精华内容
下载资源
问答
  • 介绍直升振动信号采集系统的设计与实现
  • 湖南铁路科技职业技术学院毕业设计论文 摘要 信号机是用于指挥列车运行的信号设备其显示为开放信号时允许列车通 过进路显示为关闭信号时禁止列车进入进路信号机是铁路信号设备的重要 组成部分之一在运输生产工作中它...
  • 即使主控部件出现故障,信号机仍可以按备选方案工作。为了便于与上位控制机连接,信号机提供了多种通信方式和“线控”功能。基于车流量检测,提出了信号机的智能控制方案。实际应用结果表明,新型的智能交通信号机...
  • 单片机和数字信号处理器实现的水声应答
  • 对6名受试者进行三种不同时段(箭头出现2 s、1 s和0 s后提示按键)情况下想象左右手运动思维作业的信号采集实验,利用小波变换和支持向量对实验数据进行离线处理。对三种情况下的延缓时间Δt0、Δt1和Δt2分析发现...
  • 开关电源对车载收音AM信号干扰的研究
  • 基于FPGA的无刷直流电机突变信号采集器设计
  • matlab人脸识别论文

    万次阅读 多人点赞 2019-10-11 17:41:51
    得到了前所未有的重视,国际上发表有关人脸识别等方面的论文数量大幅度增加,仅从1990年到2000年之间,sCl 及EI可检索到的相关文献多达数千篇,这期间关于人脸识别的综述也屡屡可见。国外有许多学校在研究人脸识别...

    摘 要

     本文设计了一种基于BP神经网络的人脸识别系统,并对其进行了性能分析。该系统首先利用离散小波变换获取包含人脸图像大部分原始信息的低频分量,对图像数据进行降维;再由PCA算法对人脸图像进行主成分特征提取,进--步降低图像数据的处理量;最后使用经过训练后的BP神经网络对待测人脸进行分类识别。详细介绍了离散小波变换PCA特征提取以及BP神经网络分类设计。通过系统仿真实验与分析发现:人脸特征的提取是该系统的关键;同时,由于人脸灰度信息的统计特征与有监督训练BP神经网络分类器,使该系统只在固定类别,并且光照均匀的人脸识别应用场景中具有较高的识别准确率。因此,很难在复杂环境中应用。
    

    关键词:人脸识别;人工神经网络;离散小波变换; PCA; BP神经网络
    Abstract
    In this paper, a face recognition system based on BP neural network is designed and its performance is analyzed. The system first uses discrete wavelet transform to obtain the low-frequency components which contain most of the original information of the face image, and then uses PCA algorithm to extract the principal component features of the face image, progressively reducing the processing capacity of the image data. Finally, the trained BP neural network is used to classify and recognize the tested face. Discrete wavelet transform PCA feature extraction and BP neural network classification design are introduced in detail. Through the system simulation experiment and analysis, it is found that the extraction of facial features is the key of the system. At the same time, because of the statistical features of gray information and the supervised training of BP neural network classifier, the system only has a high recognition accuracy in fixed categories and uniform illumination of face recognition application scenarios. Therefore, it is difficult to apply in complex environment.

    Key words: face recognition; artificial neural network; discrete wavelet transform; PCA; BP neural network
    1绪论

      人脸识别是模式识别研究的一个热点,它在身份鉴别、信用卡识别,护照的核对及监控系统等方面有着I泛的应用。人脸图像由于受光照、表情以及姿态等因索的影响,使得同一个人的脸像矩阵差异也比较大。因此,进行人脸识别时,所选取的特征必须对上述因素具备-一定的稳定性和不变性。主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一一个列向量,经过PCA变换后,不仅可以有效地降低其维数,同时又能保留所需要的识别信息,这些信息对光照、表情以及姿态具有一定的不敏感性。 在获得有效的特征向量后,关键问题是设计具有良好分类能力和鲁棒性的分类器、支持向量机(SVI )模式识别方法,兼顾调练误差和泛化能力,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。
    

    1.1人脸识别技术的细节

    一般来说,人脸识别系统包括图像提取、人脸定位、图形预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图像或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
    1.2人脸识别技术的广泛应用

    一项技术的问世和发展与人类的迫切需求是密切相关的,快速发展的社会经济和科学技术使得人类对安全(包括人身安全、隐私保护等)得认识越来越重视。人脸识别得一个重要应用就是人类的身份识别。一-般来说, 人类得身份识别方式分为三类:
    1.特征物品,包括各种证件和凭证,如身份证、驾驶证、房门钥匙、印章等;
    2.特殊知识,包括各种密码、口令和暗号等;

    3.人类生物特征,包括各种人类得生理和行为特征,如人脸、指纹、手形、掌纹、虹膜. DNA、签名、语音等。前两类识别方式属于传统的身份识别技术,其特点是方便、快捷,但致命的缺点是安全性差、易伪造、易窃取。特殊物品可能会丢失、偷盗和复制,特殊知识可以被遗忘、混淆和泄漏。相比较而言,由于生物特征使人的内在属性,具有很强的自身稳定性和个体差异性,因此生物特征是身份识别的最理想依据。基于以上相对独特的生物特征,结合计算机技术,发展了众多的基于人类生物特征的身份识别技术,如DNA识别技术、指纹识别技术、虹膜识别技术、语音识别技术和人脸识别技术等。生物识别技术在上个世纪已经有了- -定得发展,其中指纹识别技术已经趋近成熟,但人脸识别技术的研究还处于起步阶段。指纹、虹膜、掌纹等识别技术都需要被识别者的配合,有的识别技术还需要添置复杂昂贵的设备。人脸识别可以利用已有的照片或是摄像头远距离捕捉图像,无需特殊的采集设备,系统的成本低。并且自动人脸识别可以在当事人毫无觉察的情况下完成身份确认识别工作,这对反恐怖活动有非常重要的意义。基于人脸识别技术具有如此多的优势,因此它的应用前最非常广阔,已成为最具潜力的生物特征识别技术之一
    1.3人脸识别技术的难点

      虽然人类可以毫不困难地根据人脸来辨别一个人,但是利用计算机进行完全自动的人脸识别仍然有许多困难。人脸模式差异性使得人脸识别成为-个非常困难的问题,表现在以下方面:
    
      1.人脸表情复杂,人脸具有多样的变化能力,人的脸上分布着Ii十多块面部肌肉,这些肌肉的运动导致不同面部表情的出现,会造成人脸特征的显著改变。
    
      2.随着年龄而改变,随着年龄的增长,皱纹的出现和面部肌肉的松驰使得人脸的结构和纹理都将发生改变。
    
      3.人脸有易变化的附加物,例如改变发型,留胡须,戴帽子或眼镜等饰物。4.人脸特征遮掩,人脸全部、部分遮掩将会造成错误识别。
    
      5.人脸图像的畸变,由于光照、视角、摄取角度不同,可能造成图像的灰度。
    

    1.4国内外研究状况

    人脸识别是人类视觉最杰出的能力之-。 它的研究涉及模式识别、图像处理、生物学、心理学、认知科学,与基于其它生物特征的身份鉴别方法以及计算机人机感知交互领域都有密切联系。人脸识别早在六七十年代就引起了研究者的强烈兴趣。20世纪60年代,Bledsoe 提出了人脸识别的半自动系统模式与特征提取方法。70年代,美、英等发达国家开始重视人脸识别的研究工作并取得进展。1972 年,Harmon 用交互人脸识别方法在理论上与实践上进行了详细的论述。同年,Sakai 设计了人脸图像自动识别系统。80年代初
    T. Minami 研究出了优于Sakai的人脸图像自动识别系统。但早期的人脸识别一般都需要人的某些先验知识,无法摆脱人的干预。进入九十年代,由于各方面对人脸识别系统的迫切需求,人臉识别的研究变的非常热门。人脸识别的方法有了重大突破,进入了真正的机器自动识别阶段,如Kartbunen-Loeve变换等或新的神经网络技术。人脸识别研究

