精华内容
下载资源
问答
  • 数据可视化都有一个共同的目的,那就是准确而高效、精简而全面地传递信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,...

    数据可视化都有一个共同的目的,那就是准确而高效、精简而全面地传递信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,获得更有商业价值的洞见和价值。
      并且利用合适的图表直截了当且清晰而直观地表达出来,实现数据自我解释、让数据说话的目的。而人类右脑记忆图像的速度比左脑记忆抽象的文字快100万倍。因此,数据可视化能够加深和强化受众对于数据的理解和记忆。

    图形表现数据,实际上比传统的统计分析法更加精确和有启发性。我们可以借助可视化的图表寻找数据规律、分析推理、预测未来趋势。另外,利用可视化技术可以实时监控业务运行状况,更加阳光透明,及时发现问题第一时间做出应对。例如天猫的双11数据大屏实况直播,可视化大屏展示大数据平台的资源利用、任务成功率、实时数据量等。

    数据可视化能做到简单、充实、高效、兼具美感就是好的可视化:

    简单点说好的数据可视化和好的产品是一样,都有友好的用户体验,不能让人花了时间又看得一头雾水,甚至被误导得出错误的结论。准确 用最简单的方式传递最准确的信息,节约人们思考的时间。 最简单方式就是最合理的图表,需要根据比较关系、数据维数、数据多少选择。

    充实一份数据分析报告或者解释清楚一个问题,很少是单一一个的图表能够完成的,都需要多个指标或者同一指标的不同维度相互配合佐证分析结论。

    高效成功的可视化,虽表面简单却富含深意,可以让观察者一眼就能洞察事实并产生新的理解,管理者能够沿着你规划的可视化路径能够迅速地找到和发现决策之道。

    美感除了准确、充实高效外,也需要美观。 美观分为两个层次,第一层是整体协调美,没有多余元素,图表中的坐标轴、形状、线条、字体、标签、标题排版等元素是经过合理安排的 ,UI设计中的四大原则(对比、重复、对齐、亲密性) 同样适用于图表。 第二层才是让人愉悦的视觉美,色彩应用恰到好处。把握好视觉元素中色彩的运用,使图形变得更加生动、有趣,信息表达得更加准确和直观。色彩可以帮助人们对信息进行深入分类、强调或淡化,生动而有趣的可视化作品的表现形式,常常给受众带来视觉效果上的享受。协调美是视觉美的基础
      人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
    1.在学习大数据之前,需要具备什么基础
    http://www.duozhishidai.com/article-12916-1.html
    2.大数据工程师培训,需要学习的有哪些课程?
    http://www.duozhishidai.com/article-15081-1.html
    3.大数据的特点是什么,大数据与Hadoop有什么关系?
    http://www.duozhishidai.com/article-13276-1.html


    多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

    多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
    展开全文
  • 数据解决企业什么问题?”这问题一定难不倒各位,甚至张口即答,例如通过数据可以对自身的企业情况有着准确和科学的把握,避免老板拍脑袋;数据可以实现对市场环境快速的反应和决策;数据可以区分客户个性化需求,...

    一个行业做的越久,问题越多,之前并不在意的问题也会拿出来思考。“数据解决企业什么问题?”这问题一定难不倒各位,甚至张口即答,例如通过数据可以对自身的企业情况有着准确和科学的把握,避免老板拍脑袋;数据可以实现对市场环境快速的反应和决策;数据可以区分客户个性化需求,提高服务价值等等。

    比如:

    以上,针对每一条都可以理解,但将全部的答案都拉出来站在那,让我感到困惑。以上的每个回答,都要怎样实现呢?每一条回答又有着什么样的联系呢?甚至是每条回答的实现方式又有着怎样的联系呢?这些问题解答不了。

    也是接触过一些客户,大家同处一个行业,业务模式以及数据类型也相差不多,但是各自所完成的内容相差很多。有些面向领导,做了些dashboard;有些面相业务人员,做了商品分析模块;有些面向基层员工,做了数据查询的报表。为什么每家企业做的内容不一样呢?这些企业是根据什么而选择这些模块的数据进行分析的呢?

