
    图3. 负载阻抗

    负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为:



    由于阻抗是复数,反射系数也是复数。

    为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里Z0 (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50Ω、75Ω、100Ω和600Ω。于是我们可以定义归一化的负载阻抗:



    据此,将反射系数的公式重新写为:



    从上式我们可以看到负载阻抗与其反射系数间的直接关系。但是这个关系式是一个复数,所以并不实用。我们可以把史密斯圆图当作上述方程的图形表示。

    为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。

    首先,由方程2.3求解出;



    并且



    令等式2.5的实部和虚部相等,得到两个独立的关系式:



    重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14。这个方程是在复平面(Γr, Γi)上、圆的参数方程(x - a)² + (y - b)² = R²,它以[r/(r + 1), 0]为圆心,半径为1/(1 + r)。



    更多细节参见图4a

    图4a. 圆周上的点表示具有相同实部的阻抗。例如,r =1的圆,以(0.5, 0)为圆心,半径为0.5。它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)。以(0, 0)为圆心、半径为1的圆代表负载短路。负载开路时,圆退化为一个点(以1, 0为圆心,半径为零)。与此对应的是最大的反射系数1,即所有的入射波都被反射回来。 
    图4a. 圆周上的点表示具有相同实部的阻抗。例如,r = 1的圆,以(0.5, 0)为圆心,半径为0.5。它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)。以(0, 0)为圆心、半径为1的圆代表负载短路。负载开路时,圆退化为一个点(以1, 0为圆心,半径为零)。与此对应的是最大的反射系数1,即所有的入射波都被反射回来。 

    在作史密斯圆图时,有一些需要注意的问题。下面是最重要的几个方面:

    • 所有的圆周只有一个相同的,唯一的交点(1, 0)。
    • 代表0Ω、也就是没有电阻(r = 0)的圆是最大的圆。
    • 无限大的电阻对应的圆退化为一个点(1, 0)
    • 实际中没有负的电阻,如果出现负阻值,有可能产生振荡。
    • 选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。

    作图

    经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。



    同样,2.19也是在复平面(Γr, Γi)上的圆的参数方程(x - a)² + (y - b)² = R²,它的圆心为(1, 1/x),半径1/x。

    更多细节参见图4b

    图4b. 圆周上的点表示具有相同虚部x的阻抗。例如,x = 1的圆以(1, 1)为圆心,半径为1。所有的圆(x为常数)都包括点(1, 0)。与实部圆周不同的是,x既可以是正数也可以是负数。这说明复平面下半部是其上半部的镜像。所有圆的圆心都在一条经过横轴上1点的垂直线上。
    图4b. 圆周上的点表示具有相同虚部x的阻抗。例如,× = 1的圆以(1, 1)为圆心,半径为1。所有的圆(x为常数)都包括点(1, 0)。与实部圆周不同的是,x既可以是正数也可以是负数。这说明复平面下半部是其上半部的镜像。所有圆的圆心都在一条经过横轴上1点的垂直线上。

    完成圆图

    为了完成史密斯圆图,我们将两簇圆周放在一起。可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交。若已知阻抗为r + jx,只需要找到对应于r和x的两个圆周的交点就可以得到相应的反射系数。

    可互换性

    上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的r和×的值。过程如下:

    • 确定阻抗在史密斯圆图上的对应点
    • 找到与此阻抗对应的反射系数(Γ)
    • 已知特性阻抗和Γ,找出阻抗
    • 将阻抗转换为导纳
    • 找出等效的阻抗
    • 找出与反射系数对应的元件值(尤其是匹配网络的元件,见图7)

    推论

    因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。下面是一个用史密斯圆图表示的RF应用实例:

    例: 已知特性阻抗为50Ω,负载阻抗如下:

    Z1 = 100 + j50Ω Z2 = 75 - j100Ω Z3 = j200Ω Z4 = 150Ω
    Z5 = ∞ (an open circuit) Z6 = 0 (a short circuit) Z7 = 50Ω Z8 = 184 - j900Ω


    对上面的值进行归一化并标示在圆图中(见图5):

    z1 = 2 + j z2 = 1.5 - j2 z3 = j4 z4 = 3
    z5 = 8 z6 = 0 z7 = 1 z8 = 3.68 - j18


    图5. 史密斯圆图上的点
    点击看大图(PDF, 502K)
    图5. 史密斯圆图上的点

    现在可以通过图5的圆图直接解出反射系数Γ。画出阻抗点(等阻抗圆和等电抗圆的交点),只要读出它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部Γr和虚部Γi (见图6)。

    该范例中可能存在八种情况,在图6所示史密斯圆图上可以直接得到对应的反射系数Γ:

    Γ1 = 0.4 + 0.2j Γ2 = 0.51 - 0.4j Γ3 = 0.875 + 0.48j Γ4 = 0.5
    Γ5 = 1 Γ6 = -1 Γ7 = 0 Γ8 = 0.96 - 0.1j


    图6. 从X-Y轴直接读出反射系数Γ的实部和虚部 
    图6. 从X-Y轴直接读出反射系数Γ的实部和虚部

    用导纳表示

    史密斯圆图是用阻抗(电阻和电抗)建立的。一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数。可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可。然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数。通常,利用导纳更容易处理并联元件。

    我们知道,根据定义Y = 1/Z,Z = 1/Y。导纳的单位是姆欧或者Ω-1 (早些时候导纳的单位是西门子或S)。并且,如果Z是复数,则Y也一定是复数。

    所以Y = G + jB (2.20),其中G叫作元件的“电导”,B称“电纳”。在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设,可以得出:G = 1/R及B = 1/X,然而实际情况并非如此,这样计算会导致结果错误。

    用导纳表示时,第一件要做的事是归一化, y = Y/Y0,得出y = g + jb。但是如何计算反射系数呢?通过下面的式子进行推导:

    结果是G的表达式符号与z相反,并有Γ(y) = -Γ(z)。

    如果知道z,就能通过将的符号取反找到一个与(0, 0)的距离相等但在反方向的点。围绕原点旋转180°可以得到同样的结果(见图7)。

    图7. 180°度旋转后的结果
    图7. 180°度旋转后的结果

    当然,表面上看新的点好像是一个不同的阻抗,实际上Z和1/Z表示的是同一个元件。(在史密斯圆图上,不同的值对应不同的点并具有不同的反射系数,依次类推)出现这种情况的原因是我们的图形本身是一个阻抗图,而新的点代表的是一个导纳。因此在圆图上读出的数值单位是西门子。

    尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用。

    导纳圆图

    在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以Γ复平面原点为中心旋转180°后得到与之对应的导纳点。于是,将整个阻抗圆图旋转180°就得到了导纳圆图。这种方法十分方便,它使我们不用建立一个新图。所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1,0)。使用导纳圆图,使得添加并联元件变得很容易。在数学上,导纳圆图由下面的公式构造:



    解这个方程:



    接下来,令方程3.3的实部和虚部相等,我们得到两个新的独立的关系:



    从等式3.4,我们可以推导出下面的式子:



    它也是复平面(Γr, Γi)上圆的参数方程(x - a)² + (y - b)² = R² (方程3.12),以[g/(g + 1), 0]为圆心,半径为1/(1 + g)。

    从等式3.5,我们可以推导出下面的式子:



    同样得到(x - a)² + (y - b)² = R²型的参数方程(方程3.17)。

    求解等效阻抗

    当解决同时存在串联和并联元件的混合电路时,可以使用同一个史密斯圆图,在需要进行从z到y或从y到z的转换时将图形旋转。

    考虑图8所示网络(其中的元件以Z0 = 50Ω进行了归一化)。串联电抗(x)对电感元件而言为正数,对电容元件而言为负数。而电纳(b)对电容元件而言为正数,对电感元件而言为负数。

    图8. 一个多元件电路
    图8. 一个多元件电路

    这个电路需要进行简化(见图9)。从最右边开始,有一个电阻和一个电感,数值都是1,我们可以在r = 1的圆周和I=1的圆周的交点处得到一个串联等效点,即点A。下一个元件是并联元件,我们转到导纳圆图(将整个平面旋转180°),此时需要将前面的那个点变成导纳,记为A'。现在我们将平面旋转180°,于是我们在导纳模式下加入并联元件,沿着电导圆逆时针方向(负值)移动距离0.3,得到点B。然后又是一个串联元件。现在我们再回到阻抗圆图。

    图9. 将图8网络中的元件拆开进行分析
    图9. 将图8网络中的元件拆开进行分析

    在返回阻抗圆图之前,还必需把刚才的点转换成阻抗(此前是导纳),变换之后得到的点记为B',用上述方法,将圆图旋转180°回到阻抗模式。沿着电阻圆周移动距离1.4得到点C就增加了一个串联元件,注意是逆时针移动(负值)。进行同样的操作可增加下一个元件(进行平面旋转变换到导纳),沿着等电导圆顺时针方向(因为是正值)移动指定的距离(1.1)。这个点记为D。最后,我们回到阻抗模式增加最后一个元件(串联电感)。于是我们得到所需的值,z,位于0.2电阻圆和0.5电抗圆的交点。至此,得出z = 0.2 + j0.5。如果系统的特性阻抗是50Ω,有Z = 10 + j25Ω (见图10)。

