精华内容
下载资源
问答
  • 社会科学哲学的最新发展表明,方法整体主义应仅限于因果解释,应以本体个人主义作为补充,本体个人主义需要对社会整体如何从个人中衍生出来加以说明。 结构现实主义缺乏这种解释,因为它把国家作为经验的...
  • 信息论文

    2012-05-07 20:09:33
    阐述了当前行业网络信息安全存在的主要问题,针对这些问题提出了加强行业网络信息安全系统建设的设想
  • Atitit 三”(系统、控制、信息   1. 系统的创始人是美籍奥地利生物学家贝塔朗菲1 2. 信息是由美国数学家香农创立的,2 3. 什么是控制? 2     1. 系统的创始人是美籍奥地利生物学家...

    Atitit 三论”(系统论、控制论、信息论

     

    1. 系统论的创始人是美籍奥地利生物学家贝塔朗菲1

    2. 信息论是由美国数学家香农创立的,2

    3. 什么是控制论? 2

     

     

    1. 系统论的创始人是美籍奥地利生物学家贝塔朗菲

    。系统论要求把事物当作一个整体或系统来研究,并用数学模型去描述和确定系统的结构和行为。所谓系统,即由相互作用和相互依赖的若干组成部分结合成的、具有特定功能的有机整体;而系统本身又是它所从属的一个更大系统的组成部分。贝塔朗菲旗帜鲜明地提出了系统观点、动态观点和等级观点。指出复杂事物功能远大于某组成因果链中各环节的简单总和,认为一切生命都处于积极运动状态,有机体作为一个系统能够保持动态稳定是系统向环境充分开放,获得物质、信息、能量交换的结果。系统论强调整体与局部、局部与局部、系统本身与外部环境之间互为依存、相互影响和制约的关系,具有目的性、动态性、有序性三大基本特征。
    作者:: 绰号:老哇的爪子 ( 全名::Attilax Akbar Al Rapanui 阿提拉克斯 阿克巴 阿尔 拉帕努伊 ) 

    汉字名:艾提拉(艾龙)   EMAIL:1466519819@qq.com

    转载请注明来源: http://blog.csdn.net/attilax


      控制论是著名美国数学家维纳(Wiener N)

    同他的合作者自觉地适应近代科学技术中不同门类相互渗透与相互融合的发展趋势而创始的。它摆脱了牛顿经典力学和拉普拉斯机械决定论的束缚,使用新的统计理论研究系统运动状态、行为方式和变化趋势的各种可能性。控制论是研究系统的状态、功能、行为方式及变动趋势,控制系统的稳定,揭示不同系统的共同的控制规律,使系统按预定目标运行的技术科学。

    2. 信息论是由美国数学家香农创立的,

     

    它是用概率论和数理统计方法,从量的方面来研究系统的信息如何获取、加工、处理、传输和控制的一门科学。信息就是指消息中所包含的新内容与新知识,是用来减少和消除人们对于事物认识的不确定性。信息是一切系统保持一定结构、实现其功能的基础。狭义信息论是研究在通讯系统中普遍存在着的信息传递的共同规律、以及如何提高各信息传输系统的有效性和可靠性的一门通讯理论。广义信息论被理解为使运用狭义信息论的观点来研究一切问题的理论。信息论认为,系统正是通过获取、传递、加工与处理信息而实现其有目的的运动的。信息论能够揭示人类认识活动产生飞跃的实质,有助于探索与研究人们的思维规律和推动与进化人们的思维活动。

     

    3. 什么是控制论?

    根据创始人维纳(Nobert Wiener)的定义,控制论(Cybernetics)是“关于动物和机器中控制和通信的科学”,简言之,控制论的中心问题就是控制通信

     

     

    首先明确什么是机器?不正式的说,机器是这么一个“东西”,它具有一系列状态以及一个(或多个)变换,机器的状态会根据它的变换在某种条件下发生转移。(所谓“某种条件”,一般情况下就是外界对机器的影响,即输入)

     

     

    由此可见控制论研究对象的范围之广,它将世间的物质看做具有一集状态的能动系统,并研究这类系统的性质。而研究的目的正如这个学科的名字一般,是为了更好的“控制”(cybernetics这个词来自希腊语,本身有“掌舵”的意思),换言之,控制论实际上就是研究“如何达到目的”的学科。

     

     

    (4)为什么人人都该学点控制论_silverbullettt_新浪博客.html

     

     

    主要技术就是反馈机制。

     

     

     

     

    控制论与科学方法论

    金观涛老师的著作,中西结合,通俗易懂,是一本很好的控制论初级读物,对反馈、稳态以及称球问题均有较深入的讨论。

    控制论导论

    个人认为最好的入门书,阐述控制论基本原理的同时巧妙地避开了深奥的数学证明。作者艾什比(Ross W. Ashby)教授是一位医学家,因此这本书体现出作者对生物系统尤其感兴趣。另外本书蕴含许多深刻的道理,令我大为受益。

    Communication Theory of Secrecy Systems

    这是一篇非常重要的论文……作者申农。

    系统化思维导论

    借回来有一阵子了,但是一直没读完……作者就是大名鼎鼎的温伯格(Gerald M. Weinberg)。之所以推荐这本书,原因是书中的内容和原理与控制论密切相关,并且温伯格本人应该接受过艾什比的教导(见此书前言)。

    系统设计的一般原理

    上一本书的姊妹篇,主要介绍设计稳定系统的一般原理。

     

     

    “三论”(系统论、控制论、信息论)及“新三论”各是什么,有何区别?_百度知道.html

     

    atiend

    展开全文
  • 反对博弈-研究论文

    2021-06-09 14:43:23
    但社会科学界没有放弃经典的博弈,而是以“行为博弈”的名义展开救援行动。 它的主要工具是提出与博弈预测的系统偏差,例如由角色类型引起的偏差。 其他偏差据称来自认知过载或限制。 行为博弈的基本思想...
  • 博弈 / 对策

    万次阅读 多人点赞 2019-04-22 17:15:05
    1 引言 社会及经济的发展带来了人与人之间或团体之间的竞争及矛盾,应用科学的方法来 解决这样的问题开始于 17 世纪的科学家,如 C.,Huygens 和 W.,Leibnitz 等。...对策亦称竞赛或博弈。...

    1 引言 

    社会及经济的发展带来了人与人之间或团体之间的竞争及矛盾,应用科学的方法来 解决这样的问题开始于 17 世纪的科学家,如 C.,Huygens 和 W.,Leibnitz 等。现代对策论起源于 1944 年 J.,Von Neumann 和 O.,Morgenstern 的著作《Theory of Games and Economic Behavior》。

    对策论亦称竞赛论或博弈论。是研究具有斗争或竞争性质现象的数学理论和方法。 一般认为,它既是现代数学的一个新分支,也是运筹学中的一个重要学科。对策论发展 的历史并不长,但由于它所研究的现象与人们的政治、经济、军事活动乃至一般的日常 生活等有着密切的联系,并且处理问题的方法又有明显特色。所以日益引起广泛的注意。

    深度学习的生成对抗网络的目标函数就是这个原理:二人零和博弈思想,用极大极小原理来判断某个对策是否有鞍点

    在日常生活中,经常看到一些具有相互之间斗争或竞争性质的行为。具有竞争或对抗性质的行为称为对策行为。在这类行为中。参加斗争或竞争的各方各自具有不同的目标和利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。对策论就是研究对策行为中斗争各方是否 存在着最合理的行动方案,以及如何找到这个合理的行动方案的数学理论和方法。 

    目录

    1 引言 

    2 对策问题           例题1 囚徒的困境

    2.1  对策的基本要素     (i)局中人  (ii)策略集(iii) 赢得函数(支付函数)  

    2.2 零和对策(矩阵对策)           例题2  

    什么是鞍点    最优纯策略 

    极大极小原理-----判断某个对策是否有鞍点       对策问题的多个解之间的关系(两条性质)

    3 零和对策的混合策略 

    3.1 零和对策的混合策略               3.2 混合策略对策问题的鞍点           例题3 

    3.3 关于对策解集性质的主要结果的三个定理

    4 零和对策的线性规划解法  例题4 

     5 二人非常数和对策 

    5.1 常数和对策                    5.2 纯策略问题 ---分析囚徒困境

    5.3 双矩阵对策   5.4 Nash平衡点 / 纳什均衡

    5.5 混合对策问题 

    (1) 混合对策问题的基本概念:赢得值         (2)混合对策问题的求解方法        例题5           习题


    2 对策问题 

    对策问题的特征是参与者为利益相互冲突的各方,其结局不取决于其中任意一方的努力而是各方所采取的策略的综合结果。 先考察一个实际例子。 

    例题1 囚徒的困境

     警察同时逮捕了两人并分开关押,逮捕的原因是他们持有大量伪币,警方怀疑他们伪造钱币,但没有找到充分证据,希望他们能自己供认,这两个 人都知道:如果他们双方都不供认,将被以持有大量伪币罪被各判刑 18 个月;如果双 方都供认伪造了钱币,将各被判刑 3 年;如果一方供认另一方不供认,则供认方将被从 宽处理而免刑,但另一方面将被判刑 7 年。将嫌疑犯 A、B 被判刑的几种可能情况列于表 1。