    进一步需要解答的,每家企业所分析的数据不同,但为何感觉不出这对他们产生了不同的影响?拿上面的几个回答来看,老板是否拍脑袋决策、是否可以对是市场快速准确的决策、是否可以区分客户需求,这些都非常重要啊,可有没有这样的数据分析,并感觉不出什么区别呀。这些东西想多了,让我经常怀疑自己,是不是个骗子。

    今天的高铁上,我将上面的问题都拿了出来,同时也回想自己所遇到的各种业务场景、分析场景,经过成套成套的梳理,我发现了这样一个问题。这些企业所做的数据分析(无论是bi还是报表),并没有去发现未知的东西,而是为了可以更容易的按照标准的方法来判断一件事。对于所有的群体、所有的业务都可以这样去理解。下面我从简单到复杂的来说明。

    对于基层员工,以货架商品管理员举例,超市货架上的商品要怎样管理?标准的方法是不是某一商品即将卖光,就需要从仓库中取出该商品补到货架上。没有数据,他需要一遍一遍的去巡查,也自然会有时会漏掉。有了数据,他就可以浏览数据来查看商品的售卖情况,以此来及时补货了。这么对于这个商品管理员来说,数据所解决的问题,就是让他可以更容易的按照标准的工作方法来决定补什么货,补到哪。

    对于部分业务人员,比如品类经理,他需要决定采购哪些品牌的商品,从哪一家供应商来采购,如何规划商店的商品。标准的方法是什么,是采购卖的好的品牌,把卖的不好的品牌剔除,并且选择价格更加低廉按时送货率高的供应商(真空环境下)。通过数据,我们可以列出我们店中品牌的销售情况,对比上其他门店同类商品品牌销售情况,以此来发现哪些其他门店卖的好而我们没有的品牌;我们也可以列出在过去一段时间我们门店卖的非常不好的商品,以此来考虑是否可以对这些商品进行促销并且从此不再需要这些品牌;以上,数据所解决的问题,也是让品类经理可以更加容易的按照标准的决策方法来进行判断,优化商品结构,选择供应商。

    对于企业管理层,我们做dashboard进行指标的监控,做企业的业绩分析(时间、地区纬度等)。我们做的内容很多,因为管理层所要决定的范围很广,他并不像某一业务人员只负责一项工作为了一个目标。但是将内容分解后,我们发现,我们为管理层所做的数据分析,也是为了让他们可以更方便的按照标准的管理方法进行管理。当然,这个标准,并非是业内的通用标准,而是企业自己的标准,甚至是老板他本身的标准。比如,老板要通过胡萝卜加大棒的方式来促进每个店铺的销售额,给做的好的店长奖励,做的不好的店长惩罚,通过数据就可以很容易的执行,而避免拍脑袋的奖惩。而这一过程,也是通过数据使管理层可以更容易的按照标准的管理方法进行决策(员工是判断,领导就是决策了。。。)

    针对管理层的,很难说的更细,他们看哪些指标,会给他带来怎样的思考,这是旁人说不准的,但是这一套体系一定是在他心里有数。相比于员工,他们的工作内容更具备发散性,思考也更具备发散性,所以我们做移动端分析平台,做实时监控平台,做定时报送平台,目的都是一样,可以让领导更容易看到这些数据来进行决策。欢迎加入大数据学习交流分享群: 658558542   一起吹水交流学习(☛点击即可加入群聊

    以上内容,如果没有数据会怎样呢,不同的群体,即使没有对应的数据分析,也是会按照这样的方法进行工作和管理,但是面对未知情况,基层员工会花费更多的时间来填补数据,工作效率就会变低。对于管理层,他们没有那么多精力去找到他们想要的所有依据,所以在工作或者决策中,就出现了模糊决定,缺失的依据多一些,便成了拍脑袋决策。