    得到了前所未有的重视,国际上发表有关人脸识别等方面的论文数量大幅度增加,仅从1990年到2000年之间,sCl 及EI可检索到的相关文献多达数千篇,这期间关于人脸识别的综述也屡屡可见。国外有许多学校在研究人脸识别技术,研究涉及的领域很广。这些研究受到军方、警方及大公司的高度重视和资助,国内的一些知名院校也开始从事人脸识别的研究。

      人脸识别是当前模式识别领域的一个前沿课题,但目前人脸识别尚处于研究课题阶段,尚不是实用化领域的活跃课题。虽然人类可以毫不困难地由人脸辨别一个人,但利用计算机进行完全自动的人脸识别存在许多困难,其表现在:人脸是非刚体,存在表情变化:人脸随年龄增长面变化:发型、眼镜等装饰对人脸造成遮挡:人脸所成图像受光照、成像角度、成像距离等影响。人脸识别的困难还在于图像包括大量的数据,输入的像素可能成百上千,每个像素都含有各自不同的灰度级,由此带来的计算的复杂度将会增加。现有的识别方法中,通过从人脸图像中提取出特征信息,来对数据库进行检索的方法速度快,而利用拓扑属性图匹配来确定匹配度的方法则相对较快。
    

    1.5人脸识别的研究内容

    人脸识别技术(AFR)就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。人脸识别技术的研究始于六十年代末七十年代初,其研究领城涉及图像处理、计算机视觉、模式识别、计算机智能等领城,是伴随着现代化计算机技术、数据库技术发展起来的综合交叉学科。
    1.5.1人脸识别研究内容

      人脸识别的研究范围广义上来讲大致包括以下hi个方面的内容。
    
      1.人脸定位和检测(Face Detection) :即从动态的场景与复杂的背景中检测出人臉的存在并且确定其位置,最后分离出来。这一任务主要受到光照、噪声、面部倾斜以及各种各样遮挡的影响。
    
      2.人脸表征(Face Representation) (也称人脸特征提取) :即采用某种表示方法来表示检测出人脸与数据库中的已知人脸。通常的表示方法包括几何特征(如欧氏距离、曲率、角度)、代数特征(如矩阵特征向量)、固定特征模板等。
    
      3.人脸识别(Face Recogni tion) :即将待识别的人脸与数据库中已知人脸比较,得出相关信息。这一过程的核心是选择适当的人脸表征方法与匹配策略。
    
      4.表情姿态分析(Expression/Gesture Analysis) :即对待识别人脸的表情或姿态信息进行分析,并对其加以归类。
    
    
      5.生理分类(Physical Classi fication) :即对待识别人脸的生理特征进行分析,得出其年龄、性别等相关信息,或者从几幅相关的图像推导出希望得到的人脸图像,如从父母图像推导出孩子脸部图像和基于年龄增长的人脸图像估算等。
    
      人臉识别的研究内容,从生物特征技术的应用前景来分类,包括以下两个方面:人脸验证与人脸识别。
    
      1.人脸验证((Face Veri ficat ion/Authenticat ion):即是回答“是不是某人?"的问题.它是给定一幅待识别人脸图像,判断它是否是某人的问题,属于一对一的两类模式分类问题,主要用于安全系统的身份验证。
    
      2.人脸识别(Face 。Recognition) :即是回答“是谁”的问题。它是给定-幅待识别人脸图像,再已有的人脸数据库中,判断它的身份的问题。它是个“-对多”的多类模式分类问题,通常所说的人脸识别即指此类问题,这也是本文的主要研究内容。
    

    1.5.2人脸识别系统的组成

      在人脸识别技术发展的几十年中,研究者们提出了多种多样的人脸识别方法,但大部分的人脸识别系统主要由三部分组成:图像预处理、特征提取和人脸的分类识别。一个完整的自动人脸识别系统还包括人脸检测定位和数据库的组织等模块,如图1.1.其中人脸检测和人脸识别是整个自动人脸识别系统中非常重要的两个环节,并且相对独立。下面分别介绍这两个环节。
    

    人脸检测与定位,检测图像中是否由人脸,若有,将其从背景中分割出来,并确定其在图
    像中的位置。在某些可以控制拍摄条件的场合,如警察拍罪犯照片时将人脸限定在标尺内,此时人脸的定位很简单。证件照背景简单,定位比较容易。在另一些情况下,人脸在图像
    中的位置预先是未知的,比如在复杂背景下拍摄的照片,这时人脸的检测与定位将受以下因素的影响: :

      1.人脸在图像中的位置、角度、不固定尺寸以及光照的影响:
    
      2.发型、眼睛、胡须以及人脸的表情变化等,3.图像中的噪声等。
    
      特征提取与人脸识别,特征提取之前一般都要敌几何归一化和灰度归一化的工作。前者指根据人脸定位结果将图像中的人脸变化到同一位置和大小:后者是指对图像进行光照补偿等处理,以克服光照变化的影响,光照补偿能够一定程度的克服光照变化的影响而提高识别率。提取出待识别的人脸特征之后,即进行特征匹配。这个过程是一对多或者一对一的匹配过程,前者是确定输入图像为图象库中的哪一个人(即人脸识别),后者是验证输入图像的人的身份是否属实(人脸验证).  
    

    以上两个环节的独立性很强。在许多特定场合下人脸的检测与定位相对比较容易,因此“特征提取与人脸识别环节”得到了更广泛和深入的研究。近几年随着人们越来越关心各种复杂的情形下的人臉自动识别系统以及多功能感知研究的兴起,人脸检测与定位才作为一个独立的模式识别问题得到了较多的重视。本文主要研究人脸的特征提取与分类识别的问题。

    2基于bp神经网络的人脸识别算法

      虽然人脸识别方法的分类标准可能有所不同,但是8前的研究主要有两个方向,一类是从人脸图像整体(Holistic Approaches)出发,基于图像的总体信息进行分类识别,他重点考虑了模式的整体属性,其中较为著名的方法有:人工神经网络的方法、统计模式的方法等。另一类是基于提取人脸图像的几何特征参数(Feature-Based Approaches), 例如眼、嘴和鼻子的特征,再按照某种距离准则进行分类识别。这种方法非常有效,因为人脸不是刚体,有着复杂的表情,对其严格进行特征匹配会出现困难。面分别介绍- -些常 用的方法,前两种方法属于从图像的整体方面进行研究,后三种方法主要从提取图像的局部特征讲行研究。
    
    
      2.1基于特征脸的方法
    

    特征脸方法(cigenface)是从生元分析方法PCA c Principal ComponentAnalysis 导出的一种人脸分析识别方法,它根据一-组人脸图像构造主元子空间,由于主元具有人脸的形状也称作特征脸。识别时将测试图像投影到主元子空间上得到了-组投影系数,然后和各个已知人的人脸图像进行比较识别,取得了很好的识别效果。在此基础上出现了很多特征脸的改进算法。