    表 1 中每对数字表示嫌疑犯 A、B 被判刑的年数。如果两名疑犯均担心对方供认并希 望受到最轻的惩罚,最保险的办法自然是承认制造了伪币。     从这一简单实例中可以看出对策现象中包含有的几个基本要素。

    2.1  对策的基本要素 

    (i)局中人 

    (ii)策略集

    (iii)赢得函数(支付函数) 

    本节我们只讨论有两名局中人的对策问题,其结果可以推广到一般的对策模型中 去。 

    2.2 零和对策(矩阵对策)

    零和对策是一类特殊的对策问题。在这类对策中,只有两名局中人,每个局中人都 只有有限个策略可供选择。在任一纯局势下,两个局中人的赢得之和总是等于零,即双 方的利益是激烈对抗的。 

    例题2  

     

    什么是鞍点

    最优纯策略

    极大极小原理-----判断某个对策是否有鞍点

    给定一个对策G ,如何判断它是否具有鞍点呢?为了回答这一问题,先引入下面 的极大极小原理。 

        上述定理给出了对策问题有稳定解(简称为解)的充要条件

    对策问题的多个解之间的关系(两条性质)

      当对策问题有解时, 其解可以不唯一,当解不唯一时,解之间的关系具有下面两条性质: 

    3 零和对策的混合策略 

    具有稳定解的零和问题是一类特别简单的对策问题,它所对应的赢得矩阵存在鞍 点,任一局中人都不可能通过自己单方面的努力来改进结果。然而,在实际遇到的零和对策中更典型的是 μ + ν ≠ 0 的情况。由于赢得矩阵中不存在鞍点,此时在只使用纯策略的范围内,对策问题无解

    3.1 零和对策的混合策略

    3.2 混合策略对策问题的鞍点

     使用纯策略的对策问题(具有稳定解的对策问题)可以看成使用混合策略的对策问 题的特殊情况,相当于以概率 1 选取其中某一策略,以概率 0 选取其余策略。

    例题3 

     

    3.3 关于对策解集性质的主要结果的三个定理

    4 零和对策的线性规划解法

    例题4 

    编写程序如下: 

    clear 
    a=[1/3,1/2,-1/3;-2/5,1/5,-1/2;1/2,-3/5,1/3];b=10; 
    a=a+b*ones(3);   %把赢得矩阵的每个元素变成大于0的数 
    [x0,u]=linprog(ones(3,1),-a',-ones(3,1),[],[],zeros(3,1)); 
    x=x0/u,u=1/u-b 
    [y0,v]=linprog(-ones(3,1),a,ones(3,1),[],[],zeros(3,1)); 
    y=y0/(-v),v=1/(-v)-b 

    下面我们使用式(2)和(3),利用 LINGO 编程求例 4 的解。LINGO 程序如下: 

    model: 
    sets: 
    player1/1..3/:x; 
    player2/1..3/:y; 
    game(player1,player2):c; 
    endsets 
    data: 
    ctrl=?; !ctrl取1求局中人1的策略,ctrl取0求局中人2的策略; 
    c=0.3333333 0.5 -0.3333333 
    -0.4 0.2 -0.5 
    0.5 -0.6 0.3333333; 
    enddata 
    max=u*ctrl-v*(1-ctrl); 
    @free(u);@free(v); 
    @for(player2(j):@sum(player1(i):c(i,j)*x(i))>u); 
    @for(player1(i):@sum(player2(j):c(i,j)*y(j))<v); 
    @sum(player1:x)=1; 
    @sum(player2:y)=1; 
    end 

    由定理4知,混合对策问题的求解问题可以转化为求不等式约束的可行点,而 LINGO软件很容易做到这一点。我们编写如下Lingo程序求解上述问题。 

    model: 
    sets: 
    player1/1..3/:x; 
    player2/1..3/:y; 
    game(player1,player2):c; 
    endsets 
    data: 
    c=0.3333333 0.5 -0.3333333 
      -0.4 0.2 -0.5 
      0.5 -0.6 0.3333333; 
    enddata 
    @free(u); 
    u=@sum(game(i,j):c(i,j)*x(i)*y(j)); 
    @for(player1(i):@sum(player2(j):c(i,j)*y(j))<u); @for(player2(j):@sum(player1(i):c(i,j)*x(i))>u); 
    @sum(player1:x)=1; 
    @sum(player2:y)=1; 
    end 

     

     5 二人非常数和对策 

    5.1 常数和对策

    所谓常数和对策是指局中人I和局中人II所赢得的值之和为一个常数。显然,二人零和对策是二人常数和对策的特例,即常数为零。 对于二人常数和对策,有纯策略对策混合策略对策,其求解方法与二人零和对策是相同的。 二人非常数和对策也称为双矩阵对策。也有纯策略对策和混合策略对策两种策略。

    5.2 纯策略问题 ---分析囚徒困境

    例1给出了典型的二人非常数和对策,每人的赢得矩阵是不相同的,因此称为双矩阵对策

    问题分析: 这是一个二人非常数和对策问题。从表面上看,两犯罪嫌疑人拒不供认,只能被判18个月徒刑,结果是最好的。但仔细分析,却无法做到这一点。因为犯罪嫌疑人A如 果采用不供认策略,他可能被判刑的刑期为18个月或7年,而犯罪嫌疑人B 可能判的刑 期为0或18个月。而 A选择供认,他被判的刑期为0或3年,此时,犯罪嫌疑人B 可能判 的刑期为3年或7年。因此,犯罪嫌疑人 A一定选择供认。基于同样的道理,犯罪嫌疑 人B 也只能选择供认。 选择供认是他们最好的选择,各自被判3年。

    5.3 双矩阵对策 

    5.4 Nash平衡点 / 纳什均衡

    5.5 混合对策问题 

    如果不存在使式(4)成立的对策,则需要求混合对策。类似于二人零和对策情况, 需要给出混合对策的最优解。 

    (1) 混合对策问题的基本概念:赢得值

    对于混合对策问题有如下定理

    (2)混合对策问题的求解方法 

    由定义6可知,求解混合对策就是求非合作对策的平衡点,进一步由定理8得到, 求解非合作对策的平衡点,就是求解满足不等式约束(5)的可行点。因此,混合对策问题的求解问题就转化为求不等式约束(5)的可行点,而LINGO软件可以很容易做到 这一点。

    例题5  

    有甲、乙两支游泳队举行包括三个项目的对抗赛。这两支游泳队各有一名健 将级运动员(甲队为李,乙队为王),在三个项目中成绩都很突出,但规则准许他们每 人只能参加两项比赛,每队的其他两名运动员可参加全部三项比赛。已知各运动员平时 成绩(秒)见表 3。 

     

    clc,clear 
    a=[59.7 63.2 57.1 58.6 61.4 64.8
     67.2 68.4 63.2 61.5 64.7 66.5 
    74.1 75.5 70.3 72.6 73.4 76.9]; 
    m=3;n=3;kk=3;T=1000; 
    sc1=[5:-2:1,zeros(1,3)]; %1-6 名的得分 
    sc2=repmat(sc1,kk,1); 
    for i=1:m     
        for j=1:n         
            b=a;         
            b(i,3)=T;b(j,4)=T; %不参加比赛,时间成绩取为充分大          
            [b,ind]=sort(b,2); %对 b 的每一行进行排序         
            for k=1:m             
                sc2(k,ind(k,:))=sc1; %计算得分         
            end         
            A_sc(i,j)=sum(sum(sc2(:,1:m)));  %统计得分 
            B_sc(i,j)=sum(sum(sc2(:,m+1:end)));     
        end    
    end 
    A_sc,B_sc 
    fid=fopen('txt2.txt','w'); 
    fprintf(fid,'%f\n',A_sc'); 
    fwrite(fid,'~','char');       %往纯文本文件中写 LINGO 数据的分割符 fprintf(fid,'%f\n',B_sc'); 
    fclose(fid); 

    按照定理8,求最优混合策略,就是求不等式约束(5)的可行解,写出相应的LINGO 程序如下:

    model: 
    sets: 
    pa/1..3/:x; 
    pb/1..3/:y; 
    link(pa,pb):c1,c2; 
    endsets 
    data: 
    c1=@file(txt2.txt); 
    c2=@file(txt2.txt); 
    enddata 
    v1=@sum(link(i,j):c1(i,j)*x(i)*y(j)); 
    v2=@sum(link(i,j):c2(i,j)*x(i)*y(j)); 
    @for(pa(i):@sum(pb(j):c1(i,j)*y(j))<v1); 
    @for(pb(j):@sum(pa(i):c2(i,j)*x(i))<v2); 
    @sum(pa:x)=1;@sum(pb:y)=1; 
    @free(v1);@free(v2); 
    end 

     

    习题

     

    展开全文
  • 广义相对与狭义相对的区别

    千次阅读 2018-08-19 16:19:50
    相对分为广义相对和狭义相对 广义相对的基本概念解释: 广义相对是爱因斯坦继狭义相对之后,深入研究引力理论,于1913年提出的引力场的相对理论。这一理论完全不同于牛顿的引力,它把引力场归结...