    有些人,不需要很多数据,就可以对市场对公司有着准确的判断,有些人,就需要很多数据来填充他脑子里的空格,才能做出准确的判断。人与人的思考方式有所不同,但大多数情况,数据或许并没有改变他的决策方式,而只是让他脑子里某个模糊的参数变得准确,从而进行判断。

    综上,erp、oa等it系统让工作流程更加规范,而数据则是让决策更加规范

    这也让我清楚了一个问题,我接触的很多客户,都会像我询问其他客户是怎样做数据分析的,很多企业参加行业交流,也是希望更多的了解分析应用场景,大家真的是对数据分析的方法感兴趣吗?更深一步的去看,是对其他公司的管理和工作方法感兴趣,当然,这一点如果不去深究,可能他本人也想不通。

    上面解释了很多,得到了这样的一个结论:数据可以让我们更容易的以规范的方式进行判断和决策,也就是数据可以让决策更加规范。我为什么要花这么多时间来解释这样一个结论呢。

    一、希望企业少被忽悠

    数据分析这样解释一下,已经变的很土,很简单。很多企业会规划做数据分析的项目,会找一些做数据的公司进行交流,而乙方公司则必然会拿出大量的概念进行渲染,什么高效管理、预测风险、智能决策之类的,听起来牛逼哄哄,然而扒开表皮,实质要怎么解释呢。一个巴掌拍不响,很多企业的it人员也乐于听到这些牛逼哄哄的概念,喜欢源于业务高于业务,要让领导耳目一新才好通过项目审批。

    举个例子,有企业还没有理顺运营人员看用户数据的时候,思考哪些问题,进行怎样的决策,上来就要做用户画像做挖掘做聚类,可是人家明明就只看个地区然后分配给对应的销售。你知道用户画像做出来之后,价值怎样落地么?你要根据什么样的用户属性进行怎样的判断与决策呢?这都没想清楚,做出的画像是要挂到墙上么?(如果是想通过用户画像为运营带来更先进的管理和决策水平,也是从运营的角度出发,也要和运营打好招呼吧)

    作为一个企业来讲,最好先清楚,做数据分析是为了谁而做,是为了什么样的决策而做。这些东西想清楚,项目做起来也不那么复杂,因为这个项目已经有章可循,没必要动不动就上来个大概念,花钱不说,能不能解决问题也不确定。以目前大部分的企业,以现在的信息化水平,还没到拼科技的地步。欢迎加入大数据学习交流分享群: 658558542   一起吹水交流学习(☛点击即可加入群聊

    二、希望帮助企业规划数据分析体系

    很多企业要做数据分析项目,但并不知道该如何规划,需求做的一塌糊涂,没有需求就开始项目的也不少见,全权委托乙方来进行需求规划,我只能说是一种逃避和懒政,以我这样正直的乙方来看,必须要合作,如果只能选择一方,也是甲方。否则就是碰运气的事,70%都被使用,“项目做的很好,大家辛苦了”;30%被使用,“项目没白做还凑合”;10%被使用,“你们怎么做的项目啊,都没人用”。(当然,不排除在过程中需求不断的改改改,改到完美)

    当然,需要补充一下的,项目完成后的使用率高低,原因不只是需求做的好与差,还有很多因素,是否对业务进行了合理的培训和引导,项目易用性是否达到了标准等等,上面的例子只是表达需求不明很容易造成项目系统利用率不高的情况。

    根据上面的结论,我们怎样来做数据分析,甚至是从什么地方开始做?首先,我们看哪一个群体的决策最不规范,出的问题最多,就从那个群体下手(真空环境下)。比如,我们发现商品经常断货或者积压,那么就从品类管理员下手。通过数据展示出来可能挤压的商品或者即将断货的商品。这个群体的问题解决后,再看其他群体,以人为本,逐个击破。核心理念就是:我先了解你是怎样决策的,再去为你开发你的数据模型。

