精华内容
下载资源
问答
  • 傅里叶变换傅里叶变换傅里叶变换傅里叶变换傅里叶变换傅里叶变换傅里叶变换傅里叶变换傅里叶变换傅里叶变换傅里叶变换傅里叶变换
  • 微分的傅里叶变换什么是jw,积分的傅里叶变换什么是1/jw? 首先说明:微分的傅里叶变换式其实就是微分器单位冲激响应的信号的傅里叶变换式。积分的傅里叶变换式其实就是积分器单位冲激响应的信号的傅里叶变换式...

    微分的傅里叶变换为什么是jw,积分的傅里叶变换为什么是1/jw?
    首先说明:微分的傅里叶变换式其实就是微分器单位冲激响应的信号的傅里叶变换式。积分的傅里叶变换式其实就是积分器单位冲激响应的信号的傅里叶变换式。

    待续,,,,,,

    展开全文
  • 1、什么傅里叶变换? 2、为什么要进行傅里叶变换? 1、什么傅里叶变换? 将时域的信号,变换到频域的正弦信号。 傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解...

    1、什么是傅里叶变换?

    将时域的信号,变换到频域的正弦信号。
    傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。

    傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

    和傅里叶变换算法对应的是反傅里叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。

    因此,可以说,傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。

    从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。 它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

    在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:

    1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;

    2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;

    3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

    4、离散形式的傅里叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;

    5、著名的卷积定理指出:傅里叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。

    正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。

    2、为什么要进行傅里叶变换?

    1、正弦信号比原信号更简单,且正弦函数很早就被充分研究,处理正弦信号比处理原信号更简单
    2、正弦信号的频率保持性:输入为正弦信号时,输出仍是正弦函数,幅度和相位可能发生变化,但频率与原信号保持一致;只有正弦信号才有这样的性质。

    展开全文
  • 傅里叶变换作用:将信号从时域变换到频域 为什么变换到频域呢? 比如两个不同频率的信号,进行叠加。输出信号使用示波器去测量的话,可能这个信号就是乱七八糟的,根本看不出是哪两个信号叠加的频率。比如...

    频域的作用

    傅里叶变换的作用:将信号从时域变换到频域

    为什么要变换到频域呢?

    enter description here
    比如有两个不同频率的信号,进行叠加。输出信号使用示波器去测量的话,可能这个信号就是乱七八糟的,根本看不出是哪两个信号叠加的频率。比如叠加信号为下图。

    enter description here
    那如果我想要将这两个频率分离,在时域上就难以进行。因此我们提高了一个维度去看信号。换个角度看世界也许会有不一样的发现。
    比如说我们在示波器上看到的波形都是在显示器上(即二维空间,有x,y坐标)我们想象一下提高一个维度,变成三维空间,这个信号就变成了体。然后从不同的角度去看他,也是同一个东西。如下图所示。正方体可以从六个面去看他,因为看的是同一个东西。所以本质是一样的,都是信号,只是换个角度而已。
    enter description here

    所以我们在三维空间中换个角度看信号,就是两个峰。如下图。
    enter description here
    下图就是代表着组成的两个频率分量。这个域就称为频域
    在这个频域上,只要做个低通或者高通滤波器,就能够实现将原本两个频率分离的效果,实现信号处理的功能。
    这个就是频域的作用!
    各个域之间的关系
    视频讲解地址

    展开全文
  • 十分简明易懂的FFT(快速傅里叶变换

    万次阅读 多人点赞 2018-08-07 11:38:56
    FFT有什么用 快速傅里叶变换 (fast Fourier transform),即利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称,简称FFT。快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。采用这种算法能使...

    FFT前言

    快速傅里叶变换 (fast Fourier transform),即利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称,简称FFT。快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。

    FFT(Fast Fourier Transformation) 是离散傅氏变换(DFT)的快速算法。即为快速傅氏变换。它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。

    ——百度百科

    FFT(Fast Fourier Transformation),中文名快速傅里叶变换,用来加速多项式乘法
    朴素高精度乘法时间O(n2)O(n^2),但FFTFFTO(nlog2n)O(n\log_2 n)的时间解决
    FFTFFT名字逼格高,也难懂,其他教程写得让人看不太懂,于是自己随便写一下

    • 建议对复数三角函数相关知识有所耳闻 (不会也无所谓)