    转载自:  https://wenwen.sogou.com/z/q733562949.htm

    相对论分为广义相对论和狭义相对论 
    广义相对论的基本概念解释: 
    
    广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。 
    
    如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。 
    
    进一步说,这个理论是建立在等效原理广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。 
    
    我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。 
    
    在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。 
    
    广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。 
    
    广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射脉冲星类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。 
    
    爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广义相对论不一样。”确实,广义相对论比狭义相对论包含了更加深刻的思想,这一全新的引力理论至今仍是一个最美好的引力理论。没有大胆的革新精神和不屈不挠的毅力,没有敏锐的理论直觉能力和坚实的数学基础,是不可能建立起广义相对论的。伟大的科学家汤姆逊曾经把广义相对论称作为人类历史上最伟大的成就之一。 
    
    狭义相对论就是 
    狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。 
    四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。 
    四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。 
    相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。 
    物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。 
    伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。 
    著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。 
    由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。
    
    展开全文
  • 在这篇探索性论文中,目的是创建一个框架,该框架可以支持metacybernetics,解释不同控制顺序之间的关系。 该框架建立在代理理论的基础上,代理理论具有子结构和超结构两个维度。 子结构对稳定性感兴趣,与更高...
  • 论文研究- 系统科学体系.pdf, 现在,人们在...这里最引人注目对我们的研究具有指导意义的是钱学森同志的观点。在他看来,所谓系统科学,是由系统工程这类工程技术,系统工程的理论方法,象运筹学、控制和信息这类
  • 博弈

    千次阅读 2020-06-18 22:04:09
    博弈考虑游戏中的个体的预测行为和实际行为,研究它们的优化策略。生物学家使用博弈理论来理解和预测进化的某些结果。 博弈已经成为经济学的标准分析工具之一。在金融学、证券学、生物学、经济学、国际...

    博弈论(Game Theory),也称对策论或竞赛论

    博弈论简介

      博弈论(Game Theory),博弈论是指研究多个个体或团队之间在特定条件制约下的对局中利用相关方的策略,而实施对应策略的学科。有时也称为对策论,或者赛局理论,是研究具有斗争或竞争性质现象的理论和方法,它是应用数学的一个分支,既是现代数学的一个新分支,也是运筹学的一个重要学科。目前在生物学、经济学、国际关系学、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈(Game))间的相互作用.

      博弈论考虑博弈中的个体的预测行为和实际行为,并研究它们的优化策略。表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。其中一个有名有趣的应用例子是囚徒困境悖论(Prisoner's dilemma)。

      具有竞争或对抗性质的行为成为博弈行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。比如日常生活中的下棋,打牌等。博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。

      生物学家使用博弈理论来理解和预测进化论的某些结果。例如:John Maynard Smith 和George R. Price在1973年发表于Nature上的论文中提出的“evolutionarily stable strategy”的这个概念就是使用了博弈理论。还可以参见演化博弈理论evolutionary game theory)和行为生态学behavioral ecology)。

      博弈论也应用于数学的其他分支,如概率论统计线性规划等。

    博弈论的发展

      博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。

      对于博弈论的研究,开始于策墨洛(Zermelo,1913)、波雷尔(Borel,1921)及冯·诺伊曼(von Neumann, 1928),后来由冯·诺伊曼奥斯卡·摩根斯坦(von Neumann and Morgenstern,1944,1947)首次对其系统化和形式化(参照Myerson, 1991)。随后约翰·福布斯·纳什(John Forbes Nash Jr., 1950, 1951)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。此外,塞尔顿哈桑尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的的学科。

      通常认为,现代经济博弈论是在20世纪50年代由匈牙利/美国著名数学家冯·诺依曼von Neumann)的经济学家奥斯卡·摩根斯坦Oscar Morgenstern)引入经济学的,目前已成为经济分析的主要工具之一,对产业组织理论委托代理理论信息经济学等经济理论的发展做出了非常重要的贡献。1994年的诺贝尔经济学奖颁发给了约翰·纳什John Nash)等三位在博弈论研究中成绩卓著的经济学家,1996年的诺贝尔经济学奖又授予在博弈论的应用方面有着重大成就的经济学家。由于博弈论重视经济主体之间的相互联系及其辨证关系,大大拓宽了传统经济学的分析思路,使其更加接近现实市场竞争,从而成为现代微观经济学的重要基石,也为现代宏观经济学提供了更加坚实的微观基础。

      当代博弈论的“三大家”和“四君子”

      "三大家" 包括约翰·福布斯·纳什约翰·C·海萨尼以及莱因哈德·泽尔腾。这三人同时因为他们对博弈论的突出贡献而获得1994年的瑞典银行经济学奖(也称诺贝尔经济学奖)。

      "四君子" 包括罗伯特·J·奥曼肯·宾摩尔戴维·克瑞普斯以及阿里尔·鲁宾斯坦

    博弈论的基本概念

      博弈要素:

      (1)局中人(players):在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。

      (2)策略(strategies):一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。

      (3)得失(payoffs):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。

      (4)次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。

      (5)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。

      纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人B仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。

      这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≥偶对(a*,b)。

      对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略 b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。

      有了上述定义,就立即得到纳什定理

      任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。

      纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。

      纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。

      但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。

      塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。

    博弈的类型

      合作博弈非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。

      静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;

      动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈

      完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间收益函数有准确的信息。

      不完全信息博弈是指如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈

      目前经济学家们现在所谈的博弈论一般是指非合作博弈,由于合作博弈论非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈完全信息动态博弈不完全信息静态博弈不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡subgame perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。

      博弈论还有很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型,等等。

    博弈论的意义

      博弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产生影响的其他因素,从而分析其结果。

      基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型,利用这三种表述形式,可以研究形形色色的问题。因此,它被称为“社会科学的数学”从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。

      博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博弈论是个非常重要的理论概念。

      什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…

      面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。

    博弈论分析

      一、经济学中的“智猪博弈”(Pigs’payoffs)

      这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。

      那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。

      原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。

      “小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的食物数量和踏板与投食口之间的距离。

      如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。

      改变方案一:减量方案。投食仅原来的一半分量。结果是小猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。

      如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。

      改变方案二:增量方案。投食为原来的一倍分量。结果是小猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。

      对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。

      改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费完。

      对于游戏设计者,这是一个最好的方案。成本不高,但收获最大。

      原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。

      比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。这相当于“智猪博弈”增量方案所描述的情形。但是如果奖励力度不大,而且见者有份(不劳动的“小猪”也有),一度十分努力的大猪也不会有动力了----就象“智猪博弈”减量方案一所描述的情形。最好的激励机制设计就象改变方案三----减量加移位的办法,奖励并非人人有份,而是直接针对个人(如业务按比例提成),既节约了成本(对公司而言),又消除了“搭便车”现象,能实现有效的激励。

      许多人并未读过“智猪博弈”的故事,但是却在自觉地使用小猪的策略。股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人,等等。因此,对于制订各种经济管理的游戏规则的人,必须深谙“智猪博弈”指标改变的个中道理。

      二、囚徒困境博弈

      在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoners’ dilemma)博弈模型。该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌疑人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。下表给出了这个博弈的支付矩阵

      表 囚徒困境博弈 [Prisoner's dilemma]

     B 坦白  B 抵赖
    A  坦白–8, –8 0, –10
    A  抵赖–10, 0 –1, –1

      我们来看看这个博弈可预测的均衡是什么。对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。但是,倘若他们都选择“抵赖”,每人只被判刑1年。在表2.2中的四种行动选择组合中,(抵赖、抵赖)是帕累托最优的,因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差。不难看出,“坦白”是任一犯罪嫌疑人的占优战略,而(坦白,坦白)是一个占优战略均衡。

      要了解纳什的贡献,首先要知道什么是非合作博弈问题。现在几乎所有的博弈论教科书上都会讲“囚犯的两难处境”的例子,每本书上的例子都大同小异。

      博弈论毕竟是数学,更确切地说是运筹学的一个分支,谈经论道自然少不了数学语言,外行人看来只是一大堆数学公式。好在博弈论关心的是日常经济生活问题,所以不能不食人间烟火。其实这一理论是从棋弈、扑克和战争等带有竞赛、对抗和决策性质的问题中借用的术语,听上去有点玄奥,实际上却具有重要现实意义。博弈论大师看经济社会问题犹如棋局,常常寓深刻道理于游戏之中。所以,多从我们的日常生活中的凡人小事入手,以我们身边的故事做例子,娓娓道来,并不乏味。

      话说有一天,一位富翁在家中被杀,财物被盗。警方在此案的侦破过程中,抓到两个犯罪嫌疑人,斯卡尔菲丝和那库尔斯,并从他们的住处搜出被害人家中丢失的财物。但是,他们矢口否认曾杀过人,辩称是先发现富翁被杀,然后只是顺手牵羊偷了点儿东西。于是警方将两人隔离,分别关在不同的房间进行审讯。由地方检察官分别和每个人单独谈话。