      特征脸方法原理简单、易于实现,它把人脸作为一个整体来处理,大大降低了识别复杂度。但是特征脸方法忽视了人脸的个性差异,存在着一定的理论缺陷。研究表明:特征脸方法随光线角度及人脸尺寸的影响,识别率会有所下降。
    

    2.2基于bp神经网络的方法

    一、实验要求采用三层前馈BP神经网络实现标准人脸YALE数据库的识别,编程语言为C系列语言。
    二、BP神经网络的结构和学习算法实验中建议采用如下最简单的三层BP神经网络,输入层为,有n个神经元节点,输出层具有m个神经元,网络输出为,隐含层具有k个神经元,采用BP学习算法训练神经网络。BP神经网络的结构BP网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对BP网络加以训练,网络就具有输入输出对之间的映射能力。BP网络执行的是有教师训练,其样本集是由形如(输入向量,期望输出向量)的向量对构成的。在开始训练前,所有的权值和阈值都应该用一些不同的小随机数进行初始化。BP算法主要包括两个阶段:

    2.2.1向前传播阶段

    ①从样本集中取一个样本(Xp,Yp),将Xp输入网络,其中Xp为输入向量,Yp为期望输出向量。
    ②计算相应的实际输出Op。在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是下列运算:

    (2) 向后传播阶段
    ①计算实际输出Op与相应的理想输出Yp的差;
    ②按极小化误差的方法调整权矩阵。这两个阶段的工作一般应受到精度要求的控制

    (1)作为网络关于第p个样本的误差测度(误差函数)。

    (2)如前所述,之所以将此阶段称为向后传播阶段,是对应于输入信号的正常传播而言的,也称之为误差传播阶段。为了更清楚地说明本文所使用的BP网络的训练过程,首先假设输入层、中间层和输出层的单元数分别是N、L和M。X=(x0,x1,…,xN-1)是加到网络的输入矢量,H=(h0,h1,…,hL-1)是中间层输出矢量,Y=(y0,y1,…,yM-1)是网络的实际输出矢量,并且用D=(d0,d1,…,dM-1)来表示训练组中各模式的目标输出矢量。输出单元i到隐单元j的权值是Vij,而隐单元j到输出单元k的权值是Wjk。另外用θk和Φj来分别表示输出单元和隐单元的阈值。于是,中间层各单元的输出为:

    (3)而输出层各单元的输出是:

    其中f(*)是激励函数,采用S型函数:

    2.2.2在上述条件下,网络的训练过程如下:

    (1) 选定训练集。由相应的训练策略选择样本图像作为训练集。
    (2) 初始化各权值Vij,Wjk和阈值Φj,θk,将其设置为接近于0的随机值,并初始化精度控制参数ε和学习率α。
    (3) 从训练集中取一个输入向量X加到网络,并给定它的目标输出向量D。
    (4) 利用式(3)计算出一个中间层输出H,再用式(4)计算出网络的实际输出Y。
    (5) 将输出矢量中的元素yk与目标矢量中的元素dk进行比较,计算出M个输出

    误差项:

    对中间层的隐单元也计算出L个误差项:

    (6) 依次计算出各权值和阈值的调整量:

    (8) 当k每经历1至M后,判断指标是否满足精度要求:E≤ε,其中E是总误差函数。

    如果不满足,就返回(3),继续迭代。如果满足,就进入下一步。
    (9) 训练结束,将权值和阈值保存在文件中。这时可以认为各个权值已经达到稳定,分类器形成。再一次进行训练时,直接从文件导出权值和阈值进行训练,不需要进行初始化。

    YALE数据库是由耶鲁大学计算视觉与扼制中心创立,包括15位志愿者,每个人有11张不同姿势、光照和表情的图片,共计165张图片,图片均为80*100像素的BMP格式图像。我们将整个数据库分为两个部分,每个人的前5幅图片作为网络的训练使用,后6副图片作为测试使用。测试样例:

    输入输出:

      神经网络在人脸识别应用中有很长的历史。早期用于人脸识别的神经网络主要是Kohonen自联想映射神经网络,用于人脸的“回忆”。所谓“回忆”是指当输入图像上的人脸受噪声污染严重或部分缺损时,能用Kohonen网络恢复出原来完整的人脸。Intrator 等人用一个无监督/监督混合神经网络进行人脸识别。其输入是原始图像的梯度图像,以此可以去除光照的变化。监督学习目的是寻找类的特征,有监督学习的目的是减少训练样本被错分的比例。这种网络提取的特征明显,识别率高,如果用几个网络同时运算,求其平均,识别效果还会提高。
    
      与其他类型的方法相比,神经网络方法在人脸识别上有其独到的优势,它避免了复:杂的特征提取工作,可以通过学习的过程获得其他方法难以实现的关于人脸识别的规律和规则的隐性表达。此外,神经网络以时示方式处理信息,如果能用硬件实现,就能显著提高速度。神经网络方法除了用于人脸识别外,还适用于性别识别、种族识别等。
    

    2.3弹性图匹配法

    弹性图匹配方法是-种基于动态链接结构DLA C Dynamic Link Architecture的方法。它将人脸用格状的稀疏图表示,图中的节点用图像位置的Gabor小波分解得到的特征向量标记,图的边用连接节点的距离向量标记。匹配时,首先J找与输入图像最相似的模型图,再对图中的每个节点位置进行最佳匹配,这样产生-一个变形图,其节点逼近模型图的对应点的位置。弹性图匹配方法对光照、位移、旋转及尺度变化都敏感。此方法的主要缺点是对每个存储的人臉需计算其模型图,计算量大,存储量大。为此,Wiskott 在原有方法的基础上提出聚東图匹配,部分克服了这些缺点。在聚束图中,所有节点都已经定位在相应目标上。对于大量数据库,这样可以大大减少识别时间。另外,利用聚束图还能够匹配小同人的最相似特征,因此可以获得关于未知人的性别、胡须和眼镜等相关信息。
    2.4基于模板匹配的方法
    模板匹配法是一-种经典的模式识别方法,这种方法大多是用归一一化和互相关,直接计算两副图像之间的匹配程度。由于这种方法要求两副图像上的目标要有相同的尺度、取向和光照条件,所以预处理要做尺度归一化和灰度归一化的工作。最简单的人脸模板是将人脸看成-一个椭圆,检测人臉也就是检测图像中的椭圆。另一种方法是将人脸用一-组独立的小模板表示,如眼睛模板、嘴巴模板、鼻子模板、眉毛模板和下巴模板等。但这些模板的获得必须利用各个特征的轮廓,而传统的基于边缘提取的方法很难获得较高的连续边缘。即使获得了可靠度高的边缘,也很难从中自动提取所需的特征量。模板匹配方法在尺度、光照、旋转角度等各种条件稳定的状态下,它的识别的效果优于其它方法,但它对光照、旋转和表情变化比较敏感,影响了它的直接使用。2.5基于人脸特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以作为人脸识别的重要特征。几何特征最早是用于人脸检测轮廓的描述与识别,首先根据检测轮廓曲线确定若干显著点,并由这些显著点导出- -组用于识别的特征度量如距离、角度等。采用儿何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征。
    定位眼睛往往是提取人脸几何特征的第-步。由于眼睛的对称性以及眼珠呈现为低灰度值的圆形,因此在人脸图像清晰瑞正的时候,眼睛的提取是比较容易的。但是如果人脸图像模糊,或者噪声很多,则往往需要利用更多的信息(如眼睛和眉毛、鼻子的相对位置等),而且.这将使得眼睛的定位变得很复杂。而且实际图像中,部件未必轮廓分明,有时人用眼看也只是个大概,计算机提取就更成问题,因而导致描述同-一个人的不同人脸时,其模型参数可能相差很大,面失去识别意义。尽管如此,在正确提取部件以及表情变化微小的前提下,该方法依然奏效,因此在许多方面仍可应用,如对标准身份证照片的应用。