    最后总结一下,今天和客户聊天,客户表示自己公司有很多存量数据,知道这些数据很有价值,但不知道这些数据如何变现。从本文的角度去看,暂不需要把变现想的过于复杂,我们如果通过数据实现了员工决策的标准化,就减少了在各个环节出现判断失误的概率,什么提高工作效率、降低采购成本、提升销售额之类的,都在这一系列对问题的准确判断之中,对于员工是如此,对于领导也是如此。这样,就实现了数据的变现。同样,即使你是提供对外的数据服务,当你所做的数据分析能够让客户实现决策的规范化,那么相信客户也会为此买单。

    我们做数据分析,或许不在于分析,而是为了规范。首先数据的背后,是大大小小的管理与决策。

    结语

    感谢您的观看,如有不足之处,欢迎批评指正。

    如果有对大数据感兴趣的小伙伴或者是从事大数据的老司机可以加群:

    658558542    (☛点击即可加入群聊

    里面整理了一大份学习资料,全都是些干货,包括大数据技术入门,海量数据高级分析语言,海量数据存储分布式存储,以及海量数据分析分布式计算等部分,送给每一位大数据小伙伴,这里不止是小白聚集地,还有大牛在线解答!欢迎初学和进阶中的小伙伴一起进群学习交流,共同进步!

    最后祝福所有遇到瓶颈的大数据程序员们突破自己,祝福大家在往后的工作与面试中一切顺利。

    展开全文
  • 数据分析的目的什么? 数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。 在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织...

    什么是数据分析?

    数据分析是指用适当的统计分析对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

    数据分析的目的是什么?

    数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。

    在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。在产品的整个生命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。

    在企业里面,数据分析可以帮助我们掌握企业的运营状况,商品的出售情况,用户的特征、产品的粘性、等等。

    数据分析的步骤?

    1. 首先明确分析的思路和目的

    数据分析一定的带着某种业务目的的。它可能是要追踪一个新产品上线之后的用户使用情况;也可能是观察用户在某段时间的留存情况,还有可能是运营某种优惠券是否有效。带着一定的目的,确定要从哪几个角度进行分析。然后找到能够说明目的的指标。

    比如想要验证运营最近的一批优惠券是否有效。我们可以从优惠券的领取情况和优惠券的使用情况两个方面分析,而优惠券的领取情况的指标可以细化为领取率;使用情况可细化为:使用率、客单价等。

    2.数据的收集

    在确定了此次数据分析的核心指标后,就要针对数据指标做数据收集。有些企业的数据准备非常充分,数据仓库、数据集市等早早就建设好。有一些企业在数据分析上比较落后,那就需要我们自己做前期大量的数据收集工作。比如使用一些自己公司的或者第三方的数据分析工具进行埋点,拿到日志。或者使用数据库中的现有数据,比如订单数据、基础的用户信息等等。

    3.数据处理

    数据提取出来之后,要剔除脏数据(清洗),然后数据转化。在进行最基本的数据汇总、聚合之后,我们就可以拿到比较简单的字段相对丰富的数据宽表。

    4.数据分析

    数据分析是用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。

    一般公司所需要观察的数据大致分为如下几类:

    商业数据:付费金额,付费用户数,付费率客单价

    运营数据:新增用户数,日活、周活、月活(AARRR模型)

    产品数据:关键页面的PV、UV(漏斗模型)

    用户数据:用户生命周期、用户留存、用户客单价、用户类型(RFM模型……)

    商品数据:商品售卖情况,毛利分析……

    随着数据的重要性的凸显,越来越多的公司已经认识到数据对于公司的经营是十分重要的。所以绝大部分企业都有专门的BI部门进行初步的数据加工、分析,以周报表的形式汇总给管理层做为日常数据所需以及企业决策使用。

    学习数据分析,需要懂统计吗?
    怎么才能转入大数据领域 ,成为一名合格的大数据分析师
    相学习数据分析,应该从什么编程语言学起?