    • 下面难懂的点我会从网上盗


    多项式的系数表示法和点值表示法

    • FFTFFT其实是一个用O(nlog2n)O(n\log_2n)的时间将一个用系数表示的多项式转换成它的点值表示的算法

    • 多项式的系数表示和点值表示可以互相转换

    系数表示法

    一个n-1次n项多项式f(x)f(x)可以表示为f(x)=i=0n1aixif(x)=\sum^{n-1}_{i=0}a_ix^i
    也可以用每一项的系数来表示f(x)f(x),即f(x)={a0,a1,a2,...,an1}f(x)=\{a_0,a_1,a_2,...,a_{n-1} \}
    这就是系数表示法,也就是平时数学课上用的方法

    点值表示法

    • 把多项式放到平面直角坐标系里面,看成一个函数

    • nn个不同的xx代入,会得出nn个不同的yy,在坐标系内就是nn个不同的点

    • 那么这nn个点唯一确定该多项式,也就是有且仅有一个多项式满足k,f(xk)=yk∀k,f(x_k)=y_k

    • 理由很简单,把nn条式子联立起来成为一个有n条方程的n元方程组,每一项的系数都可以解出来

    那么f(x)f(x)还可以用f(x)={(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),...,(xn1,f(xn1))}f(x)=\{(x_0,f(x_0)),(x_1,f(x_1)),(x_2,f(x_2)),...,(x_{n-1},f(x_{n-1}))\}来表示
    这就是点值表示法


    高精度乘法下两种多项式表示法的区别

    对于两个用系数表示的多项式,我们把它们相乘
    设两个多项式分别为A(x),B(x)A(x),B(x)
    我们要枚举AA每一位的系数与BB每一位的系数相乘
    那么系数表示法做多项式乘法时间复杂度O(n2)O(n^2)

    但两个用点值表示的多项式相乘,只需要O(n)O(n)的时间

    什么意思呢?

    设两个点值多项式分别为f(x)={(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),...,(xn1,f(xn1))}f(x)=\{(x_0,f(x_0)),(x_1,f(x_1)),(x_2,f(x_2)),...,(x_{n-1},f(x_{n-1}))\}g(x)={(x0,g(x0)),(x1,g(x1)),(x2,g(x2)),...,(xn1,g(xn1))}g(x)=\{(x_0,g(x_0)),(x_1,g(x_1)),(x_2,g(x_2)),...,(x_{n-1},g(x_{n-1}))\}
    设它们的乘积是h(x)h(x),那么h(x)={(x0,f(x0)g(x0)),(x1,f(x1)g(x1)),...,(xn1,f(xn1)g(xn1))}h(x)=\{(x_0,f(x_0)·g(x_0)),(x_1,f(x_1)·g(x_1)),...,(x_{n-1},f(x_{n-1})·g(x_{n-1}))\}

    所以这里的时间复杂度只有一个枚举的O(n)O(n)

    • 突然感觉高精度乘法能O(n)O(n)暴艹一堆题?

    • 但是朴素的系数表示法转点值表示法的算法还是O(n2)O(n^2)的,逆操作类似

    • 朴素系数转点值的算法叫DFT(离散傅里叶变换),点值转系数叫IDFT(离散傅里叶逆变换)

    • 难道高精度乘法只能O(n2)O(n^2)了吗?


    DFT前置知识&技能

    复数

    毕竟高中有所以不多说

    我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
    ——百度百科

    初中数学老师会告诉你没有1\sqrt{-1},但仅限RR
    扩展至复数集CC,定义i2=1i^2=-1,一个复数zz可以表示为z=a+bi(a,bR)z=a+bi(a,b\in R)
    其中aa称为实部bb称为虚部ii称为虚数单位

    • 在复数集中就可以用ii表示负数的平方根,如7=7i\sqrt{-7}=\sqrt{7}i

    还可以把复数看成平面直角坐标系上的一个点,比如下面


    xx轴就是实数集中的坐标轴,yy轴就是虚数单位ii

    这个点(2,3)(2,3)表示的复数就是2+3i2+3i,或者想象它代表的向量(2,3)(2,3)
    其实我们还可以自己想象 (其实没有这种表达方式) 它可以表示为(13,θ)(\sqrt{13},\theta)
    一个复数zz定义为它到原点的距离,记为z=a2+b2|z|=\sqrt{a^2+b^2}
    一个复数z=a+biz=a+bi共轭复数abia-bi(虚部取反),记为z=abi\overline{z}=a-bi