    2.5九个人脸库介绍

    1. FERET人脸数据库
      http://www.nist.gov/itl/iad/ig/colorferet.cfm
      由FERET项目创建,此图像集包含大量的人脸图像,并且每幅图中均只有一个人脸。该集中,同一个人的照片有不同表情、光照、姿态和年龄的变化。包含1万多张多姿态和光照的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一。其中的多数人是西方人,每个人所包含的人脸图像的变化比较单一。

    2. CMU Multi-PIE人脸数据库
      http://www.flintbox.com/public/project/4742/
      由美国卡耐基梅隆大学建立。所谓“PIE”就是姿态(Pose),光照(Illumination)和表情(Expression)的缩写。CMU Multi-PIE人脸数据库是在CMU-PIE人脸数据库的基础上发展起来的。包含337位志愿者的75000多张多姿态,光照和表情的面部图像。其中的姿态和光照变化图像也是在严格控制的条件下采集的,目前已经逐渐成为人脸识别领域的一个重要的测试集合。

    3. YALE人脸数据库(美国,耶鲁大学)
      http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
      由耶鲁大学计算视觉与控制中心创建,包含15位志愿者的165张图片,包含光照、表情和姿态的变化。
      Yale人脸数据库中一个采集志愿者的10张样本,相比较ORL人脸数据库Yale库中每个对象采集的样本包含更明显的光照、表情和姿态以及遮挡变化。

    4. YALE人脸数据库B
      https://computervisiononline.com/dataset/1105138686
      包含了10个人的5850幅在9种姿态,64种光照条件下的图像。其中的姿态和光照变化的图像都是在严格控制的条件下采集的,主要用于光照和姿态问题的建模与分析。由于采集人数较少,该数据库的进一步应用受到了比较大的限制。

    5. MIT人脸数据库
      由麻省理工大学媒体实验室创建,包含16位志愿者的2592张不同姿态(每人27张照片),光照和大小的面部图像。

    6. ORL人脸数据库
      https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
      由英国剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化。该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大。
      ORL人脸数据库中一个采集对象的全部样本库中每个采集对象包含10幅经过归一化处理的灰度图像,图像尺寸均为92×112,图像背景为黑色。其中采集对象的面部表情和细节均有变化,例如笑与不笑、眼睛睁着或闭着以及戴或不戴眼镜等,不同人脸样本的姿态也有变化,其深度旋转和平面旋转可达20度。

    7. BioID人脸数据库
      https://www.bioid.com/facedb/
      包含在各种光照和复杂背景下的1521张灰度面部图像,眼睛位置已经被手工标注。

    8. UMIST图像集
      由英国曼彻斯特大学建立。包括20个人共564幅图像,每个人具有不同角度、不同姿态的多幅图像。

    9. 年龄识别数据集IMDB-WIKI
      https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
      包含524230张从IMDB和Wikipedia爬取的名人数据图片。应用了一个新颖的化回归为分类的年龄算法。本质就是在0-100之间的101类分类后,对于得到的分数和0-100相乘,并将最终结果求和,得到最终识别的年龄

    3matlab分析人脸方法介绍
    人脸识别之一:查找图片中的人脸并用方框圈出
    这种类似于智能手机拍照时,屏幕里那个框任务头部的红框。大致步骤为:获取RGB图片—>转换为灰度图像—>图像处理—>人脸识别。代码如下:clear all
    clc

    %获取原始图片
    i=imread(‘face.jpg’);
    I=rgb2gray(i);
    BW=im2bw(I); %利用阈值值变换法将灰度图像转换成二进制图像
    figure(1);
    imshow(BW);
    %最小化背景
    [n1 n2]=size(BW);
    r=floor(n1/10);
    c=floor(n2/10);
    x1=1;x2=r;
    s=r*c;

    for i=1:10
    y1=1;y2=c;
    for j=1:10
    if(y2<=c || y2>=9c) || (x11 || x2r10)
    loc=find(BW(x1:x2,y1:y2)==0);
    [o p]=size(loc);
    pr=o*100/s;
    if pr<=100
    BW(x1:x2,y1:y2)=0;
    r1=x1;r2=x2;s1=y1;s2=y2;
    pr1=0;
    end
    imshow(BW);
    end
    y1=y1+c;
    y2=y2+c;
    end
    x1=x1+r;
    x2=x2+c;
    end
    figure(2)
    subplot(1,2,1);
    imshow(BW)
    title(‘图像处理’);
    %人脸识别
    L=bwlabel(BW,8);
    BB=regionprops(L,‘BoundingBox’);
    BB1=struct2cell(BB);
    BB2=cell2mat(BB1);

    [s1 s2]=size(BB2);
    mx=0;
    for k=3:4:s2-1
    p=BB2(1,k)*BB2(1,k+1);
    if p>mx && (BB2(1,k)/BB2(1,k+1))<1.8
    mx=p;
    j=k;
    end
    end
    subplot(1,2,2);
    title(‘人脸识别’);
    imshow(I);
    hold on;
    rectangle(‘Position’,[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB2(1,j)],‘EdgeColor’,‘r’)实验效果图:

             从实验效果图中,可以看出红框框出了人脸部分。
    

    人脸识别之二:由输入的人像识别出数据库中人像
    这种情况类似于手机人脸解锁,通过当前的人脸去和保存的人脸做比对来实现解锁等功能;从网上看了好多资料,由于个人能力有限大多都没仿真出来,最后通过学习PCA算法,了解到可通过PCA算法对输入矩阵降维,提取特征值和特征向量的方式来做人脸比对。具体的PCA的东西在这里不作介绍,主要介绍一下如何实现人脸比对。
    大致步骤:制作人脸数据样本—>PCA提取样本数据特征值—>人脸比对1.人脸样本
    从网上搜集了10张人脸图片,来制作成样本。

                         %读取转换10张图片,生成数据矩阵function ImgData = imgdata()  
    

    %导入图片
    picture1 = rgb2gray(imread(‘1.jpg’));
    picture2 = rgb2gray(imread(‘2.jpg’));
    picture3 = rgb2gray(imread(‘3.jpg’));
    picture4 = rgb2gray(imread(‘4.jpg’));
    picture5 = rgb2gray(imread(‘5.jpg’));
    picture6 = rgb2gray(imread(‘6.jpg’));
    picture7 = rgb2gray(imread(‘7.jpg’));
    picture8 = rgb2gray(imread(‘8.jpg’));
    picture9 = rgb2gray(imread(‘9.jpg’));
    picture10 = rgb2gray(imread(‘10.jpg’));
    [m,n] = size(picture1);
    picture_ten = {picture1,picture2,picture3,picture4,picture5,picture6,picture7,picture8,picture9,picture10};
    for i=1:10
    %把mn的矩阵变换成1(mn)的矩阵
    ImgData(i,:) = reshape(picture_ten{i},1,m
    n);
    end
    %数据范围缩小到0到1之间
    ImgData = double(ImgData)/255;