    图10. 在史密斯圆图上画出的网络元件
    点击看大图(PDF, 600K)
    图10. 在史密斯圆图上画出的网络元件

    逐步进行阻抗匹配

    史密斯圆图的另一个用处是进行阻抗匹配。这和找出一个已知网络的等效阻抗是相反的过程。此时,两端(通常是信号源和负载)阻抗是固定的,如图11所示。我们的目标是在两者之间插入一个设计好的网络已达到合适的阻抗匹配。

    图11. 阻抗已知而元件未知的典型电路 
    图11. 阻抗已知而元件未知的典型电路

    初看起来好像并不比找到等效阻抗复杂。但是问题在于有无限种元件的组合都可以使匹配网络具有类似的效果,而且还需考虑其它因素(比如滤波器的结构类型、品质因数和有限的可选元件)。

    实现这一目标的方法是在史密斯圆图上不断增加串联和并联元件、直到得到我们想要的阻抗。从图形上看,就是找到一条途径来连接史密斯圆图上的点。同样,说明这种方法的最好办法是给出一个实例。

    我们的目标是在60MHz工作频率下匹配源阻抗(ZS)和负载阻抗(zL) (见图11)。网络结构已经确定为低通,L型(也可以把问题看作是如何使负载转变成数值等于ZS的阻抗,即ZS复共轭)。下面是解的过程:

    图12. 图11的网络,将其对应的点画在史密斯圆图上
    点击看大图(PDF, 537K)
    图12. 图11的网络,将其对应的点画在史密斯圆图上

    要做的第一件事是将各阻抗值归一化。如果没有给出特性阻抗,选择一个与负载/信号源的数值在同一量级的阻抗值。假设Z0为50Ω。于是zS= 0.5 - j0.3, z*S = 0.5 + j0.3, ZL = 2 - j0.5。

    下一步,在图上标出这两个点,A代表zL,D代表z*S

    然后判别与负载连接的第一个元件(并联电容),先把zL转化为导纳,得到点A'。

    确定连接电容C后下一个点出现在圆弧上的位置。由于不知道C的值,所以我们不知道具体的位置,然而我们确实知道移动的方向。并联的电容应该在导纳圆图上沿顺时针方向移动、直到找到对应的数值,得到点B (导纳)。下一个元件是串联元件,所以必需把B转换到阻抗平面上去,得到B'。B'必需和D位于同一个电阻圆上。从图形上看,从A'到D只有一条路径,但是如果要经过中间的B点(也就是B'),就需要经过多次的尝试和检验。在找到点B和B'后,我们就能够测量A'到B和B'到D的弧长,前者就是C的归一化电纳值,后者为L的归一化电抗值。A'到B的弧长为b = 0.78,则B = 0.78 × Y0 = 0.0156S。因为ωC = B,所以C = B/ω = B/(2πf) = 0.0156/[2π(60 × 106)] = 41.4pF。

    B到D的弧长为× = 1.2,于是X = 1.2 × Z0 = 60Ω。 由ωL = X,得L = X/ω = X/(2πf)= 60/[2π(60 × 106)] = 159nH。

    图13. MAX2472典型工作电路
    图13. MAX2472典型工作电路

    第二个例子是MAX2472的输出匹配电路,匹配于50Ω负载阻抗(zL),工作品率为900MHz (图14所示)。该网络采用与MAX2472数据资料相同的配置结构,上图给出了匹配网络,包括一个并联电感和串联电容,以下给出了匹配网络元件值的查找过程。

    图14. 图13所示网络在史密斯圆a图上的相应工作点
    图14. 图13所示网络在史密斯圆a图上的相应工作点

    首先将S22散射参数转换成等效的归一化源阻抗。MAX2472的Z0为50Ω,S22 = 0.81/-29.4°转换成zS = 1.4 - j3.2, zL = 1和zL* = 1。

    下一步,在圆图上定位两个点,zS标记为A,zL*标记为D。因为与信号源连接的是第一个元件是并联电感,将源阻抗转换成导纳,得到点A’。 

    确定连接电感LMATCH后下一个点所在的圆弧,由于不知道LMATCH的数值,因此不能确定圆弧终止的位置。但是,我们了解连接LMATCH并将其转换成阻抗后,源阻抗应该位于r = 1的圆周上。由此,串联电容后得到的阻抗应该为z = 1 + j0。以原点为中心,在r = 1的圆上旋转180°,反射系数圆和等电纳圆的交点结合A’点可以得到B (导纳)。B点对应的阻抗为B’点。