    复数的运算

    复数不像点或向量,它和实数一样可以进行四则运算
    设两个复数分别为z1=a+bi,z2=c+diz_1=a+bi,z_2=c+di,那么
    z1+z2=(a+c)+(b+d)iz_1+z_2=(a+c)+(b+d)iz1z2=(acbd)+(ad+bc)iz_1z_2=(ac−bd)+(ad+bc)i

    复数相加也满足平行四边形法则


    这张是从网上盗的

    AB+AD=ACAB+AD=AC

    复数相乘还有一个值得注意的小性质
    (a1,θ1)(a2,θ2)=(a1a2,θ1+θ2)(a_1,\theta_1)*(a_2,\theta_2)=(a_1a_2,\theta_1+\theta_2)
    模长相乘,极角相加


    DFT(离散傅里叶变换)

    • 一定注意从这里开始所有的nn都默认为22的整数次幂

    对于任意系数多项式转点值,当然可以随便取任意nnxx值代入计算
    但是暴力计算xk0,xk1,...,xkn1(k[0,n))x_k^0,x_k^1,...,x_k^{n-1}(k\in[0,n))当然是O(n2)O(n^2)的时间
    其实可以代入一组神奇xx,代入以后不用做那么多的次方运算
    这些xx当然不是乱取的,而且取这些xx值应该就是 傅里叶 的主意了

    考虑一下,如果我们代入一些xx,使每个xx若干次方等于11,我们就不用做全部的次方运算了
    ±1±1是可以的,考虑虚数的话±i±i也可以,但只有这四个数远远不够

    • 傅里叶说:这个圆圈上面的点都可以做到

    以原点为圆心,画一个半径为11单位圆
    那么单位圆上所有的点都可以经过若干次次方得到11
    傅里叶说还要把它给nn等分了,比如此时n=8n=8

    橙色点即为n=8n=8时要取的点,从(1,0)(1,0)点开始,逆时针从00号开始标号,标到77
    记编号为kk的点代表的复数值为ωnk\omega_n^k,那么由模长相乘,极角相加可知(ωn1)k=ωnk(\omega_n^1)^k=\omega_n^k
    其中ωn1\omega_n^1称为nn次单位根,而且每一个ω\omega都可以求出 (我三角函数不好)
    ωnk=coskn2π+isinkn2π\omega_n^k=\cos{k\over n}2π+i\sin{k\over n} 2π

    或者说也可以这样解释这条式子


    注意sin2θ+cos2θ=1sin^2\theta+cos^2\theta=1什么的,就容易理解了

    那么ωn0,ωn1,...,ωnn1\omega^0_n,\omega^1_n,...,\omega^{n-1}_n即为我们要代入的x0,x1,...,xn1x_0,x_1,...,x_{n-1}


    单位根的一些性质

    FFTFFT的过程中需要用到ω\omega的一些性质

    ωnk=ω2n2k\omega^k_n=\omega^{2k}_{2n}

    • 它们表示的点(或向量)表示的复数是相同的

    • 证明

    • ωnk=coskn2π+isinkn2π=cos2k2n2π+isin2k2n2π=ω2n2k\omega^k_n=cos{k\over n}2π+isin{k\over n} 2π=cos{2k\over 2n}2π+isin{2k\over 2n} 2π=\omega^{2k}_{2n}

    ωnk+n2=ωnk\omega^{k+{n \over 2}}_n=-\omega_n^k

    • 它们表示的点关于原点对称,所表示的复数实部相反,所表示的向量等大反向

    • 证明

    • ωnn2=cosn2n2π+isinn2n2π=cosπ+isinπ=1\omega^{n\over 2}_n=cos{{n\over 2}\over n}2\pi+isin{{n\over 2}\over n}2\pi=cos\pi+isin\pi=-1

    • (这个东西和eix=cosx+isinxe^{ix}=cosx+isinxeiπ+1=0e^{i\pi}+1=0有点关系,我不会就不讲了

    ωn0=ωnn\omega^0_n=\omega^n_n

    • 都等于11,或1+0i1+0i

    FFT(快速傅里叶变换)