    PCA分析function Cell_ten = PCA(imgdata,k)
    [m,n] = size(imgdata);
    img_mean = mean(imgdata); %计算每列平均值
    img_mean_ten = repmat(img_mean,m,1); %复制m行平均值至矩阵img_mean_ten
    Z = imgdata - img_mean_ten;
    T = Z’Z;%协方差矩阵
    [V,D] = eigs(T,k); %计算T中最大的前k个特征值与特征向量
    img_new = imgdata
    V*D; %低维度下的各个人脸的数据
    Cell_ten = {img_new,V,D};3.通过输入测试人脸从数据库中找到相对应人脸function face= facefind(Cell_ten,testdata)%此函数代码借鉴于他人,还未征求其同意,这里就暂时略过这里testdata是测试图片的数据4.主程序调用img=imgdata(); %图片矩阵数据
    Cell_ten=PCA(img,2);% PCA
    face1=facefind(Cell_ten,imread(‘test.jpg’));%识别
    subplot(1,2,1)
    imshow(‘test.jpg’)
    title(‘测试图像’)
    subplot(1,2,2)
    imshow(strcat(num2str(face1),’.jpg’))
    title(‘数据库图像’)测试效果: 使用这个方式可以实现简单的人脸识别,但精确度不高;

    4 分析算法
    在人脸识别系统中有许多关键环节,其中最重要的莫过于特征提取。利用主成分分析法(PCA)进行特征提取是目前应用最多的提取方法。作为一种科学的统计方法,它在模式识别、信号处理、数字图像处理等等领域都有广泛涉猎。基于PCA中空间原始数据主要特征提取,减少数据冗余的思想,一些在低维特征空间的数据被处理,并合理保留了原始数据中有用的信息,数据空间中维数过高的问题也得以解决。
    4.1  主成分分析的基本原理

    实际上主成分分析就是一种数学降维演算方法,用若干个综合变量来代替原本更多的变量,让这些综合变量尽可能的实现对原有变量信息的取代,并保持彼此之间不存在关联。这种多变量化为少数相互无关的变量且信息量不变的统计分析方法就叫做主成分分析法。
      假设F1表示原变量的首个线性组合所组成的主要成分指标,就有F1=a11X1+a21X2+…ap1Xp。根据这个数学式可知,如果在每一个主成分中提取一个信息量,即可用方差(F1)进行度量,随着方差F1的增大,F1所包含的信息也就越多,同时它的线性组合选取也可表示为X1、X2…XP,它们都被称为方差F1中的第一主成分。如果第一主成分不足以代表原有的P个变量信息时,就可以考虑选取F2,即第二个线性组合,借由它来反映原本的有效信息。在F2中可以不显示第一主成分中已有的信息,以数学语言来表达要求的话即Cov(F1,F2)=0,其中F2为第二主成分。所以按照实际原变量的变化需求,就可以构造出多个主成分指标。
      4.2人脸识别的技术特点

    人脸识别是模式识别中的重要分支,它是指通过计算机系统来分析人脸图像,从中获取有价值的识别信息,从而辨识身份。所以说从技术特点上来看,人脸识别具有以下几个关键特色。
     1、PCA算法
    算法大致步骤:
    设有m条n维数据。
    1)将原始数据按列组成n行m列矩阵X;
    2)将X的每一行(这里是图片也就是一张图片变换到一行)进行零均值化,即减去这一行的均值(样本中心化和标准化);将所有的样本融合到一个矩阵里面特征向量就是变换空间的基向量U=[u1,u2,u3,u4,…],脑袋里面要想到一个样本投影变换就是该空间的一个点,然后对于许多点可以用KNN等不同的方法进行分类。
    3)求出协方差矩阵C=1mXXTC=1mXXT C=\frac {1 }{m } XX^TC=m1XXT;
    4)求出协方差矩阵的特征值及对应的特征向量;
    5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P;
    6)Y=PXY=PX Y=PXY=PX即为降维到kk kk维后的数据。
      对数据进行中心化预处理,这样做的目的是要增加基向量的正交性,便于高维度向低纬度的投影,即便于更好的描述数据。
      对数据标准化的目的是消除特征之间的差异性,当原始数据不同维度上的特征的尺度不一致时,需要标准化步骤对数据进行预处理,使得在训练神经网络的过程中,能够加速权重参数的收敛。
      过中心化和标准化,最后得到均值为0,标准差为1的服从标准正态分布的数据。
      求协方差矩阵的目的是为了计算各维度之间的相关性,而协方差矩阵的特征值大小就反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大(越有投影的必要,矩阵相乘的过程就是投影),故而选取合适的前k个能以及小的损失来大量的减少元数据的维度。

    2、PCA原理推导
    基于K-L展开的PCA特征提取:

    5.算法优化方法
    我用了三种方法对其进行优化
    1.采用动量梯度下降算法训练 BP 网络。
    训练样本定义如下:
    输入矢量为
    p =[-1 -2 3 1
    -1 1 5 -3]
    目标矢量为 t = [-1 -1 1 1]
    2. 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:
    输入矢量:P = [-1:0.05:1];
    目标矢量:randn(’seed’,78341223);
    T = sin(2piP)+0.1randn(size§);
    3. 采用“提前停止”方法提高 BP 网络的推广能力。对于和例 2相同的问题,在本例中我们将采用训练函数 traingdx 和“提前停止”相结合的方法来训练 BP 网络,以提高 BP 网络的推广能力。在利用“提前停止”方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。在本例中,我们只定义并使用验证样本,即有
    验证样本输入矢量:val.P = [-0.975:.05:0.975]
    验证样本目标矢量:val.T = sin(2
    pival.P)+0.1randn(size(val.P))
    值得注意的是,尽管“提前停止”方法可以和任何一种 BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如 trainlm 函数,所以本例中我们采用训练速度相对较慢的变学习速率算法 traingdx 函数作为训练函数。
    参考文献

    [1] HongZiquan.AlgbricFeatureExcaciofmftfoReonino[JPatteo Recognition. 1991. 22 (1) :43~44.
    [2] Yuille A L Detcction Templates for Face Recognitio[JCognitive Neuroscience , 1991. 191-200
    [3]卢春雨张长水局城区城特征的快速人脸检测法[D北京:清华大学学报.1999.96 (1) ;4-6.
    [4]陈刚,减飞虎实用人脸识别系统的本征脸法实现[D]2001年5月230():45-46.
    [
    5]杜平,徐大为,刘重庆,基F整体特征的人脸识别方法的研究[12003年6月49 (3) ;382-383.
    [6] Chow G, Li X. Towards A System for Automatic Facial Feature Detctio[U] 1993. 2903)2-3.
    [7]杨变若,王煎法,杨未来人脸全局特iE识别研究[Z]1997年11月3(5):; 871-875.
    [8]边肇棋,张学工阎平凡等模式识别D]北京:清华大学出版社2000 302)16-17.