      检察官说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们一年刑期。但是,我可以和你做个交易。如果你单独坦白杀人的罪行,我只判你三个月的监禁,但你的同伙要被判十年刑。如果你拒不坦白,而被同伙检举,那么你就将被判十年刑,他只判三个月的监禁。但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。”斯卡尔菲丝和那库尔斯该怎么办呢?他们面临着两难的选择——坦白或抵赖。显然最好的策略是双方都抵赖,结果是大家都只被判一年。但是由于两人处于隔离的情况下无法串供。所以,按照亚当·斯密的理论,每一个人都是从利己的目的出发,他们选择坦白交代是最佳策略。因为坦白交代可以期望得到很短的监禁———3个月,但前提是同伙抵赖,显然要比自己抵赖要坐10年牢好。这种策略是损人利己的策略。不仅如此,坦白还有更多的好处。如果对方坦白了而自己抵赖了,那自己就得坐10年牢。太不划算了!因此,在这种情况下还是应该选择坦白交代,即使两人同时坦白,至多也只判5年,总比被判 10年好吧。所以,两人合理的选择是坦白,原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。

      这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。因为,每一方在选择策略时都没有“共谋”(串供),他们只是选择对自己最有利的策略,而不考虑社会福利或任何其他对手的利益。也就是说,这种策略组合由所有局中人(也称当事人、参与者)的最佳策略组合构成。没有人会主动改变自己的策略以便使自己获得更大利益。“囚徒的两难选择”有着广泛而深刻的意义。个人理性与集体理性的冲突,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。他们两人都是在坦白与抵赖策略上首先想到自己,这样他们必然要服长的刑期。只有当他们都首先替对方着想时,或者相互合谋(串供)时,才可以得到最短时间的监禁的结果。“纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战。按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。

      不妨让我们重温一下这位经济学圣人在《国富论》中的名言:“通过追求(个人的)自身利益,他常常会比其实际上想做的那样更有效地促进社会利益。”从“纳什均衡”我们引出了“看不见的手”的原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。两个囚徒的命运就是如此。从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。因此,从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”。但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。也就是中国人说的“己所不欲勿施于人”。但前提是人所不欲勿施于我。其次,“纳什均衡”是一种非合作博弈均衡,在现实中非合作的情况要比合作情况普遍。所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博弈理论的重大发展,甚至可以说是一场革命。

      从“纳什均衡”的普遍意义中我们可以深刻领悟司空见惯的经济、社会、政治、国防、管理和日常生活中的博弈现象。我们将例举出许多类似于“囚徒的两难处境” 这样的例子。如价格战博弈军奋竞赛博弈污染博弈等等。一般的博弈问题由三个要素所构成:即局中人(players)又称当事人、参与者、策略等等的集合,策略 (strategies)集合以及每一对局中人所做的选择和赢得(payoffs)集合。其中所谓赢得是指如果一个特定的策略关系被选择,每一局中人所得到的效用。所有的博弈问题都会遇到这三个要素。

      三、价格战博弈

      现在我们经常会遇到各种各样的家电价格大战,彩电大战、冰箱大战、空调大战、微波炉大战……这些大战的受益者首先是消费者。每当看到一种家电产品的价格大战,百姓都会“没事儿偷着乐”。在这里,我们可以解释厂家价格大战的结局也是一个“纳什均衡”,而且价格战的结果是谁都没钱赚。因为博弈双方的利润正好是零。竞争的结果是稳定的,即是一个“纳什均衡”。这个结果可能对消费者是有利的,但对厂商而言是灾难性的。所以,价格战对厂商而言意味着自杀。从这个案例中我们可以引伸出两个问题,一是竞争削价的结果或“纳什均衡”可能导致一个有效率的零利润结局。二是如果不采取价格战,作为一种敌对博弈论 (vivalry game)其结果会如何呢?每一个企业,都会考虑采取正常价格策略,还是采取高价格策略形成垄断价格,并尽力获取垄断利润。如果垄断可以形成,则博弈双方的共同利润最大。这种情况就是垄断经营所做的,通常会抬高价格。另一个极端的情况是厂商用正常的价格,双方都可以获得利润。从这一点,我们又引出一条基本准则:“把你自己的战略建立在假定对手会按其最佳利益行动的基础上”。事实上,完全竞争的均衡就是“纳什均衡”或“非合作博弈均衡”。在这种状态下,每一个厂商或消费者都是按照所有的别人已定的价格来进行决策。在这种均衡中,每一企业要使利润最大化,消费者要使效用最大化,结果导致了零利润,也就是说价格等于边际成本。在完全竞争的情况下,非合作行为导致了社会所期望的经济效率状态。如果厂商采取合作行动并决定转向垄断价格,那么社会的经济效率就会遭到破坏。这就是为什么WTO和各国政府要加强反垄断的意义所在。

      四、污染博弈

      假如市场经济中存在着污染,但政府并没有管制的环境,企业为了追求利润的最大化,宁愿以牺牲环境为代价,也绝不会主动增加环保设备投资。按照看不见的手的原理,所有企业都会从利己的目的出发,采取不顾环境的策略,从而进入“纳什均衡”状态。如果一个企业从利他的目的出发,投资治理污染,而其他企业仍然不顾环境污染,那么这个企业的生产成本就会增加,价格就要提高,它的产品就没有竞争力,甚至企业还要破产。这是一个“看不见的手的有效的完全竞争机制”失败的例证。直到20世纪90年代中期,中国乡镇企业的盲目发展造成严重污染的情况就是如此。只有在政府加强污染管制时,企业才会采取低污染的策略组合。企业在这种情况下,获得与高污染同样的利润,但环境将更好。

      五、贸易战博弈论

      这个问题对于刚刚加入WTO的中国而言尤为重要。任何一个国家在国际贸易中都面临着保持贸易自由与实行贸易保护主义的两难选择。贸易自由与壁垒问题,也是一个“纳什均衡”,这个均衡是贸易双方采取不合作博弈的策略,结果使双方因贸易战受到损害。X国试图对Y国进行进口贸易限制,比如提高关税,则Y国必然会进行反击,也提高关税,结果谁也没有捞到好处。反之,如X和Y能达成合作性均衡,即从互惠互利的原则出发,双方都减少关税限制,结果大家都从贸易自由中获得了最大利益,而且全球贸易的总收益也增加了。

      博弈论--这是一个热得烫手的概念。它不仅仅存在于数学的运筹学中,也正在经济学中占据越来越重要的地位(近几年诺贝尔经济学奖就频频授予博弈论研究者),但如果你认为博弈论的应用领域仅限于此的话,那你就大错了。实际上,博弈论甚至在我们的工作和生活中无处不在!在工作中,你在和上司博弈,也在和下属博弈,你也同样会跟其他相关部门人员博弈;而要开展业务,你更是在和你的客户以及竞争对手博弈。在生活中,博弈仍然无处不在。博弈论代表着一种全新的分析方法和全新的思想。

      诺贝尔经济学奖获得者包罗·萨缪尔逊如是说:要想在现代社会做个有价值的人,你就必须对博弈论有个大致的了解。也可以这样说,要想赢得生意,不可不学博弈论;要想赢得生活,同样不可不学博弈论。

    博弈论与纳什平衡

      博弈论(game theory)对人的基本假定是:人是理性的(rational,或者说自私的),理性的人是指他在具体策略选择时的目的是使自己的利益最大化,博弈论研究的是理性的人之间如何进行策略选择的。

      纳什(John Nash)编制的博弈论经典故事"囚徒的困境",说明了非合作博弈及其均衡解的成立,故称"纳什平衡"。

      所有的博弈问题都会遇到三个要素。在囚徒的故事中,两个囚徒是当事人(players)又称参与者;当事人所做的选择策略 (strategies)是承认了杀人事实,最后两个人均赢得(payoffs)了中间的宣判结果。如果两个囚徒之中有一个承认杀人,另外一个抵赖,不承认杀人,那么承认者将会得到减刑处理,而抵赖者将会得到最严厉的死刑判决,在纳什故事中两个人都承认了犯罪事实,所以两个囚徒得到的是中间的结果。

      类似的: 我们也能从“自私的基因”等理论中看到“纳什平衡”的体现。

    博弈中最优策略的产生

      艾克斯罗德Robert Axelrod)在开始研究合作之前,设定了两个前提:一、每个人都是自私的;二、没有权威干预个人决策。也就是说,个人可以完全按照自己利益最大化的企图进行决策。在此前提下,合作要研究的问题是:第一、人为什么要合作;第二、人什么时候是合作的,什么时候又是不合作的;第三、如何使别人与你合作。

      社会实践中有很多合作的问题。比如国家之间的关税报复,对他国产品提高关税有利于保护本国的经济,但是国家之间互提关税,产品价格就提高了,丧失了竞争力,损害了国际贸易的互补优势。在对策中,由于双方各自追求自己利益的最大化,导致了群体利益的损害。对策论以著名的囚犯困境来描述这个问题。

      A和B各表示一个人,他们的选择是完全无差异的。选择C代表合作,选择D代表不合作。如果AB都选择C合作,则两人各得3分;如果一方选C,一方选D,则选C的得零分,选D的得5分;如果AB都选D,双方各得1分。