    虽然DFTDFT搞出来一堆很牛逼ω\omega作为代入多项式的xx
    但只是代入这类特殊xx值法的变换叫做DFTDFT而已,还是要代入单位根暴力计算

    • DFT还是暴力O(n2)O(n^2)

    DFTDFT可以分治来做,于是 FFT(快速傅里叶变换) 就出来了
    首先设一个多项式A(x)A(x)
    A(x)=i=0n1aixi=a0+a1x+a2x2+...+an1xn1A(x)=\sum^{n-1}_{i=0}a_ix^i=a_0+a_1x+a_2x^2+...+a_{n-1}x^{n-1}

    A(x)A(x)下标的奇偶性A(x)A(x)分成两半,右边再提一个xx

    A(x)=(a0+a2x2+...+an2xn2)+(a1x+a3x3+...+an1xn1)A(x)=(a_0+a_2x^2+...+a_{n-2}x^{n-2})+(a_1x+a_3x^3+...+a_{n-1}x^{n-1})

    =(a0+a2x2+...+an2xn2)+x(a1+a3x2+...+an1xn2)=(a_0+a_2x^2+...+a_{n-2}x^{n-2})+x(a_1+a_3x^2+...+a_{n-1}x^{n-2})

    两边好像非常相似,于是再设两个多项式A1(x),A2(x)A_1(x),A_2(x),令

    A1(x)=a0+a2x+a4x2+...+an2xn21A_1(x)=a_0+a_2x+a_4x^2+...+a_{n-2}x^{{n\over 2}-1}A2(x)=a1+a3x+a5x2+...+an1xn21A_2(x)=a_1+a_3x+a_5x^2+...+a_{n-1}x^{{n \over 2}-1}

    比较明显得出
    A(x)=A1(x2)+xA2(x2)A(x)=A_1(x^2)+xA_2(x^2)

    再设k<n2k<{n\over 2},把ωnk\omega^k_n作为xx代入A(x)A(x)(接下来几步变换要多想想单位根的性质)

    A(ωnk)=A1((ωnk)2)+ωnkA2((ωnk)2)A(\omega^k_n)=A_1((\omega^k_n)^2)+\omega^k_nA_2((\omega^k_n)^2)=A1(ωn2k)+ωnkA2(ωn2k)=A1(ωn2k)+ωnkA2(ωn2k)=A_1(\omega^{2k}_n)+\omega^k_nA_2(\omega^{2k}_n)=A_1(\omega^k_{n\over2})+\omega^k_nA_2(\omega^k_{n\over 2})

    那么对于A(ωnk+n2)A(\omega^{k+{n\over2}}_n)的话,代入ωnk+n2\omega^{k+{n \over 2}}_n
    A(ωnk+n2)=A1(ωn2k+n)+ωnk+n2A2(ωn2k+n)A(\omega^{k+{n\over 2}}_n)=A_1(\omega^{2k+n}_n)+\omega^{k+{n\over 2}}_nA_2(\omega^{2k+n}_n)=A1(ωn2kωnn)ωnkA2(ωn2kωnn)=A_1(\omega^{2k}_n\omega^n_n)-\omega^k_nA_2(\omega^{2k}_n\omega^n_n)=A1(ωn2k)ωnkA2(ωn2k)=A1(ωn2k)ωnkA2(ωn2k)=A_1(\omega^{2k}_n)-\omega^k_nA_2(\omega^{2k}_n)=A_1(\omega^k_{n\over2})-\omega^k_nA_2(\omega^k_{n\over2})

    • 发现了什么?

    A(ωnk)A(\omega^k_n)A(ωnk+n2)A(\omega^{k+{n\over2}}_n)两个多项式后面一坨东西只有符号不同
    就是说,如果已知A1(ωn2k)A_1(\omega^k_{n\over 2})A2(ωn2k)A_2(\omega^k_{n\over 2})的值,我们就可以同时知道A(ωnk)A(\omega^k_n)A(ωnk+n2)A(\omega^{k+{n\over2}}_n)的值
    现在我们就可以递归分治来搞FFTFFT

    每一次回溯时只扫当前前面一半的序列,即可得出后面一半序列的答案
    n==1n==1时只有一个常数项,直接returnreturn
    时间复杂度O(nlog2n)O(n\log_2n)


    IFFT(快速傅里叶逆变换)

    想一下,我们不仅要会FFTFFT,还要会IFFT(快速傅里叶逆变换)
    我们把两个多项式相乘 (也叫求卷积),做完两遍FFTFFT也知道了积的多项式的点值表示
    可我们平时用系数表示的多项式,点值表示没有意义

    • 怎么把点值表示的多项式快速转回系数表示法?