    致 谢

      从毕业设计的选题到论文的指导到最后定稿,期间遇到了无数的困难和阻碍,也曾想过对自己降低要求,也曾想过放弃最初想要坚持的设计,但是最后在孙老师和同学的鼓励和陪伴下,努力克服了所有的困难,独立完成了毕业设计和论文的书写。尤其是要感射我的论文指导老师孙老师,不厌其烦的对我的设计进行指导修改,耐心的帮助我改进设计帮助我搜集相关的资料,感谢孙老师如母亲--般的关怀,在孙老师身上不仅学习到了对学术严谨的态度,更被孙老师亲切无私的个人魅力所感染。
    
      还要感谢我的同学和其他所有的老师,他们严谨的学术态度,宽容待人严于律己的处世风范都使我受益良多。
    
    展开全文
  • 基于ARM-Linux采煤制动器试验台信号采集系统设计
  • DSP信号采集处理在矿井提升监测诊断中的研究与应用
  • 基于人的认知可靠性(HCR)模型的进站信号机.doc
  • 交通信号控制机设备体积虽然不大,但不管硬件还是软件都是一个较大的系统,完成信号机的同步电路的模块设计是为研制智能交通信号控制机打下基础。道路交通信号控制机是智能交通系统的重要组成部分,也是所有末端设备...
  • 调频信号发射与接收的设计论文.doc
  • 利用支持向量(SVM)对微震和爆破震动信号进行分类。结果表明:爆破震动信号分量f1~f7的奇异值方均根值和标准差都要大于微震信号,分量f1~f5的奇异值平均值要大于微震信号;EWT_Hankel_SVD特征提取法识别效果要优于...
  • 针对室内定位中由于手机的运动引起采集信号强度不稳定造成的定位误差大的问题,提出了基于信号强度与加速度梯度融合综合的新的测距算法,结合手机方向信息、地图信息、信号强度的分布信息,利用测距信息与地图匹配...
  • 基于DSP的自整角励磁信号SPWM的实现研究,牛杰,,针对能够获取雷达天线方位角和俯仰角的自整角励磁信号的产生,使用高速DSP,采用不对称规则采样法实时计算生成SPWM。深入分析了SP
  • 雷达信号处理专用自动增益控制系统,童童,李兆龙,针对雷达信号处理接收到的信号幅度变化范围很大,而为了雷达系统能够接收到稳定的信号,设计一种专用于雷达信号处理的自动增
  • 2020年研究生数学建模,第十七届华为杯研究生数学建模,脑接口,参考文献,全套人工智能,可完成题目所有要求。
  • 为了提高GPS软件接收机信号捕获的载波频率分辨率,在频域并行频率空间搜索捕获方法中,利用加大分析数据长度可以提高频率分辨率的优点,结合频域并行码空间搜索捕获方法,构成了一种混合搜索方法。仿真结果表明本...
  • 步进变频穿墙雷达信号处理的设计与实现,贺鸿飞,孔令讲,阐述步进变频穿墙雷达的工作原理;根据该雷达信号处理算法和系统对实时性的要求,以DSP和FPGA为核心,并辅以双口RAM和USB的方式构建��
  • 基于改进液体状态的脑运动皮层信号的建模,黄江帅,王永骥,液体状态(LSM)是一种全新的计算模型,它既简单又具有强大的计算能力。它能够最大限度地开发出传统的回归神经网络的计算能力,
  • 基于DSP的气象传真接收机信号处理模块设计,刘繁明,王振鹏,针对现有气象传真机信号处理模块大量使用模拟器件、体积大、功耗高、不利于模块的小型化、且因模拟器件性能受环境影响较大,致使
  • 跳频接收中锁频环的信号相量分析,陈莉华,吴晓非,本文介绍了跳频系统中接收跟踪部分锁频环的工作原理,并使用MATLAB建立跳频接收跟踪环路的仿真平台。根据仿真结果对这种跳频跟
  • 一篇硕士论文的开题报告,可以借鉴

     

     

    论文题目

    基于Android的无线视频监控的设计与实现

    论文工作计划

     

    包文

    括字

    :总

    文结

    献等

    阅工

    读作

    、的

    课进

    题度

    调计

    查划

    实此

    验栏

    方由

    法研

    、究

    理生

    论填

    分写

     

     

     

     

     

    一、课题调查

    视频监控业务具有悠久的历史,在传统上广泛应用于安防、交通事故处理等行业应用领域。近年来,随着计算机和网络的普及,视频监控正越来越广泛地渗透到教育、政府、娱乐、医疗、酒店、运动等其它各种领域。随着人们对信息技术的深入研究,图像处理、视频压缩、网络通信等计算机技术得到了迅速发展,以这些技术为基础的视频监控技术不断成熟并且得到了广泛应用。视频监控系统是由视频采集、视频压缩、视频传输、视频管理和系统控制等电子设备和计算机系统组成的有机整体。

    随着移动网络带宽的增加,特别是3G网络、wifi的广泛普及以及更高速规范的4G网络的研究以及建设,通过手机观看监控视频已经成为现实。在有线网络的基础上,增加移动视频监控业务,用户可随时随地通过手机了解现场实时情况。使用手机视频监控的优势已经非常的明显:

    覆盖面广:手机无线网络覆盖率极高,几乎不受山川、河流、桥梁道路等复杂地形和区域限制。

    部署方便:无线视频监控系统几乎可以部署在室外的任何地方,包括水体、崎岖地带、偏远地方。前端编码器或网络摄像机,甚至手机,采取无线接入的方式,只需要在移动网络覆盖下,就能很方便、很简易地搭建起监控点,免除复杂地形导致的布线繁琐和麻烦。

        高数据吞吐量:考虑到未来的WIFI和3G技术发展,无线网络传输带宽可高达6Mbps~200Mbps.

    高可靠性:高端无线传输系统的可靠性高达99.999%的载波级,可以实现无中断的安全传输。

    成本低廉:免除了远距离网络布线所造成的高昂费用。

    监控方便:可随时随地采用手机进行无线视频监控,不局限于预先安装好监控客户端的某台电脑。

    业务多样:无线视频监控不仅可以覆盖所有固网监控业务,还可以开展各种移动业务,如:移动执法监控、移动采访等。

    在移动智能终端方面,Android操作系统成为近年来最受关注的操作系统,由于它的免费性,以及系统的开放性,使开发人员可以随时取得程序的源代码,这对于程序开发人员和运营商定制非常重要。国际一线手机厂商三星,HTC,摩托罗拉等公司加盟,使得Android操作系统的发展更加迅速化,硬件配置的上升使得手机成了名符其实的“掌上电脑”。 同时,基于Android操作系统的智能手机已经占据全球超过一半的份额,使得Android操作系统已经跃居智能终端的榜首。本课题源于本人参加的项目:基于TD-SCDMA的远程无线视频监控系统。

    二、理论分析

        本课题所设计的移动视频监控系统是基于Android平台开发的,选用H.264标准作为视频压缩标准,采用RTP协议作为传输协议,针对系统需求实现客户端软件的开发。课题基于C/S模式的移动视频监控系统,客户端为Android移动终端,如智能手机、平板电脑等。