    找到B和B'后,可以测量圆弧A'B以及圆弧B'D的长度,第一个测量值可以得到LMATCH。电纳的归一化值,第二个测量值得到CMATCH电抗的归一化值。圆弧A'B的测量值为b = -0.575,B = -0.575 × Y0 = 0.0115S。因为1/ωL = B,则LMATCH = 1/Bω = 1/(B2πf) = 1/(0.01156 × 2 × π × 900 × 106) = 15.38nH,近似为15nH。圆弧B'D的测量值为× = -2.81,X = -2.81 × Z0 = -140.5Ω。因为-1/ωC = X,则CMATCH = -1/Xω = -1/(X2πf) = -1/(-140.5 × 2 × π × 900 × 106) = 1.259pF,近似为1pF。这些计算值没有考虑寄生电感和寄生电容,所得到的数值接近与数据资料中给出的数值: LMATCH = 12nH和CMATCH = 1pF。

    总结

    在拥有功能强大的软件和高速、高性能计算机的今天,人们会怀疑在解决电路基本问题的时候是否还需要这样一种基础和初级的方法。

    实际上,一个真正的工程师不仅应该拥有理论知识,更应该具有利用各种资源解决问题的能力。在程序中加入几个数字然后得出结果的确是件容易的事情,当问题的解十分复杂、并且不唯一时,让计算机作这样的工作尤其方便。然而,如果能够理解计算机的工作平台所使用的基本理论和原理,知道它们的由来,这样的工程师或设计者就能够成为更加全面和值得信赖的专家,得到的结果也更加可靠。

    本文的相似版本发表在2000年7月的RF Design上。

    展开全文
  • TTLCMOS逻辑电平匹配

    千次阅读 2018-03-27 11:24:22
    连接3.3V 设备到5V 设备需要考虑到驱动器和接收器的逻辑电平是否匹配。.描述了用于5V CMOS,5V TTL 和3.3V TTL 的逻辑电平标准。可以看到,5V TTL 和3.3V TTL的逻辑电平是相同的,而5V CMOS逻辑电平前两者是不同的...
  • 目前基于Hausdorff distance 的模板匹配已经广泛应用在图像匹配中,而相关的国外软件在模板匹配方面已经得相当成熟和领先,而国内在自主研发的这方面还很薄弱。承臻图像工作室经过近一年的努力,先后实现了基于...
  • 模板匹配

    千次阅读 2015-07-25 20:18:18
    模板匹配是数字图像处理的重要组成部分之一。把不同传感器或同一传感器在不同时间、 不同成像条件下对同一景物获取的两幅或多幅图像在空间上对准,或根据已知模式到另一幅 图中寻找相应模式的处理方法就叫做模板...
  • 图像特征与匹配方法

    千次阅读 2015-08-11 14:55:29
    近年来,在形状的表示和匹配方面的工作还包括有限元法( Finite Element Method  或  FEM )、旋转函数( Turning Function )和小波描述符( Wavelet Descriptor )等方法。 Ⅱ   基于小波和相对矩的形状...
  • Perl模式匹配

    千次阅读 2014-09-26 13:16:59
    Perl 内置的模式匹配让你能够简便高效地搜索大量的数据。不管你是在一个巨型的商业门户站点上...这里的一部分原因是 Perl 的数据库联接能力,但是更重要的原因是 Perl 的模式匹配能力。如果你把“文本”的含义尽可能
  • SLAM之图像特征提取与匹配

    千次阅读 2018-04-10 22:01:23
    此篇博客,包括之后的一些SLAM系列博客,其实都是高翔博士的《视觉SLAM十四讲》读书笔记,在此向高博所工作致敬。对SLAM初学者而言,《视觉SLAM十四讲》非常适合入门,而且高博在深蓝学院开设了《SLAM理论实践...
  • 特征匹配

    千次阅读 2017-04-10 14:37:54
     (5)其它方法 近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或 FEM)、旋转函数(Turning )和小波描述符(Wavelet Deor)等方法。 Ⅱ 基于小波和相对矩的形状特征提取与匹配 ...
  • 近年来,在形状的表示和匹配方面的工作还包括有限元法( Finite Element Method   或   FEM )、旋转函数( Turning Function )和小波描述符( Wavelet Descriptor )等方法。 Ⅱ   基于小波和相对...
  • 阻抗匹配基础

    万次阅读 多人点赞 2009-08-11 21:17:00
    一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出...
  • 个人觉得的,其实 我们工作到了一定的年纪,有时候不用社会淘汰你,你自己就感觉体力跟不上了尤其是互联网公司,开发的35岁甚至不到35岁,很多普遍转行或者是被动离职的。 (PS:这里不卖焦虑) 我们要以正确要以...
  • 面试攻略:何为技术和年龄不匹配