    • IDFTIDFT暴力O(n2)O(n^2)做?其实也可以用FFTFFTO(nlog2n)O(n\log_2n)的时间搞

    你有没有想过为什么傅里叶是把ωnk\omega^k_n作为xx代入而不是别的什么数?
    原因是有的但是有我也看不懂
    由于我是沙雕所以只用记住一个结论

    • 一个多项式在分治的过程中乘上单位根的共轭复数,分治完的每一项除以nn即为原多项式的每一项系数

    意思就是说FFTFFTIFFTIFFT可以一起搞


    朴素版FFT板子

    c++c++有自带的复数模板complexcomplex
    a.real()a.real()即表示复数aa的实部

    #include<complex>
    #define cp complex<double>
    
    void fft(cp *a,int n,int inv)//inv是取共轭复数的符号
    {
        if (n==1)return;
        int mid=n/2;
        static cp b[MAXN];
        fo(i,0,mid-1)b[i]=a[i*2],b[i+mid]=a[i*2+1];
        fo(i,0,n-1)a[i]=b[i];
        fft(a,mid,inv),fft(a+mid,mid,inv);//分治
        fo(i,0,mid-1)
        {
            cp x(cos(2*pi*i/n),inv*sin(2*pi*i/n));//inv取决是否取共轭复数
            b[i]=a[i]+x*a[i+mid],b[i+mid]=a[i]-x*a[i+mid];
        }
        fo(i,0,n-1)a[i]=b[i];
    }
    

    两个多项式a,ba,b相乘再转系数多项式cc,通常只用打这么一小段

    	cp a[MAXN],b[MAXN];
    	int c[MAXN];
    	fft(a,n,1),fft(b,n,1);//1系数转点值
    	fo(i,0,n-1)a[i]*=b[i];
    	fft(a,n,-1);//-1点值转系数
    	fo(i,0,n-1)c[i]=(int)(a[i].real()/n+0.5);//注意精度
    

    很明显,FFT只能处理nn22的整数次幂的多项式
    所以在FFTFFT前一定要把nn调到22的次幂

    这个板子看着好像很优美,但是

    递归常数太大,要考虑优化…


    FFTの优化——迭代版FFT

    这个图也是盗的

    这个很容易发现点什么吧?

    • 每个位置分治后的最终位置为其二进制翻转后得到的位置

    这样的话我们可以先把原序列变换好,把每个数放在最终的位置上,再一步一步向上合并
    一句话就可以O(n)O(n)预处理第ii位最终的位置rev[i]rev[i]

    fo(i,0,n-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
    

    至于蝴蝶变换它死了其实是我不会


    真·FFT板子

    void fft(cp *a,int n,int inv)
    {
        int bit=0;
        while ((1<<bit)<n)bit++;
        fo(i,0,n-1)
        {
            rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
            if (i<rev[i])swap(a[i],a[rev[i]]);//不加这条if会交换两次(就是没交换)
        }
        for (int mid=1;mid<n;mid*=2)//mid是准备合并序列的长度的二分之一
        {
        	cp temp(cos(pi/mid),inv*sin(pi/mid));//单位根,pi的系数2已经约掉了
            for (int i=0;i<n;i+=mid*2)//mid*2是准备合并序列的长度,i是合并到了哪一位
    		{
                cp omega(1,0);
                for (int j=0;j<mid;j++,omega*=temp)//只扫左半部分,得到右半部分的答案
                {
                    cp x=a[i+j],y=omega*a[i+j+mid];
                    a[i+j]=x+y,a[i+j+mid]=x-y;//这个就是蝴蝶变换什么的
                }
            }
        }
    }
    

    这个板子好像不是那么好背
    至少这个板子已经很优美


    FFT后记

    本人版权意识薄弱……

    NTTNTT我来了

    展开全文
  • 实际项目中,对一个图像进行离散傅里叶变换有什么作用?对一个图像做了离散傅里叶变换,我们要理解的是什么
  • 离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换离散傅里叶变换
  • 傅里叶变换.pdf傅里叶变换.pdf傅里叶变换.pdf傅里叶变换.pdf
  • 傅里叶变换到加窗傅里叶变换