    多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

    多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
    展开全文
  • 很多人会问数据分析目的什么?它有什么作用?让我们看看亿信华辰如何看待数据分析的目的和意义。仅仅谈论数据分析的作用实际上并不重要,因此在谈论该作用之前,我们首先要考虑受众,打个比方:对于个人而言,由于...

    很多人会问数据分析目的是什么?它有什么作用?让我们看看亿信华辰如何看待数据分析的目的和意义。仅仅谈论数据分析的作用实际上并不重要,因此在谈论该作用之前,我们首先要考虑受众,打个比方:对于个人而言,由于身体感应设备的原因,让我们每天锻炼身体健身各种指标可以数字化,最终完成对个人身体和生活习惯的自我量化,然后完善对个人日常生活规律的调节,使我们过上更好的生活。

    数据分析目的

    数据分析目的1:分类

    检查未知分类或暂时未知分类的数据,目的是预测数据属于哪个类别或属于哪个类别。使用具有已知分类的相似数据来研究分类规则,然后将这些规则应用于未知分类数据。

    数据分析目的2:预测

    预测是指对数字连续变量而不是分类变量的预测。

    数据分析目的3:关联规则和推荐系统

    关联规则或关联分析是指在诸如捆绑之类的大型数据库中找到一般的关联模式。

    在线推荐系统使用协作过滤算法,该协作过滤算法是基于给定的历史购买行为,等级,浏览历史或任何其他可测量的偏好行为或什至其他用户购买历史的方法。协同过滤可在单个用户级别生成“购买时可以购买的东西”的购买建议。因此,在许多推荐系统中使用了协作过滤,以向具有广泛偏好的用户提供个性化推荐。

    数据分析目的4:预测分析

    预测分析包括分类,预测,关联规则,协作过滤和模式识别(聚类)之类的方法。

    数据分析目标5:数据缩减和降维

    当变量的数量有限并且可以将大量样本数据分类为同类组时,通常会提高数据挖掘算法的性能。减少变量的数量通常称为“降维”。降维是部署监督学习方法之前最常见的初始步骤,旨在提高可预测性,可管理性和可解释性。

    数据分析目的6:数据探索和可视化

    数据探索的目的是了解数据的整体情况并检测异常值。通过图表和仪表板创建的数据浏览称为“数据可视化”或“可视化分析”。对于数值变量,可以使用直方图,箱形图和散点图来了解其值的分布并检测异常值。对于分类数据,请使用条形图分析。

    数据分析目的7:有监督学习和无监督学习

    监督学习算法是用于分类和预测的算法。数据分类必须是已知的。在分类或预测算法中用于“学习”或“训练”预测变量和结果变量之间关系的数据称为“训练数据”。 。从训练数据中学到算法后,将该算法应用于具有已知结果的另一个数据样本(验证数据),以查看其与其他模型相比具有哪些优势。简单线性回归是监督算法的一个示例。

    数据分析的意义(功能)

    数据分析的意义(作用)1现状分析

    告诉你过去发生了什么

    首先,请告诉您此阶段企业的整体运营情况,并通过完成各种运营指标来衡量企业的运营状况,以显示企业的整体运营情况是好是坏,它的表现如何?不好吗去哪儿。

    其次,告诉您企业每个业务的组成,以便您了解企业每个业务的发展和变化,并对企业的业务状态有更深入的了解。

    现状分析通常通过每日报告进行,例如每日,每周和每月报告。

    数据分析的意义(作用)2原因分析

    告诉你为什么这些现状会发生

    在对第一阶段的现状进行分析之后,我们对公司的运营有了基本的了解,但是我们不知道哪里的运营更好,差异是什么,以及原因是什么。这时,我们需要进行原因分析,以进一步确定业务变更的具体原因。