    2.1系统框架

    本系统主要包括Android手机客户端,流媒体服务器,视频服务器。在整个系统框架中,在监控前端,用户可以将摄像头固定在某一区域,使用摄像头采集监控区域的视频图像,摄像头可以根据用户的需要,调整监控角度和设置参数;在视频服务器端,系统通过H.264编码标准将视频图像数据压缩编成网络格式图像,大大的提高传输的效率;视频服务器利用sip协议和媒体服务器进行交互,发送数据到媒体服务器,媒体服务器主要用来转发,把数据转发到不同的客户端。媒体服务器和客户端的交互主要通过socket通信。客户端接收到数据流后,对数据流进行解码和播放。

    整个系统的框架图:

         

    2.2 Android对多媒体的支持

    Open Core是Android 多媒体框架的核心,所有Android平台的音视频采集,播放的操作都是通过它来实现。它也被称为PV(Packet Video), Packet Video是一家专门提供多媒体解决方案的公司。通过Open Core程序员可以方便快速的开发出想要的多媒体应用程序,例如:音视频的采集,回放,视频会议,实时的流媒体播放等等应用。Open Core支持的格式包括:MPEG4、H.264、MP3、AAC、AMR、JPG、PNG、GIF等。Open Core多媒体框架有一套通用课扩展的接口,针对第三方的多媒体编解码器,输入、输出设备等等。

        OpenCore是一个多媒体的框架,从宏观上来看,它主要包含了两大方面的内容:

      PVPlayer:提供媒体播放器的功能,完成各种音频(Audio)、视频(Video)流的回放(Playback)功能;

      PVAuthor:提供媒体流记录的功能,完成各种音频(Audio)、视频(Video)流的以及静态图像捕获功能。

    为了更好的组织整体的架构,OpenCore在软件层次在宏观上分成几个层次:

    OSCL:Operating System Compatibility Library (操作系统兼容库),包含了一些操作系统底层的操作,为了更好地在不同操作系统移植。包含了基本数据类型、配置、字符串工具、IO、错误处理、线程等内容,类似一个基础的C++库。
        PVMF:PacketVideo Multimedia Framework(PV多媒体框架),在框架内实现一个文件解析(parser)和组成(composer)、编解码的NODE,也可以继承其通用的接口,在用户层实现一些NODE。
        PVPlayer Engine:PVPlayer引擎。
        PVAuthor Engine:PVAuthor引擎。

      从播放的角度,PVPlayer的输入的(Source)是文件或者网络媒体流,输出(Sink)是音频视频的输出设备,其基本功能包含了媒体流控制、文件解析、音频视频流的解码(Decode)等方面的内容。除了从文件中播放媒体文件之外,还包含了与网络相关的RTSP流(Real Time Stream Protocol,实时流协议)。在本系统中,我们不过多的研究OpenCore的实现,只需要调用Android提供的上层Media  API进行视频播放器的开发。

     2.3 流媒体服务器的架构

        流媒体服务器是负责和视频服务器交互获取经过压缩的视频流数据,通过

    RTP/RTCP发送经过压缩的数据包到移动终端,移动终端通过解压这些数据包后可以播放实时视频,流媒体服务器的实现是用户可以通过终端观看想要查看的视频信息。    

    本系统的流媒体服务器主要包括基于live555的服务器,Live555 是一个为流媒体提供解决方案的跨平台的C++开源项目,它实现了对标准流媒体传输协议如RTP/RTCP、RTSP、SIP等的支持。Live555实现了对多种音视频编码格式的音视频数据的流化、接收和处理等支持,包括MPEG、H.263+、DV、JPEG视频和多种音频编码。同时由于良好的设计,Live555非常容易扩展对其他格式的支持。Live555 Streaming Media

    整体框架如图所示:

        UsageEnvironment模块是对系统环境的抽象,包括抽象类UsageEnvironment和TaskScheduler。UsageEnvironment主要用于消息的输入输出和用户交互功能;TaskScheduler实现事件的异步处理、事件处理函数的注册等,它通过维护一个异步读取源实现对诸如通信消息到达等事件的处理,通过使用DelayQueue实现对其他注册函数的延时调度。该模块还包含一个HashTable类,在整个项目中都可以用到它。程序设计者通过自定义该抽象了类UsageEnvironment和TaskScheduler类的子类,就可以在特定环境(如GUI环境)中运行,不需要进行过多的修改。      

    BasicUsageEnvironment模块是UsageEnvironment的一个控制台应用的实现。它针对控制台的输入输出和信号响应进行具体实现。

    GroupSock模块用于实现数据包的发送和接收。GroupSock主要被设计用以支持多播,但它也完全支持单播通信。

      LiveMedia模块是Live555最重要的模块。该模块声明了一个抽象类Medium,其他所有类都派生自该类,下面简要介绍这些类:

      RTSPClient:该类实现RTSP请求的发送和响应的解析,同时根据解析的结果创建对应的RTP会话。

      MediaSession:用于表示一个RTP会话,一个MediaSession可能包含多个子会话(MediaSubSession),子会话可以是音频子会话、视频子会话等。

      RTCPInstance:该类实现RTCP协议的通信。

      Source和Sink:这两个概念类似DirectShow中的Filter。Source抽象了数据源,比如通过RTP读取数据。Sink是数据消费者的抽象,比如把接收到数据存储到文件,该文件就是一个Sink。数据的流动可能经过多个Source和Sink。MediaSink是各种类型的Sink的基类,MediaSource是各种类型Source的基类,各种类型的流媒体格式和编码的支持即是通过对这两个类的派生实现的。Source和Sink通过RTP子会话(MediaSubSession)联系在一起。

    2.4 视频服务器

        本系统的视频服务器采用了TI公司的DaVinci解决方案,主要用来处理摄像头传输过来的原始视频数据,摄像头采集到信息后直接交给视频监控终端,视频监控终端进行编码和封装数据,并发送数据流到流媒体服务器。

    2.5 流媒体协议

        流媒体服务器中主要的协议: RTP实时传输协议、RTCP实时传输控制协议、RTSP实时流协议以及SIP会话初始协议。其中RTP/RTSP、RTSP协议主要用来流媒体的传输,SIP协议主要是实现对云台的控制。

    RTP/RTCP、RTSP协议关系如图所示,RTP/RTCP工作在传输层,RTSP工作在应用层。RTP主要承担数据传输任务,而RTCP为应用层提供视频质量控制的手段和方法。RTSP则是控制RTP的发送。RTSP的消息是由客户端到服务器的请求和服务器到客户端的回应组成。

    三、课题研究的内容

    1、搭建android的开发环境,熟悉MVC架构的android开发平台(intent、antivity、service);深入研究android下多媒体框架的原理,理解android下对h.264文件的解码原理,最后,在此基础上做一个视频监控的客户端软件,使其能够实时播放视频,并对视频参数进行设置,控制云台的旋转以及报警处理系统等功能。

    2、分析socket通信,建立socket通信连接,能够使android客户端和媒体服务器之间的通信连接,建立信令的传输,使其客户端能够加载媒体服务器发送过来的数据信息,验证用户的登录以及用户发出指令消息控制云台的旋转和设备参数的设置。

    3、研究live555的框架,在基于live555这个开源项目上二次开发适合本系统的流媒体服务器,使其能够实现转发数据的功能,实现多个终端能够同时观看实时视频的功能。