      显然,对群体来说最好的结果是双方都选C,各得3分,共得6分。如果一方选C,一方选D,总体得5分。如果两人都选D,总体得2分。

      对策学界用这个矩阵来描述个体理性与群体理性的冲突:每个人在追求个体利益最大化时,就使群体利益受损,这就是囚徒困境。在矩阵中,对于A来说,当对方选 C,他选D得5分,选C只得3分;当对方选D,他选D得1分,选C得零分。因此,无论对方选C或D,对A来说,选D都得分最多。这是A单方面的优超策略。而当两个优超策略相遇,即A,B都选D时,结果是各得1分。这个结果在矩阵中并非最优。困境就在于,每个人采取各自的优超策略时,得出的解是稳定的,但不是帕累托最优的,这个结果体现了个体理性与群体理性的矛盾。在数学上,这个一次性决策的矩阵没有最优解。

      如果博弈进行多次,只要对策者知道博弈次数,他们在最后一次肯定采取互相背叛的策略。既然如此,前面的每一次也就没有合作的必要,因此,在次数已知的多次博弈中,对策者没有一次会合作。

      如果博弈在多人间进行,而且次数未知,对策者就会意识到,当持续地采取合作并达成默契时,对策者就能持续地各得3分,但如果持续地不合作的话,每个人就永远得1分。这样,合作的动机就显现出来。多次对局下,未来的收益应比现在的收益多一个折现率W,W越大,表示未来的收益越重要。在多人对策持续进行下去,且W比较大,即未来充分重要时,最优的策略是与别人采取的策略有关的。假设某人的策略是,第一次合作,以后只要对方不合作一次,他就永不合作。对这种对策者,当然合作下去是上策。假如有的人不管对方采取什么策略,他总是合作,那么总是对他采取不合作的策略得分最多。对于总是不合作的人,也只能采取不合作的策略。

      艾克斯罗德做了一个实验,邀请多人来参加游戏,得分规则与前面的矩阵相同,什么时候结束游戏是未知的。他要求每个参赛者把追求得分最多的策略写成计算机程序,然后用单循环赛的方式将参赛程序两两博弈,以找出什么样的策略得分最高。

      第一轮游戏有14个程序参加,再加上艾克斯罗德自己的一个随机程序(即以50%的概率选取合作或不合作),运转了300次。结果得分最高的程序是加拿大学者罗伯布写的"一报还一报"(tit for tat)。这个程序的特点是,第一次对局采用合作的策略,以后每一步都跟随对方上一步的策略,你上一次合作,我这一次就合作,你上一次不合作,我这一次就不合作。艾克斯罗德还发现,得分排在前面的程序有三个特点:第一,从不首先背叛,即"善良的";第二,对于对方的背叛行为一定要报复,不能总是合作,即" 可激怒的";第三,不能人家一次背叛,你就没完没了的报复,以后人家只要改为合作,你也要合作,即"宽容性"。

      为了进一步验证上述结论,艾氏决定邀请更多的人再做一次游戏,并把第一次的结果公开发表。第二次征集到了62个程序,加上他自己的随机程序,又进行了一次竞赛。结果,第一名的仍是"一报还一报"。艾氏总结这次游戏的结论是:第一,"一报还一报"仍是最优策略。第二,前面提到的三个特点仍然有效,因为63人中的前15名里,只有第8名的哈灵顿程序是"不善良的",后15名中,只有1个总是合作的是"善良的"。可激怒性和宽容性也得到了证明。此外,好的策略还必须具有的一个特点是"清晰性",能让对方在三、五步对局内辨识出来,太复杂的对策不见得好。"一报还一报"就有很好的清晰性,让对方很快发现规律,从而不得不采取合作的态度。

    合作的进行过程及规律

      "一报还一报"的策略在静态的群体中得到了很好的分数,那么,在一个动态的进化的群体中,这种合作者能否产生、发展、生存下去呢?群体是会向合作的方向进化,还是向不合作的方向进化?如果大家开始都不合作,能否在进化过程中产生合作?为了回答这些疑问,艾氏用生态学的原理来分析合作的进化过程。

      假设对策者所组成的策略群体是一代一代进化下去的,进化的规则包括:一,试错。人们在对待周围环境时,起初不知道该怎么做,于是就试试这个,试试那个,哪个结果好就照哪个去做。第二,遗传。一个人如果合作性好,他的后代的合作基因就多。第三,学习。比赛过程就是对策者相互学习的过程,"一报还一报"的策略好,有的人就愿意学。按这样的思路,艾氏设计了一个实验,假设63个对策者中,谁在第一轮中的得分高,他在第二轮的群体中所占比例就越高,而且是他的得分的正函数。这样,群体的结构就会在进化过程中改变,由此可以看出群体是向什么方向进化的。

      实验结果很有趣。"一报还一报"原来在群体中占1/63,经过1000代的进化,结构稳定下来时,它占了24%。另外,有一些程序在进化过程中消失了。其中有一个值得研究的程序,即原来前15名中唯一的那个"不善良的"哈灵顿程序,它的对策方案是,首先合作,当发现对方一直在合作,它就突然来个不合作,如果对方立刻报复它,它就恢复合作,如果对方仍然合作,它就继续背叛。这个程序一开始发展很快,但等到除了"一报还一报"之外的其它程序开始消失时,它就开始下降了。因此,以合作系数来测量,群体是越来越合作的。

      进化实验揭示了一个哲理:一个策略的成功应该以对方的成功为基础。"一报还一报"在两个人对策时,得分不可能超过对方,最多打个平手,但它的总分最高。它赖以生存的基础是很牢固的,因为它让对方得到了高分。哈灵顿程序就不是这样,它得到高分时,对方必然得到低分。它的成功是建立在别人失败的基础上的,而失败者总是要被淘汰的,当失败者被淘汰之后,这个好占别人便宜的成功者也要被淘汰。

      那么,在一个极端自私者所组成的不合作者的群体中,"一报还一报"能否生存呢?艾氏发现,在得分矩阵和未来的折现系数一定的情况下,可以算出,只要群体的 5%或更多成员是"一报还一报"的,这些合作者就能生存,而且,只要他们的得分超过群体的总平均分,这个合作的群体就会越来越大,最后蔓延到整个群体。反之,无论不合作者在一个合作者占多数的群体中有多大比例,不合作者都是不可能自下而上的。这就说明,社会向合作进化的棘轮是不可逆转的,群体的合作性越来越大。艾克斯罗德正是以这样一个鼓舞人心的结论,突破了"囚犯困境"的研究困境。

      在研究中发现,合作的必要条件是:第一、关系要持续,一次性的或有限次的博弈中,对策者是没有合作动机的;第二、对对方的行为要做出回报,一个永远合作的对策者是不会有人跟他合作的。

      那么,如何提高合作性呢?首先,要建立持久的关系,即使是爱情也需要建立婚姻契约以维持双方的合作。(火车站的小贩为什么要骗人?为什么工作中要形成小组制度?换防的时候一方总是要小小地进攻一下的,在中越前线就是这样)第二、要增强识别对方行动的能力,如果不清楚对方是合作还是不合作,就没法回报他了。第三、要维持声誉,说要报复就一定要做到,人家才知道你是不好欺负的,才不敢不与你合作。第四、能够分步完成的对局不要一次完成,以维持长久关系,比如,贸易、谈判都要分步进行,以促使对方采取合作态度。第五、不要嫉妒人家的成功,"一报还一报"正是这样的典范。第六、不要首先背叛,以免担上罪魁祸首的道德压力。第七、不仅对背叛要回报,对合作也要作出回报。第八、不要耍小聪明,占人家便宜。

      艾克斯罗德在《合作的进化》一书结尾提出几个结论。第一、友谊不是合作的必要条件,即使是敌人,只要满足了关系持续,互相回报的条件,也有可能合作。比如,第一次世界大战期间,德英两军在战壕战中遇上了三个月的雨季,双方在这三个月中达成了默契,互相不攻击对方的粮车给养,到大反攻时再你死我活地打。这个例子说明,友谊不是合作的前提。第二、预见性也不是合作的前提,艾氏举出生物界低等动物、植物之间合作的例子来说明这一点。但是,当有预见性的人类了解了合作的规律之后,合作进化的过程就会加快。这时,预见性是有用的,学习也是有用的。

      当游戏中考虑到随机干扰,即对策者由于误会而开始互相背叛的情形时,吴坚忠博士经研究发现,以修正的"一报还一报",即以一定的概率不报复对方的背叛,和 "悔过的一报还一报",即以一定的概率主动停止背叛。群体所有成员处理随机环境的能力越强,"悔过的一报还一报"效果越好,"宽大的一报还一报"效果越差。

    艾克斯罗德的贡献与局限性

      艾克斯罗德通过数学化和计算机化的方法研究如何突破囚徒困境,达成合作,将这项研究带到了一个全新境界,他在数学上的证明无疑是十分雄辩和令人信服的,而且,他在计算机模拟中得出的一些结论是非常惊人的发现,比如,总分最高的人在每次博弈中都没有拿到最高分。(刘邦和项羽的战争)