    万次阅读 多人点赞 2017-12-10 14:00:49
    傅里叶变换到加窗傅里叶变换我们都做了什么
  • 傅里叶变换 一维离散傅里叶变换

    万次阅读 热门讨论 2019-11-06 21:08:43
    DFT:(Discrete Fourier Transform)离散傅里叶变换傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列...
  • 傅里叶变换&短时傅里叶变换&小波变换

    万次阅读 多人点赞 2016-05-03 11:26:36
    傅里叶变换&短时傅里叶变换&小波变换
  • 离散傅里叶级数,离散傅里叶变换及逆傅里叶变换的实现。
  • 傅里叶变换(二维离散傅里叶变换)

    万次阅读 多人点赞 2018-06-15 22:22:35
    离散二维傅里叶变换一常用性质: 可分离性、周期性和共轭对称性、平移性、旋转性质、卷积与相关定理;(1)可分离性: 二维离散傅里叶变换DFT可分离性的基本思想是DFT可分离为两次一维DFT。因此可以用通过计算两次...
  • 傅里叶变换

    千次阅读 2019-05-26 19:15:23
    本章所有的滤波都是通过傅里叶变换在频率域中实现的...傅里叶变换在诸如图像增强、图像复原、图像数据压缩等方面起着很重要的作用 傅里叶变换(DFT): 傅里叶变换的直流分量:频率域原点处变换的值[F(0,0)] ...
  • 傅里叶变换 二维离散傅里叶变换

    万次阅读 热门讨论 2019-11-07 15:41:28
    DFT:(Discrete Fourier Transform)离散傅里叶变换傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列...
  • 傅里叶变换有什么用?

    万次阅读 2013-07-16 09:07:42
    所示: 图2.2 理想RLC电路相互作用的时域行为     时域频域的关系 时域分析与频域分析是对模拟信号的两个观察面。 时域分析 是以时间轴为坐标表示动态信号的关系;频域分析是把信号变为以频率轴为坐标表示出来。...
  • 傅里叶变换(一)——认识傅里叶变换

    万次阅读 多人点赞 2018-05-29 22:36:07
    注:本文为博主参考书籍和他人文章并加上自己的理解所编,作为学习笔记使用并将其分享出去供大家学习。若涉及到引用您的文章内容请评论区告知!...一、什么傅里叶变换   时域及频域  在讲...
  • 目录 傅里叶变换 计算傅里叶变换 傅里叶变换 鉴于这种想法,任何信号,当然任何周期性信号,都可以由一系列正弦曲线组成,我们将开始从级数(Series)的概念转向连续信号的...这种变换被称为什么?它叫做傅里...
  • 傅里叶变换 快速傅里叶变换 VC++ MFC VC6程序
  • 本帖子为本人基于网络资源整理的笔记,很大部分来源于帖子: ...什么傅里叶变换 高等数学中一般是从周期函数的傅里叶级数开始介绍的,这里也不例外。简单的说,从高中我们就学过一个理想的波可...
  • 连续傅里叶变换 傅里叶变换的性质 离散傅里叶变换(DFT) 从前面我们已经知道,非周期连续函数傅里叶变换如下 F(ω)=∫−∞+∞f(t)e−iωtdt F(\omega)=\int ^{+\infty}_{-\infty}f(t)e^{-i\omega t}dt F(ω)=∫−...
  • DFT:(Discrete Fourier Transform)离散傅里叶变换傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列...
  • OpenCV中的图像变换——傅里叶变换

    万次阅读 多人点赞 2021-07-22 20:11:24
    这篇博客将介绍OpenCV中的图像变换,包括用Numpy、OpenCV计算图像的傅里叶变换,以及傅里叶变换的一些应用;
  • 在信号处理领域,存在诸多变换,比如标题中的五个变换。本文将对这五个变换进行介绍和比较。在开始之前,我们需要先理清什么是...通常傅里叶变换只适合处理平稳信号,对于非平稳信号,由于频率特性会随时间变化,为了
  • 学习DIP第7天,图像傅里叶变换 转载请标明出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意。。。。。。。。   ...
  • 傅里叶变换、短时傅里叶变换、小波变换 https://www.cnblogs.com/warmbeast/p/7809286.html

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 41,522
精华内容 16,608
关键字:

傅里叶变换有什么作用