    4、分析整个系统相关的协议:rtp/rtcp协议、rtsp协议、sip协议。其中,利用rtsp控制实时视频流的rtp/rtcp传输,sip协议控制视频采集终端。

    5 、针对有相当一部分配置android2.3平台的主流手机无法升级到android4.0平台,本系统分别开发出适合android2.3和android4.0平台的客户端软件。

    四、研究进度计划

    第一阶段(2011年12月-2012年3月):初期的调研和资料的搜集、整理。熟悉android开发环境,学习相关的android知识以及rtp/rtcp协议、rtsp协议、sip协议以及H.264编解码的知识。

    第二阶段(2011年4月-2011年8月):编写客户端软件,live555的二次开发,实现基本功能并测试,结合系统逐步实现功能并通过调试。

    第三阶段(2011年9月-2011年11月):整体性调试,主要针对实时视频延迟以及不流畅问题的解决,并完善功能。

    第四阶段(2011年12月-2012年3月):论文的撰写。

    五、文献阅读

    [l]林冬.高清化:数字视频监控系统发展方向[J].中国安防技术与应用.2009,(l-2):38-39

    [2]马天宝,游敏惠.视频监控系统关键技术及发展分析[J].科技论坛,2009(3):3

    [3]田俊静,张波,黄湘情等译.Android基础教程[M].,北京:人民邮电出版社.2010.

    [4]西刹子.安防天下——智能网络视频监控技术详解与实践,北京:清华大学出版社,2010:3-10

    [5]郭卫华.模拟视频监控系统之过去、现在和将来.中国安防,2008(Z1)54-57

    [6]江潮.基于网络的数字视频监控系统.武汉大学学报(自然科学版),200046(5)

    [7]石头 张笑微 周建雄.智能网络视频监控系统.兵工自动化,2009,28(12):7l

    [8]余腊生 刘勇.基于网络的智能视频监控系统的设计与实现.计算机工程与设计,2009(16):31

    [9]李磊.视频监控关键技术及其应用前景.湖北:湖北省通信学会2006学术年会论文集.2006:283-285

    [10] E2Ecloud工作室.深入浅出Google Android,北京:人民邮电出版社,2009,3

    [11] 高嵩,赵方,宋茂强.移动流媒体视频监控系统的 研究与设计.计算机应用研究. 1001- 3695( 2009) 03- 1044- 03

    [12] H.Schulzrinne,et a1.RTP:A Transport Protocol for Real-Time Applications,2003.7

    [13] RTP:A Transport Protocol for real-Time Application[S].RFC 3550,2003

    [14] SWenger,M.M.Hannuksela,etal.RTP Payload Format for H.264 Video. RFC3984, 2005.

    [15] K.Brown.The RTCP gateway:scaling real-time control bandwidth for wireless networks.Computer Communications,23(2000),1470-1483

    [16] H.Schulzrinne,A.Rao,R.Lanphier.Real Time Streaming Protocol[S].RFC 2326,1998

    [17] Xue-Wu Zhang,Gang Hu.Strategies of improving QOS for Video Transmission over 3G Wireless Network[J] .IEEE NETWORK,2005

    [18] M.Handley,V. Jacobson.Session Description Protocol[S].RFC 2327 ,1998

    [19] ]ShawnVanEvery.ProAndroidMedia[M].USA:APress,2009,41-45.

    [20]王彦丽,程明,等.基于RTP/RTCP的数字视频监控系统的设计与实现[J] .计算机工程与科学 2009,31(3):58-60

    [21]吕伟梅,郑庆华,等.移动流媒体播放器的设计与实现[J] .计算机科学 2008,34(9):126-128

    [22]章民融,徐亚峰,等.基于RTSP的流媒体视频服务器的设计与实现[J].计算机应用与软件,2006,23(7):93-95

    [23]李思.基于RTP的视频传输控制的研究[D] .西安:西安电子科技大学,2009.

    [24]毕厚杰.新一代视频压缩编码---H.264/AVC[M].北京:人民邮电出版社,2005 [25]岑慧.RTP/RTCP协议在3G多媒体移动通信中的应用研究[D] .杭州:浙江工业大学,2008.

    [26]白刚等. 3G网络视频流媒体服务系统研究与实现[J].计算机工程与应用.2005,24

     

     

    注:此页不够可增加。

     

     

     

    论此

    文栏

    预由

    计导

    要师

    求填

    及写

     

    该生对研究内容的国内、外文献阅读充分,理论分析够用,研究内容和实现方案明确,研究进度安排较合适,对于实现方法和过程说明清晰,特准予开题。

        预计再经过约一年的研究,蒋培健同学能针对拟研究内容提出创新性方案,分析和验证所提方案性能,并至少在高水平通信类期刊上发表1篇以上的学术论文,并完成硕士培养要求和毕业论文。

     

     

    PC,windows7操作系统,visual studio2010,eclipse开发平台,android智能手机,云台、摄像头

     

    姓   名

    职   称

    所  在  单  位

    组 长


      

    成 员


      

    成 员


      

    成 员

     

     

     

     

     

     

     

     

     

    组长签字:                   年   月   日

     

    教意

    部见

                              

                               

     

     

       主任:         年  月  日              

     

    所在学院意见

                     

     

     

     

         院长:         年   月  日

    说明:1. 开题报告工作是研究生培养的重要环节,务必高度重视。

    2. 开题报告会必须在教学部或学院范围内公开举行,并应对其内容进行认真审查,若开题报告组对研究生的选题有不同看法,请详细写在“开题报告组意见”里,对是否重新选题提出明确意见。如开题报告未获通过,可于三个月之内再做一次

    3. 开题报告完成后,请于第四学期末将此表送交研究生培养科留存,作为论文答辩资格

    审查的重要依据,另备复印件两份,分别由所在学院和研究生保存。

    展开全文
  • 这项工作提出了一种基于支持向量(SVM)和离散小波变换(DWT)的使用心电图(ECG)自动分类心律不齐的方法。 由于遗传性的复杂性和ECG信号的非平稳性质,像心律不齐之类的疾病的检测很麻烦。 该方法使用SVM进行...
  • 重点介绍了利用Matlab软件设计实现信号仿真系统的基本原理及功能,以及利用Matlab软件提供的图形用户界面(Graphical User Interfaces ,GUI)设计具有人交互、界面友好的用户界面。本文采用Matlab的图形用户界面...
  • 利用心算任务增强脑-接口信号特征的研究,王陆洲,王索刚,本文针对传统的基于P300脑-接口系统,脑电信号信噪比低,脑电信号特征包含信息量少等问题,提出一种基于视觉刺激的,利用大脑处�
  • 基于TMS320F2808 DSP设计的复合频率信号频率计MULTISIM仿真+WORD论文文档, 1 引言 混合信号检测在信号处理领域中占有重要的地位。在故障检测、电谐波信号测量、噪声监测等应用场合中,人们都需要通过特定的算法对...
  • PWM(pulse width modulation)调制和ΣΔ调制方式均能将任意波形信号转化为一位比特流信号,可以作为声呐发射的驱动信号。为对比研究这2种调制方式在声呐发射驱动信号调制应用方面的性能,文中将理论分析通过...
  • GPS接收机信号捕获改进方式及仿真结果,钱进,张瑞婕,本文旨在通过新的捕获方法,以减少GPS接收机信号捕获过程中所需要的相关操作数量,并由此提高GPS接收机信号捕获的速度,并通过计算

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 25,430
精华内容 10,172
关键字:

关于信号机的论文