      艾氏所发现的"一报还一报"策略,从社会学的角度可以看作是一种"互惠式利他",这种行为的动机是个人私利,但它的结果是双方获利,并通过互惠式利他有可能覆盖了范围最广的社会生活,人们通过送礼及回报,形成了一种社会生活的秩序,这种秩序即使在多年隔绝,语言不通的人群之间也是最易理解的东西。比如,哥伦布登上美洲大陆时,与印地安人最初的交往就开始于互赠礼物。有些看似纯粹的利他行为,比如无偿捐赠,也通过某些间接方式,比如社会声誉的获得,得到了回报。研究这种行为,将对我们理解社会生活有很重要的意义。

      囚徒困境扩展为多人博弈时,就体现了一个更广泛的问题──"社会悖论",或"资源悖论"。人类共有的资源是有限的,当每个人都试图从有限的资源中多拿一点儿时,就产生了局部利益与整体利益的冲突。人口问题、资源危机、交通阻塞,都可以在社会悖论中得以解释,在这些问题中,关键是通过研究,制定游戏规则来控制每个人的行为。

      艾克斯罗德的一些结论在中国古典文化道德传统中可以很容易地找到对应,"投桃报李"、"人不犯我,我不犯人"都体现了"tit for tat"的思想。但这些东西并不是最优的,因为"一报还一报"在充满了随机性的现实社会生活里是有缺陷的。对此,孔子在几千年前就说出了"以德报德,以直报怨"这样精彩的修正策略,所谓"直",就是公正,以公正来回报对方的背叛,是一种修正了的"一报还一报",修正的是报复的程度,本来会让你损失5分,现在只让你损失3分,从而以一种公正审判来结束代代相续的报复,形成文明。

      但是,艾氏对博弈者的一些假设和结论使其研究不可避免地与现实脱节。首先,《合作的进化》一书暗含着一个重要的假定,即,个体之间的博弈是完全无差异的。现实的博弈中,对策者之间绝对的平等是不可能达到的。一方面,对策者在实际的实力上有差异,双方互相背叛时,可能不是各得1分,而是强者得5分,弱者得0分,这样,弱者的报复就毫无意义。另一方面,即使对局双方确实旗鼓相当,但某一方可能怀有赌徒心理,认定自己更强大,采取背叛的策略能占便宜。艾氏的得分矩阵忽视了这种情形,而这种赌徒心理恰恰在社会上大量引发了零和博弈。因此,程序还可以在此基础上进一步改进。

      其次,艾氏认为合作不需预期和信任。这是他受到质疑颇多之处。对策者根据对方前面的战术来制定自己下面的战术,合作要求个体能够识别那些曾经相遇过的个体并且记得与其相互作用的历史,以便作出反应,这些都暗含着"预期"行为。在应付复杂的对策环境时,信任可能是对局双方达成合作的必不可少的环节。但是,预期与信任如何在计算机的程序中体现出来,仍是需要研究的。

      最后,重复博弈在现实中是很难完全实现的。一次性博弈的大量存在,引发了很多不合作的行为,而且,对策的一方在遭到对方背叛之后,往往没有机会也没有还手之力去进行报复。比如,资本积累阶段的违约行为,国家之间的核威慑。在这些情况下,社会要使交易能够进行,并且防止不合作行为,必须通过法制手段,以法律的惩罚代替个人之间的"一报还一报",规范社会行为。这是艾克斯罗德的研究对制度学派的一个重要启发。

    博弈论与非对称信息博弈论、管理博弈论的比较[1]

      博弈论是非对称信息博弈论与管理博弈论的理论基础,非对称信息博弈论与管理博弈论都是博弈论的应用分支。非对称信息博弈论是非合作博弈论在经济学上的应用,主要研究非对称信息结构下的最优契约安排问题;管理博弈论是博弈论和非对称信息博弈论在管理学中的应用,主要研究多目标、多因素、多阶段下的管理激励与约束机制设计问题。

      博弈论偏重方法论研究,局中人地位平等,没有明确的设计主体,注重定量模型化分析,研究的目的是求得博弈问题的纳什均衡解。非对称信息博弈论主要基于委托—代理理论框架下设计最优交易契约,设计主体为委托人,实施对象为代理人,委托人与代理人之间信息非对称,委托人通过设计一种激励机制,使代理人按他所期望的方向行动。

      管理博弈论以管理问题为导向,设计主体是管理者,实施对象是被管理者(有限理性人),管理者通过设计和建立有效的激励与约束机制,激励、约束、规范被管理者建立有效的激励与约束机制,激励、约束、规范被管理者的行为。管理博弈论对管理博弈问题的表述形式主要采用机制式表述,同时,针对具体问题也可灵活应用博弈论的战略式表述、扩展式表述及非对称信息博弈论的特征函数式表述。

      非对称信息博弈论与博弈论、管理博弈论的比较

     1.博弈论(含合作博弈论非合作博弈论)2.非对称信息博弈论3.管理博弈论
    本质关系是2、3基础是非合作博弈论在经济学上的应用合作博弈论、非合作博弈论、非对称信息博弈论在管理学上的应用
    研究着眼点方法论导向经济问题导向管理问题导向
    研究结果体现综合信息结构下可能的均衡结果综合信息结构下的激励与约束机制设计
    博弈的一般表达方式战略式表述;扩展式表述;特征函数式表述战略式表述;扩展式表述;特征函数式表述;机制式表述
    对“机制”的定义博弈框架契约管理系统内各分系统、各要素之间相互

    作用、相互联系、相互制约的形式及其运动原理和内在的、本质的工作方式

    设计主体不甚明确委托人管理组织
    针对对象不甚明确理性代理人有限性的管理对象(可以是组织群体或个人)
    信息状况信息分散化信息不对称信息复杂化、多样化
    量化情况定量定量定性定量相结合
    施行情况假定施行,但不明确考虑假定施行,且明确考虑假定施行,明确考虑如何施行,且在施行过程中进行评估、修改、完善

    博弈论案例分析

    案例一:博弈论在企业人力资本投资中的应用[2]

      一、引言

      一个企业能否在市场中取得经济优势,依赖于企业科技优势、产品的市场适应性等等,而这一切又源于人才优势。因此,一个企业面临着如何尽可能地保持自己人力资源的优势,如何吸引优秀人才加入企业添加新动力,如何有效培训使己有员工获得技能的提高,如何使员工适应外部环境变化的要求,如何有效挽留公司的核心人才等等。但是统计调查显示,我国的培训现状不尽如人意。总体来看,我国企业培训管理的制度化规范化程度有待加强,培训计划执行不力,培训效果跟踪与评价环节薄弱,培训对改善员工绩效的效用没有发挥,培训结果与员工晋升没有太大影响等。造成这种现状的原因固然是多方面的,其中一个主要原因就是人力资本投资收益的滞后性和不确定性,担心员工“硬了翅膀就飞走”,得不偿失。企业是否增加人力资本投资,员工是否留任企业,都是利益的博弈,结果是选择有利于自己的战略。本文用博弈论对企业人力资本投资作分析,说明企业应当进行人力资本投资和投资后应采取措施保证人力资本投资收益的获取。

      二、概念和假定

      1.概念界定

      ①人力资本人力资本是通过投资于已有人力资源而形成的、以复杂劳动力为载体的、能实现价值增值可变资本

      ②企业人力资本投资。企业人力资本投资是指企业通过一定的投入(货币、资本或实物)获得人力资源,增加企业员工的知识、技能、健康水平,提高企业管理、文化水平和企业形象,从而提升企业人力资本存量,使企业经济效益提高的一种投资行为

      2.基本假设

      ①经济人经济人假设是指无论是组织还是个人,追求自身利益的最大化。

      ②完全信息。完全信息是指信息是完全通畅的,不存在滞塞,而且客观存在的信息的获取是不需要成本的。

      ③物质资本充足。商品的生产总是物质资本和人力资本结合在一起进行的。

      要使生产高效率的进行,物质资本和人力资本必须保持适当的比例。

      三、人力资本投资与员工个人的博弈分析

      本文从企业与员工之间的角度作人力资本投资的完全信息静态博弈分析,重点分析企业是否增加人力资本投资以及投资后如何行动。

      假定在完全信息的条件下,企业和员工都是理性的。企业可以选择对员工培训或不培训。根据企业的选择,员工会做出留下或是转投其他企业的选择。假设企业不对员工进行培训是员工的收入为d,当企业选择培训,假设分摊到员工个人的培训费用为c,经过培训后多支付员工的薪水为e(e可以为零,即经过培训后不增加员工薪水),经过培训后员工为企业带来的收益增加值为b。又假设员工离职去另一单位获得的报酬为a。这里为了分析更简单一些,假设员工经过培训与未经过培训跳槽的收入一样,都为a。有时候培训后由于员工技能提高跳槽会获得更多的收入,但是并不影响下面的分析。企业培训博弈分析如表1所示:  当b-c-e<0时,即企业对员工培训后得到的收益增加值小于支出时,不管员工做出如何决策,企业都不会得到任何的收益增加值,因此企业是不会对员工进行培训投入的。