    原因分析通常通过主题分析进行。根据企业的经营情况,根据一定的现状选择原因分析。

    数据分析的意义(作用)3预测分析

    告诉你未来会发生什么

    了解公司运营的现状后,有时需要对公司的未来发展趋势做出预测,为公司制定业务目标,并提供有效的战略参考和决策依据,以确保公司的持续健康发展。

    预测分析通常是通过主题分析完成的,主题分析通常是在制定公司的季度和年度计划时进行的。它的发展频率不如现状分析和原因分析高。

    展开全文
  • 数据标注是做什么

    千次阅读 2020-07-08 15:14:43
    数据标注的目的 近年来,人工智能发展这个话题如火如荼,作为人工智能三大决定性影响因素:算法,算力和数据,再过去的几年中野取得了很大的突破, 数据是人工智能的血液,而数据只有加上标注才有意义 数据标注的...
  • 什么数据结构

    千次阅读 多人点赞 2018-12-12 18:54:16
    我们知道,数据存储只有一个目的,即为了方便后期对数据的再利用,就如同我们使用数组存储 {1,2,3,4,5} 是为了后期取得它们的加和值,无缘由的数据存储行为是对存储空间的不负责任。 因此,数据在计算机存储空间的...
  • 一、数据清洗的目的  简单的来说不干净的数据会导致分析过程中的错误以及结果的错误。举个简单的例子,以前我们上学时柱形图这种类型的图时,如果大部分数据集中在某个区间而一两个数据离得很远,如果不去除这一...
  • 发现数据质量问题 > 定义数据质量规则 > 质量控制 > 质量评估 > 质量优化。 数据治理包含“理”“采”“存”“管”“用”这五个步骤,即业务和数据资源梳理、数据采集清洗、数据库设计和存储、数据管理、数据使用。
  • 我们目前进入了一个大数据的时代。以我目前经常处理的医疗保健数据为例。...本文尝试从数据 挖掘、分析的一般步骤入手,基于理论化的描述结合具体例子详细介绍挖掘分析建模之前数据处理的目的及方法论。
  • 4、区块链之币币交易所资管系统性能测试,登录、交易买入、交易卖出等测试场景设计、脚本开发/调试、数据 准备、性能调优、性能测试报告。       5、性能测试流程和性能瓶颈定位等知识讲解。
  • 软件测试的主要目的什么

    万次阅读 2018-08-24 08:55:57
    测试目的会随着不同测试阶段而有所侧重点,主要体现在: 1)发现缺陷 尽早和尽量多的发现被测对象中的缺陷,应该是测试人员测试过程中最常提起的一个测试目标,也是所谓测试价值的一个的重要体现。发现缺陷的目的...
  • MATLAB导入Excel数据并用plot函数绘图

    万次阅读 多人点赞 2019-11-14 12:40:30
    写这一篇博客的目的是帮助像我一样刚入门的小白,因为昨天查了相关博客,但是发现和我想找的还是比较少的,所以特此写一篇来总结一下我摸索出来的经验。 第一步:打开matlab并找导入数据这一项 第二步:点击并找到...
  • 数据清洗(Data cleaning)– 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。 数据清洗从名字上也看的出就是把"脏"的"洗掉",指发现并纠正数据文件...
  • 数据仓库的设计目的

    千次阅读 2014-10-10 21:10:06
    数据仓库的设计目的
  • 应用案例及场景-分析之术,掌握分析方法 [哪些同学适合学习这门课程] 想要转行做数据分析师的,零基础亦可 工作中需要数据分析技能的,例如运营、产品等 对数据分析感兴趣,想要更多了解的 [你的收获] n ...
  • 数据挖掘的意义是什么?