    千次阅读 2018-05-09 09:31:38
    最近因为帮人组建研发中心,面试了很多开发工程师,对“技术能工作年限是否匹配”的理解更深了,记录下来分享给大家。 为便于讨论,简单的依据工作年限划分出 3 个阶段: 1 ~ 3 年 4 ~ 5 年 6 ~ 8 年 接...
  • 什么是阻抗匹配以及为什么要阻抗匹配... 阻抗匹配在高频设计中是一个常用的概念,这篇文章对这个“阻抗匹配”进行了比较好的解析。回答了什么是阻抗匹配。 阻抗匹配(Impedance matching)是微波电子学里的一...
  • 阻抗变换和阻抗匹配

    千次阅读 2012-01-12 19:06:08
    阻抗匹配是无线电技术中常见的一种工作状态,它反映了输入电路输出电路之间的功率传输关系.当电路实现阻抗匹配时,将获得最大的功率传输.反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生...
  • 设计指南742   ...阻抗匹配与史密斯(Smith)圆图:...文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2472工作在900MHz时匹配网络的作图范例。 事实证明,史密斯圆图仍然是确定传输线阻抗的基本工具。
  • 做自己:致找工作的同学们

    千次阅读 热门讨论 2005-11-15 11:04:00
    最近因为on beach,帮着Jessie一些recruiting的事情——用冰云的话,“一手把持“公司在西安的...我的建议都是,不用特别准备,自己就好。这两位其实都是水平很高的,在软件开发上面的造诣和成就都比我高,照理说
  • SemiGlobalMatching(SGM),立体匹配经典算法,编码实战教学!
  • 1. 功放的概念  功率放大器简称功放,俗称 “扩音机”,是音响系统中最基本的...A 类即使没有信号输入时,也工作在偏置区,效率最低,理论效率只有25%; B 类如果没有信号输入,几乎不消耗功耗,理论效率78%; ...
  • 图像匹配方法浅谈

    千次阅读 2011-11-04 22:03:55
    但看的论文零零散散,每家都说自己方法如何如何的好,其实我都半信半疑的,希望中国的研究学者能够脚踏实地的务实的多点实事,牛顿说我成功是因为站在巨人的肩上。我是菜鸟,我希望能站在大鸟的身上,展翅飞翔。 ...
  • 信号完整性之阻抗匹配与端接方法

    千次阅读 2020-03-07 11:54:44
    1. 前言 ...SI (Signal Integrity,信号完整性)以下几个因素有关:反射、串扰、辐射。 反射是由信号传输路径上的阻抗不连续造成的; 串扰信号的间距有关; 辐射则高速器件自身以及PCB设计均有...
  • 逻辑电平匹配

    千次阅读 2015-03-01 11:06:28
    连接3.3V 设备到5V 设备需要考虑到驱动器和接收器的逻辑电平是否匹配。.描述了用于5V CMOS,5V TTL 和3.3V TTL 的逻辑电平标准。可以看到,5V TTL 和3.3V TTL的逻辑电平是相同的,而5V CMOS逻辑电平前两者是不同的...
  • 多关键词匹配个人解决方案

    千次阅读 2017-11-05 16:15:52
    本文章是对于多关键词匹配的两种个人解决方案的介绍,只是想记录一下自己的想法而已,不喜勿喷! ^_^ 最简单也是对于我们来说最方便的解决多关键词匹配的方法就是:从数据库中把关键词列表取出,然后对待检索文章...
  • 立体匹配的研究背景以及意义

    万次阅读 热门讨论 2016-05-29 19:50:53
    来自: shiter编写程序的艺术计算机视觉是一门研究使用计算机来模拟人的视觉系统的学科。“一图胜千言”,人类对于图像中的信息感知效率远超文字等其他媒介,...相对于人类高效的图像信息提取能力,计算机在图像信息的
  • 阻抗匹配及电路设计

    千次阅读 2011-04-25 16:57:00
    <br />阻抗匹配在高频设计中是一个常用的概念,这篇文章对这个“阻抗匹配”进行了比较好的解析。回答了什么是阻抗匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达...
  • 最近整理了一下这两年一直在用的摄像机定标立体匹配测试程序,将代码进行了重构,界面也了调整,分享出来方便有需要的朋友使用。当然我的编程能力有限,程序可能还有各种bug,请大家多多包涵。相关问题欢迎留言...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 220,897
精华内容 88,358
关键字:

做与自己能力匹配的工作