      当b-c-e>0时,该博弈成立并可能会出现两种均衡:如果此时员工选择留下所获得的收益d+e大于其选择跳槽时所获的收益a时,理性的员工必定会留在原来的企业,企业也必然会选择培训投入,这也是这个博弈中双方的最优决策;如果此时员工选择留下所获得的收益d+e小于其选择跳槽时所获的收益a时,理性的员工必定选择跳槽,此时企业损失为c,损失最惨重。对企业而言,如果知道这样做令员工跳槽的话,那么企业还不如刚开始就不培训,那样蒙受的损失会少些。这里需要指出的是,一个员工是否跳槽并不简单的取决于对方企业开出的薪酬。影响因素有很多,比如员工个性是否与企业匹配、员工个人发展前景、员工兴趣与岗位的匹配等等。上述表格中,企业如果不对员工进行培训,那么员工留下或离职取决于现有收入d和跳槽企业的薪酬a。

      如果d>a,员工留下:反之员工跳槽

    人力资本投资与绩效博弈表

    总之,员工是否留任企业,是一种利益的博弈,并且企业与员工之间存在着信息的不对称,企业必须采取先发行动传递信号减弱员工离任的动机,只要企业能留住员工,人力资本投资就会给企业带来巨大的经济效益

    案例二:博弈论在企业经营活动的应用策略[3]

      哈佛商学院迈克尔·波特教授提出的波特五力分析模型,给出了我们思考行业市场竞争状况和态势时一种全面而详细的分析方法,其中一种力量是潜在进入者的威胁。

      那么,根据市场类型(完全竞争市场垄断竞争市场完全垄断市场寡头垄断市场),由于多数行业市场属于垄断竞争市场,就存在现有企业和新进入者之间的进入和退出博弈,这取决于彼此结构性的进入障碍、对关键资源的控制度、规模经济效应及现有企业的市场优势的因素。

      如果你是现有行业的垄断者和一定程度的影响者,阻止潜在进入者进入市场或遏止现有企业恶性竞争的博弈策略有:

      1.扩大生产能力策略

      垄断者为阻止潜在进入者进入市场,垄断者可能对潜在进入者进行威胁。但垄断者的这种威胁是否能达到阻止进入的目的,取决于其承诺。所谓承诺(Promise),是指对局者所采取的某种行动,这种行动使其威胁成为一种令人可信的威胁。那么,一种威胁在什么条件下会变得令人可信呢?一般是,只有当对局者在不实行这种威胁会遭受更大损失的时候,与承诺行动相比,空头威胁无法有效阻止市场进入的主要原因是,它是不需要任何成本的。发表声明是容易的,仅仅宣称将要做什么或者标榜自己是说一不二的人也都缺乏实质性的意义。因此,只有当对局者采取了某种行动,而且这种行动需要较高的成本或代价,才会使威胁变得可信。

      2.保证最低价格条款的策略

      所谓“保证最低价格”条款策略,即可采取限制性定价策略,通过收取低于进入发生时的价格来防范进入。如某商店规定,顾客在本商店购买这种商品一定时期内(如一个月),如果其他任何商店以更低的价格出售同样的商品,本店将退还差价,并补偿差额的一定百分比(如10% )。例如,如果你在该商店花5 000元购买了一架尼康相机,一周后你在另一家商店发现那里只卖4500元,那么你就可以向该商店交涉,并获得550元的退款。

      又如假定一个将存在两期的市场。在第1期只有一个厂商,面临两种选择:

      ①制定一个垄断高价60元,可获1 000元的利润,但会使潜在企业认为该行业有利可图,从而选择在第2期进入;而一旦该市场有两个企业存在,将会使市场价格下降到30元,企业利润降为200元。这样,两期的总利润是1000+200=1200元。

      ②制定低价40元,潜在企业如果进来,价格降到20元,两个企业的利润都将是0。

      故此时潜在企业将不会进入。这样,第二期的价格可以确定一个垄断高价60元,因此总利润将为600+1000=1600元。

      对消费者来说,保证最低价格条款使你至少在一个月内不会因为商品降价而后悔你的购买,但这种条款对消费者是承诺,对竞争者是警告,无疑是企业之间竞争的一种手段。

      保证最低价格条款是一种承诺,由于法律的限制,商店在向消费者公布了这一条款之后是不能不实行的,因此它是绝对可信的。这一承诺隐含着企业A向企业B发出的不要降价竞争的威胁,并使这种威胁产生其预期的效果。

      3.限制进入定价策略

      限制进入定价是指现有企业通过收取低于进入发生的价格的策略来防范进入,潜在进入者看到这一低价后,推测出进入后价格也会那么低甚至更低,因而进入该市场终将无利可图而放弃进入。

      4.掠夺性定价策略

      掠夺性定价是指将价格设定为低于成本来达到驱逐其他企业的目的,而期望由此发生的损失在新进入企业或者竞争对手被逐出市场后,掠夺企业能够行使市场权力时可能得到补偿,即在驱逐其他企业后,再制定垄断高价以弥补前期的损失。这也是一种价格报复策略。掠夺性定价与限制定价之间的差异在于限制定价是针对那些尚未进入市场的企业,是想较长一段时间内维持低价来限制新企业的进入,而掠夺性定价则将矛头指向已经进入的企业或即将来临之际。如你产能过剩,在新企业进入时可以进行产能扩张,将商品大幅降价防堵其进入。

      5.广告战博弈

      有些商品只有在使用后才知道其质量真正如何,我们把这种商品称为经验品。只有生产那些高质量经验品的企业才会选择做巨额广告,而低质量的企业将不会做广告。原因是高质量经验品会有大量的回头客,而低质量经验品则鲜有人再次光顾。

      另外现有厂商之间产量、价格竞争的博弈,尚有古诺模型伯川德模型可以描述。博弈理论在宏微观层面对企业参与竞争、制定竞争策略均有指导意义。著名营销专家希顿曾说,企业家的艺术就是对企业的策略性经营和管理,博弈作为策略,企业在当今激烈的市场竞争中需要博弈!

    案例三:博弈论在企业管理中的应用[4]

      一、博弈论在企业决策中的应用

      1.博弈论成果与经营决策

      博弈论的研究成果可直接运用于现代企业的经营决策之中。在市场经济条件下,企业之间的竞争日益加剧,行业内的竞争逐渐表现为几个大型集团之间的直接对抗。从博弈定义来看,这类问题都可归结为博弈问题。因此企业运用博弈论中的决策模型进行决策,将使决策过程更加合理化。当今社会,各个方面的竞争性和对抗性日益加剧,人们对自身行为、理性决策和对效率的追求日益增高,现代企业管理充满了博弈的思想。

      2.博弈论与企业最优决策

      在社会经济生活中,企业或个人为了自身利益的最大化,面对市场会做出自己的最优决策,不同的市场情形会影响经济主体人的决策行为。在完全竞争市场条件下,企业会根据给定商品的市场价格计算出生产和供应到市场上的商品的数量,以实现最大的利润。而寡头市场的情形要比完全竞争市场复杂得多。企业大量面对的是信息不完全的市场,企业不知道面对强大的竞争对手该如何做出抉择,市场的时效性要求企业必须在信息不完全的情况下做出决策。在这样的决策中存在着三个合理的假设。

      第一,理性的“经济人”。每一个行为主体都依据自身利益的最大化作为行动的出发点。

      第二,每一个行为主体做出的决策都不是在真空的世界中。现实的世界使得一个人的生存必须以他人的生存为前提。这种相互依赖的关系使得一个行为主体的决策会对其他行为主体产生重要的影响,其他行为主体的决策也会直接影响着这个行为主体的决策结果。

      第三,寡头市场的情形。也即一个行业里面只有少数几家企业,甚至只有两三家企业,每一方的市场份额都很大。由于竞争对手很少,每一个主体的行为产生的后果受对手行为的影响都很大。那么这样的决策就带有了博弈的色彩。

      3.博弈均衡理论与企业决策

      企业决策要充分考虑均衡,博弈论的精髓在于其中的任何一个理性决策者,必须考虑在其他局中人反应的基础上来选择自己最理想的行动方案。所谓均衡,即所有局中参与人的最优策略组合,各方博弈产生的结果是一个均衡结局,它可能不是局中各方及整体的利益最大化,但它是在已给定信息与知识条件下的一种必然结果,因为任何一方改变策略而导致均衡的变化都有可能使自己得到一个更差的结果。近来,人们越来越重视博弈论在市场竞争过程中的作用,人们正在通过调整决策,避免冲突以寻求合作,实现共赢,规避双输。

      二、博弈论在构建和谐企业中的应用

      博弈论的研究成果,提高了人们对竞争和冲突这一社会现象的认识,对于我们在现实生活中如何运用合作的理念,创建和谐企业具有重要的启示和作用。企业作为社会的组成单元,在构建社会主义和谐社会中承担着义不容辞的责任。对企业来说,“和谐”的基本特征应当表现为依法治企、科学发展、协调有序、安全环保、公平诚信、服务社会,并建立一个长效的协调机制,其核心在于通过促进企业内外环境的“和谐”,达到企业的经济效益与社会效益相统一,最终实现企业健康、协调、可持续发展