    万次阅读 2018-07-04 16:01:03
    数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说...
  • 我特别不喜欢装逼的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享出来,数据分析...做数据分析,必须要有一个明确的目...
  • SQL 创建索引的目的什么

    千次阅读 2020-01-09 16:21:15
    一、SQL创建索引的目的如下: 1、通过唯一性索引(unique)可确保数据的唯一性; 2、加快数据的检索速度; 3、加快表之间的连接; 4、减少分组和排序时间; 5、使用优化隐藏器提高系统性能。 二、创建SQL索引...
  • 数据挖掘系列的第一篇,介绍了关于数据挖掘的基本概念以及关于数据的方方面面,建立对于数据数据挖掘的基本认识。
  • 数据建模(Data Modeling)是什么

    万次阅读 多人点赞 2019-05-23 21:33:05
    什么数据建模? 数据建模(Data modeling)是为要存储在数据库中的数据创建数据模型的过程。数据建模在概念上包括以下3个部分: 数据对象(Data objects) 不同数据对象之间的关联(The associations b...
  • 数据挖掘(DataMining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程...定义问题:清晰地定义出业务问题,确定数据挖掘的目的数据...
  • 什么数据湖?为什么需要数据湖?

    万次阅读 多人点赞 2021-05-07 23:55:31
    数据湖从企业的多个数据源获取原始数据,并且针对不同的目的,同一份原始数据还可能有多种满足特定内部模型格式的数据副本。 因此,数据湖中被处理的数据可能是任意类型的信息,从结构化数据到完全非结构化数据。 ...
  • 什么数据归一化,数据什么归一化处理

    万次阅读 多人点赞 2017-11-03 16:16:30
    目的是让大的输入,大的信号映射到小范围里面解析: (1)假设一个神经元有两个输入分别是x1和x2,权重分别是w1和w2,那么该神经元的信号加权求和为x1w1+x2w2。再假设x1属于[0~1],x2属于[100~1000],那么x2远远...
  • 什么是大数据挖掘技术

    万次阅读 2018-05-14 13:22:28
    在前几期的科普中,小编已经为大家介绍了大数据分析的相关情况,本期小编就为大家讲解大数据挖掘技术,让大家轻轻松松弄懂什么是大数据挖掘技术。什么是大数据挖掘?分享之前我还是要推荐下我自己创建的大数据学习...
  • 第二章:servlet、过滤器、监听器、拦截器配置及使用场景 第三章:讲解日志、静态资源、启动加载数据处理方式 第四章:数据库配置,jdbctemplate、mybatis、事务原理及实现 第五章:服务发布部署
  • 什么是源端口和目的端口

    万次阅读 多人点赞 2013-06-04 11:42:17
    源端口就是指本地端口 目的端口就是远程端口 一个数据包(pocket)被解封装成数据段(segment)后就会涉及到 连接上层协议的端口问题。...源端口就是本机程序用来发送数据的端口,目的端口就是对方
  • 在程序运行的数据交互中,传输的数据一般都是以数据包的形式传输。 在这个发送和接收的过程中,可能发出的数据包中有错误的数据,也可能接收的包中有错误的数据,从而导致后期的程序处理出错。 因此我们直接抓取传输...
  • 数据标准化
  • 一、数据中心的安全现状 数据中心是现代社会的信息资源库,能够...在少数别有用心的人眼中,数据中心保存的各种关键数据是无价之宝,在经济利益或其他特定目的的驱使下,这些人会利用种种手段对数据中心发动攻击或...
  • 什么ES不适合做数据存储

    万次阅读 多人点赞 2016-03-20 14:43:54
    在研究了一段时间后,发现ES不适合数据存储使用,理由如下: mapping不可改,不能改index属性。ES中以定义的mapping不能修改名字和属性,无法修改名字勉强还能接受,但无法修改属性。官方文档中介绍了几种修改...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,991,038
精华内容 796,415
关键字:

做数据的目的是什么