      1.处理好个人、集体和国家的利益关系

      在市场经济中,个人、企业和政府都会追求自己的利益,在各自的运转环境中,实际上都处于博弈状态,各自都是在现实生活环境中的博弈一方,冲突和矛盾是难免的。随着国有企业改革的不断深化,在股份制改造和现代化企业制度建设过程中,轮岗下岗合并重组等问题所引发的分工、收入、保障的差距越来越成为矛盾的焦点。掩盖这种利益的差别,否认博弈的现实并不能解决问题。所以,需要客观地看待这些差别。

      2.处理好博弈与规则透明、诚实守信的关系

      规则透明和诚实守信是博弈各方达成协议的基础,规则透明是互信的条件。管理者要想取得人们的信任,政策必须公开、公正。对于企业,企业管理者要取得职工的信任和拥护,企业要在市场上立得住、站得稳,必须讲诚信、讲公平、讲公正。如果所要的结果不是通过透明、可信的规则取得的,必然不会与职工群众达成共识,企业氛围也不会是和谐的、稳定的。

      3.处理好博弈过程中利益各方的关系

      和谐企业建立的基础是企业各方面的共赢,博弈各方达成的协议虽然未必是利益均等,但应该是各方面都能接受的。建立和谐企业,需要从根本上、制度上解决问题,而制度的建立、措施的完善应建立在科学的基础上,建立在各方都能接受的共赢的基础上,而不是企业方想怎样做就怎样做。如果不能保证各方共赢,必然得不到其他方面的支持,那它必然是不稳定的、不和谐的,甚至会导致更多、更严重的问题。

      4.处理好经济利益之外的博弈关系

      和谐不完全建立在经济利益上,除此之外仍然有很多人文因素影响着社会的和谐。因此,企业管理者的充分沟通、理解职工的非经济期望和需求,给予人文关怀,对于促进和谐社会的形成有着不可忽视的作用。

      三、博弈论在企业价格战中的应用

      在现实生活中,我们经常会遇到各种各样的价格大战,如彩电大战、冰箱大战、空调大战等,这些大战的受益者首先是消费者。在这里,厂家价格大战的结局是一个“纳什均衡”,而且价格战的结果是谁都没赚到钱,因为博弈双方的利润正好是零。这个结果可能对消费者是有利的,但对厂商而言是灾难性的。所以,价格战对于厂商而言意味着自杀。从中我们可以引申出两个问题,一是竞争削价的结果或“纳什均衡”可能导致一个零利润结局;二是如果不采取价格战,作为一种敌对博弈论其结果有两种,一种是企业采取正常价格策略,另一种是采取高价格策略形成垄断价格。事实上,完全竞争的均衡就是“纳什均衡”或“非合作博弈均衡”。在这种状态下,没一个厂商或者消费者是按照别人已定的价格来进行决策。在这种均衡中,企业要使利润最大化,消费者要使效用最大化,结果导致了零利润,也就是说价格等于边际成本。

    参考文献

    1.  《侯光明著.管理博弈论导论一门新兴交叉学科[M].ISBN:7-81045-796-9/C931.1.北京理工大学出版社,2001
    2.  蒋冰,吴燕燕.博弈论在企业人力资本投资中的应用[J].经营管理者.2009(14)
    3.  成秉照.博弈论在企业市场竞争中的策略应用[J].山西经济管理干部学院学报,2009,17(3)
    4.  米立梅.浅谈博弈论在企业管理中的应用[J].经济论坛,2009,(18)
    展开全文
  • VA Leus(俄罗斯新西伯利亚索伯列夫数学研究所)提出了严格的论证,即以我证明爱因斯坦的狭义相对在逻辑上是不一致的,因此是错误的,我违反了狭义相对的基本原理,在爱因斯坦的理论上坚持了另一种理论。...
  • 伊斯兰科学也不例外,它依赖于伊斯兰文明,源于其特定的知识和认识体系。 这种依赖于启示的教义的知识体系引起人们对世界的认识,因为它是科学和科学工作中的形而上学的中枢和哲学的预设。 基于伊斯兰认识的...
  • 系统、控制和信息

    千次阅读 2009-07-21 20:59:00
    20世纪40年代,由于自然科学、工程技术、社会科学和思维科学的相互渗透与交融汇流,产生了具有高度抽象性和广泛综合性的系统、控制和信息。1、系统General System Theory 系统是研究系统的模式、性能、...
  • 本文提出了一套完整的计算机集成制造系统方法论并对其四个组成部分,即CIM思想、CIM体系结构、CIM建模方法以及CIMS开发和实施方法进行了讨论,总结了本文...
  • 然后基于对系统和系统方法概念的上述理解和企业战略研究的诸多学派,提出了一个企业战略研究的系统方法,详细介绍了 一个案例,在案例中还对定位学派的具体的研究方法做了拓展.最后指出企业战略研究的系统方法...
  • 论文研究-最优传递矩阵法新.pdf, 对最优传递矩阵法提出异议, 赋予它新的结论
  • 动态能力论并不是一个与资源基础相竞争的新理论,其解释的仍然是资源基础内部的问题。在战略管理理论领域占据绝对主导地位的基础理论仍然是资源基础,动态能力论并没有为战略管理领域提供经得起推敲的理论基础...
  • 本文从系统论述了森林数量分布结构及其种类叙述了它的意义和作用.为森林生灭过程的动态变化的数学描述建立了从定性分析到定量描述的理论基础.
  • 论文研究- 试论系统的创新问题....本文试图按照他所指出的方向,对系统的创新问题进行一次初步探讨,扼要介绍了耗散结构和协同学在系统创新过程中的作用和意义,特别着重讨论了系统结构性和协同性的理论和应用。
  • 惯性是自然界最神秘的力量之一。 其物理性质未知。... 它考虑了马赫定律,能够用相对原理覆盖所有系统。 所有相对的影响都源于此。 解释了出现新颗粒,暗物质,暗能量等的原因。 预计会有新的效果。
  • 在本文中,我们在澄清歧义点添加新思想的前提下重写了同一篇论文。 如果原始相对说:粒子的相对质量m(v)随着定义的γ因子而增加,而其相对长度则减小,因此,该原始解的隐含含义是形式为的相对线性质量...
  • 测度

    千次阅读 多人点赞 2018-03-17 23:56:00
    测度 测度简介 长度是怎样炼成的? 点没有长度和面积,为什么由点组成的线和面会具有长度和面积? “长度”“面积”这些词汇究竟是在怎样的意义上被使用的? 有的时候我们把点的长度叫做零,有的...
  • Sagnac)实现了一个光线实验,他认为其结果使相对无效,验证了以太的假设。 醚的这一假设未被科学界所保留,并且对萨格纳克实验的结果给出了相对论性的解释。 但是这些相对论性的解释仍然受到批评,因为它们是...
  • 反过来,找到均衡策略的问题不容易,而是成倍地困难。 博弈似乎无法通过添加纠正条款(例如考虑个人特征、社会规范、启发式或偏见条款,或对选择和学习的认知限制)来修复。 在下文中,我们将描述调查相互依存...
  • 博弈基础

    千次阅读 多人点赞 2019-10-22 19:16:53
    博弈总结 什么是博弈: 多人进行博弈,假设每个人都采取最优策略,一定有一个人胜出,在知道初态及规则的情况下,求解出 何人胜出的一类问题的理论及方法。 博弈的一些性质 P点:必败点,N点:必胜点 ...
  • 排队

    千次阅读 2019-04-20 17:52:41
    排队 应用 排队的研究,就是要把排队的时间控制到一定的程度内,在服务质量的提高和成本的降低之间取得平衡,找到最适当的解。 背景 排队发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙...
  • 博弈讲义

    2015-09-07 20:56:23
    博弈主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学... 博弈考虑游戏中的个体的预测行为和实际行为,研究它们的优化策略。生物学家使用博弈理论来理解和预测进化的某些结果。
  • 马克思主义 哲学 唯物 认识 唯物史观 辩证法 实践决定认识 真理三性 认识三性 在实践中追求真理 社会存在与社会意识 群众史观 人生价值观 价值观的导向 群众观点群众路线 如何实现人生价值 世界的物质性 辩证...
  • 就狭义相对有无实验基础,能否用实验来证实狭义相对沦,时间膨胀、空间收缩的相对性是否存在,洛伦兹变换是相对的还是绝对的等一系列问题进行了分析和讨论,得出了这样的结论:目前在文献中所能查到的实验没有一...
  • 矩阵引论

    2019-05-10 22:59:46
    作 者:陈祖明 周家胜 出 版 社:北京航空航天大学出版社 出版...《矩阵引论》叙述深入浅出,思路清晰,配有大量习题,故既可作为硕士研究生的教材,又可作为自学读物,也可作为工科院校有关专业教师的参考资料。
  • 孤寡程序猿找女朋友的方法

    万次阅读 多人点赞 2021-03-17 12:31:07
    目录 第1步:明确问题 第2步:了解现状 第3步:设定目标 第4步:把握真因 第5步:制定对策 第6步:实施对策 第7步:评价结果和过程 第8步:评估方法标准化 不言而喻,90后程序猿已经老了,一把辛酸泪。 看着80后老...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 691,468
精华内容 276,587
关键字:

并论