精华内容
下载资源
问答
  • 关系模型的主要特征是用
    千次阅读
    2020-01-14 20:08:08

    关系型数据库的主要特征

    1)数据集中控制
    在文件管理方法中,文件是分散的,每个用户或每种处理都有各自的文件,这些文件之间一般是没有联系的,因此,不能按照统一的方法来控制、维护和管理。而数据库则很好地克服了这一缺点,可以集中控制、维护和管理有关数据。

    2)数据独立
    数据库中的数据独立于应用程序,包括数据的物理独立性和逻辑独立性,给数据库的使用、调整、优化和进一步扩充提供了方便,提高了数据库应用系统的稳定性。

    3)数据共享
    数据库中的数据可以供多个用户使用,每个用户只与库中的一部分数据发生联系;用户数据可以重叠,用户可以同时存取数据而互不影响,大大提高了数据库的使用效率。

    4)减少数据冗余
    数据库中的数据不是面向应用,而是面向系统。数据统一定义、组织和存储,集中管理,避免了不必要的数据冗余,也提高了数据的一致性。

    5)数据结构化
    整个数据库按一定的结构形式构成,数据在记录内部和记录类型之间相互关联,用户可通过不同的路径存取数据。

    6)统一的数据保护功能
    在多用户共享数据资源的情况下,对用户使用数据有严格的检查,对数据库规定密码或存取权限,拒绝非法用户进入数据库,以确保数据的安全性、一致性和并发控制

    更多相关内容
  • 现有的基于多色集合的公差表示模型主要优点是能处理的特征种类较多。但由于多色集合无法处理自由度信息,模型生成的可选装配公差类型的数目较多,且不能直接用于公差分析与公差综合。针对该问题,在其原有的从特征...
  • 第四章系统建模方法 1 何谓系统模型系统模型有哪些主要特征 2 何谓系统分析系统分析包括有哪些要素画简图说明这些要素问的关系 3 为什么在系统分析中广泛使用系统模型而不是真实系统进行分析 4 对系统模型有哪些基本...
  • 由于住宅产品的异质性,特征价格模型(HPM)被...采用SPSS10.0软件对模型进行多元回归,得到了6个主要住宅特征的隐含价格,并将9个与房价关系密切的住宅特征按照重要程度分为三类,对模型的统计检验和模型结果的分析表明,该
  • 针对中文人物社会关系标注语料库的匮乏和人物关系分类... 为了充分利用数据集对该特征选择方法的效果进行测试,使用k-折交叉验证检验该方法的有效性,实验表明通过该方法产生的分类模型具有较强的区分能力和泛化能力。
  •  数据模型是对现实世界数据特征进行抽象的工具,用来描述和处理现实世界中的数据和信息。数据模型要能较真实地模拟现实世界,既要便于人们理解,又要便于在计算机上实现。数据模型主要由数据结构、数据操作、数据...
  • 第四章 系统建模方法 1何谓系统模型系统模型有哪些主要特征 2何谓系统分析系统分析包括有哪些要素画简图说明这些要素间的关系 3为什么在系统分析中广泛使用系统模型而不是真实系统进行分析 4对系统模型有哪些基本...
  • 针对中文人物社会关系标注语料库的匮乏和人物关系分类...为了充分利用数据集对该特征选择方法的效果进行测试,使用k-折交叉验证检验该方法的有效性,实验表明通过该方法产生的分类模型具有较强的区分能力和泛化能力。
  • 关系模型关系模型的数据结构、关系模型的操作集合和关系模型的完整性约束三部分组成,这三部分也称为关系模型的三要素。 数据结构 关系数据模型源于数学,它二维表来组织数据,而这个二维表在关系数据库中称为...

    关系数据模型

    关系数据模型

    关系模型由关系模型的数据结构、关系模型的操作集合和关系模型的完整性约束三部分组成,这三部分也称为关系模型的三要素

    数据结构

    关系数据模型源于数学,它用二维表来组织数据,而这个二维表在关系数据库中称为关系。关系数据库就是表或者说是关系的集合。

    数据操作

    关系数据模型给出了关系操作的能力,包括。

    1. 传统的运算关系:并(union)、交(intersection)、差(difference)、广义迪卡尔积(extended cartesian product)
    2. 专门的关系运算:选择(select)、投影(project)、连接(join)、除(divide)
    3. 有关的数据操作:查询(query)、插入(insert)、删除(delete)、更改(update)

    关系模型中的操作对象是集合(或表),而不是单个数据行,也就是说,关系模型中操作的数据以及操作的结果都是完整的集合(或表),这些集合可以只包含一行数据,也可以不包含任何数据。

    完整性约束

    在数据库中数据的完整性是指保证数据正确的特征,数据完整性是一种语义概念,它包括两个方面:

    1. 与现实世界中应用需求的数据的相容性和正确性。
    2. 数据库内数据之间的相容性和正确性。

    完整性约束在关系型数据库中一般分为三类,实体完整性(主键)、参照完整性(外建)、用户定义完整性

    关系型数据库的基本术语

    基本术语

    1. 关系(表)

      通俗地讲,**关系(relation)**就是二维表,二维表的名字就是关系的名字。

    2. 属性(列)

      二维表中的每一个称为属性(attribute),没一个属性有一个名字,称为属性名。n列就是n元。

    3. 值域(取值范围)

      二维表中属性的范围称为值域(domain)。如性别只能‘男’或‘女’。

    4. 元组(行)

      二维表中的一行数据称为一个元组(tuple)

    5. 分量(元组中每个属性的值)

      元组中的没一个属性值称为元组的一个分量(component),n元关系的每个元组有n个分量。

    6. 关系模式(表结构、表头)

      二维表的结构称为关系模式(relation schema),或者说关系模式就是二维表的表框架或表头结构。设有关系名R,属性分别是a、b、c、d,则关系模式可以表示为:R(a,b,c,d)。如果将关系模式理解为数据类型,则关系就是该数据类型的一个具体值。

    7. 关系数据库

      对应于一个关系模型的所有关系的集合称为关系数据库(relation database)

    8. 候选键

      如果一个属性或属性集(可以有多个候选键)的值能够唯一标识一个关系的一个元组而又不包含多余的属性,则称该属性或属性集为候选键(candidate key),如学号、身份证。候选键又称为候选关键字或候选码。

    9. 主键

      当一个关系中有多个候选键时,可以从中选择一个作为主键(primary key)。每个关系只能有一个主键。主键也称为主码或关键字,是表中的属性或属性组,用于唯一地确定一个元组。

    10. 主属性与非主属性

      包含在任意候选键中的属性称为主属性(primary attribute);不包含任一候选键的属性为非主属性(nonprimary attribute)

    术语对比表:

    关系术语一般的表格属于
    关系名表名
    关系模式表头(表中所含列的描述)
    关系(一张)二维表
    元组记录或行
    属性
    分量一条记录中的某个列的值

    对关系的限定

    关系可以看成二维表,但并不是所有二维表都是关系。关系数据库对关系有一些限定,如:

    1. 关系中的每个分量都必须是不可再分的最小数据。
    2. 表中列的数据类型是固定的,即列中的内一个分量都是相同类型的数据,来自相同的值域。
    3. 不同列的数据可以取自相同的值域,每个列称为一个属性,每个属性有不同的属性名。
    4. 关系表中列的顺序不重要,即列的次序可以任意交换,不影响其表达的语义。
    5. 行的顺序也不重要,交换行数据的顺序也不影响其内容。
    6. 同一个关系中的元组不能重复,即在一个关系中,不能有两个元组的值完全相同相同。

    关系代数

    关系代数是关系操作语言的一种传统的表示方式,它是一种抽象的查询语言,是一种单次关系(或者说是集合)语言。包括运算对象、运算符和运算结果。

    关系代数可分为两大类:

    1. 传统集合运算:这类运算完全把关系看作元组的集合,包括广义迪卡尔积运算、并运算、交运算、差运算
    2. 专门的关系运算:这类关系除了把关系看作元组的集合以外,还通过运算表达了查询的要求,包括选择、投影、连接、除运算

    传统关系运算

    1. 并运算

      设关系R与S均是n目关系,关系R与S的并记为:

      R ∪ S = { t ∣ t ∈ R ∨ t ∈ S } R \cup S = \{t|t \in R \lor t\in S\} RS={ttRtS}

      其结果仍是n目关系,由属于R或S的元组组成。

    2. 交运算

      设关系R与S均为n目关系,关系R与S的交记为:

      R ∩ S = { t ∣ t ∈ R ∧ t ∈ S } R \cap S = \{ t| t\in R \land t \in S \} RS={ttRtS}

      其结果仍是n目关系,由属于R也属于S的元组组成。

    3. 差运算

      设关系R与S均为n目关系,关系R与S的差运算记为:

      R − S = { t ∣ t ∈ R ∧ t ∉ S } R-S = \{t| t\in R \land t \notin S\} RS={ttRt/S}

      其结果仍是n目关系,由属于R且不属于S的元组组成。

    4. 广义迪卡尔积

      广义迪卡尔积不要求参加运算的两个关系具有相同的目数。

      两个分别为m目和n目的关系R和S的广义迪卡尔积是一个有 m+n 个列的元组的集合。元组的前m列是关系R的一个元组,后n个是关系S的一个元组。若R有K1个元组,S有K2个元组,则R和S的广义迪卡尔积有 K1*K2个元组,记为:

      R × S = { t r t s ^ ∣ t r ∈ R ∧ t s ∈ S } R \times S = \{ \hat{t_r t_s} | t_r \in R \land t_s \in S \} R×S={trts^trRtsS}

      其中, t r t s ^ \hat{t_r t_s} trts^表示有两个元组前后有序连接成的一个元组。

    专门的关系运算

    1. 选择

      选择是指从指定的关系中选出满足给定条件的元组而组成的一个新的关系。表示为:

      KaTeX parse error: Undefined control sequence: \and at position 28: …= \{t | t\in R \̲a̲n̲d̲ ̲F(t)= true\}

      其中 σ \sigma σ 是选择运算符,R是关系名,t是元组,F是逻辑表达式。

      如: σ S d e p t = ′ 计 算 机 ′ ( S t u d e n t ) \sigma_{Sdept='计算机'}(Student) σSdept=(Student)

    2. 投影

      投影运算是从关系R中选取若干列,并用这些属性组成一个新的关系。表示为:

      ∏ A ( R ) = t . A ∣ t ∈ R \prod_A(R) = {t.A | t\in R} A(R)=t.AtR

      其中, ∏ \prod 是投影运算符,R是关系名,A是被投影的属性或属性组。t.A 表示t这个元组中相应于属性A的分量,也可以表示为t[A]。

      投影运算一般由两步完成:

      1. 选出指定的属性,形成一个可能含有重复行的新关系。
      2. 删除重复行,形成结果关系。

      如: ∏ S n a m e , S d e p t ( S t u d e n t ) \prod_{Sname,Sdept}(Student) Sname,Sdept(Student)

    3. 连接

      连接运算用来连接相互之间有联系的两个关系,从而产生一个新关系。这个过程通过连接属性来实现。连接运算主要有一下几种:

      1. θ \theta θ 连接( θ \theta θ 是比较运算符)

        表示为 { t r t s ^ ∣ t r ∈ R ∧ t r ∈ S ∧ t r [ A ] θ t s [ B ] } \{\hat{t_r t_s}|t_r \in R \land t_r \in S \land t_r[A] \theta t_s[B]\} {trts^trRtrStr[A]θts[B]}

        其中A和B分别是关系R和S上语义相同的属性或属性组,$\theta $是比较运算符

      2. 等值连接( θ \theta θ 连接的特例)

        θ \theta θ连接一致,是当 θ \theta θ为=时的情况

      3. 自然连接

        自然连接是一种特殊的等值连接,它要求两个关系中进行比较的分量必须是相同的属性或属性组,并且在连接结果中去掉重复的列,使公共属性列只保留一个。

        自然连接与等值连接的区别:

        1. 自然连接要求相等的分量必须有共同的属性名,等值连接则不要求
        2. 自然连接要求吧重复的属性名去掉,等值连接不要求
      4. 外部连接

        如果希望不满足连接条件的元组也出现在连接结果中,则可以通过外连接(outer join)操作实现。外连接有三种形式:左外连接、右外连接、全外连接。含义是将指定一边(如左连接就是左边的关系)中不满足的元组也保留到连接后的结果中,并在结果中将另一关系各属性置为空(NULL)值。

      5. 半连接

      1. 除法的描述:

        设关系S的属性是关系R的属性的一部分,则 R ÷ S R \div S R÷S为这样一个关系:

        此关系的属性是由属于R但不属于S的所有属性组成$R \div S $ 的任一元组都是R中某元组的一部分。但必须符合下列要求,即任取属于 $R \div S $ 的一个元组 t,则t与S任一元组连接后,都为 R 中原有的元组。

      2. 除法的一般形式

        设关系R(X,Y)和S(Y,Z),其中X、Y、Z为关系的属性组,则:

        R ( X , Y ) ÷ S ( Y , Z ) = R ( X , Y ) ÷ ∏ Y ( S ) R(X,Y) \div S(Y, Z) = R(X, Y) \div \prod_Y(S) R(X,Y)÷S(Y,Z)=R(X,Y)÷Y(S)

    展开全文
  • 关系数据库模型设计

    千次阅读 2020-05-19 17:13:17
    本文从现实世界-概念世界(信息世界)-机器世界(数据世界)逐级抽象,旨在以浅显易懂的语言描述关系数据库应该如何建模,最后简单名了的描述给出关系模型的设计范式的含义。

    目录

     

    三个世界的划分

    1.现实世界

    2.概念世界(信息世界)

    3.机器世界(数据世界)

    模型

    一、概念模型(信息世界)

    (一)E-R图的三要素

    (二)E-R图的设计方法

    (三)E-R模型到关系模型的转换

    (四)小结

    二、数据模型(数据世界)

    (一)层次模型

    (二)网状模型

    (三)关系模型


    三个世界的划分

    人们把客观存在的事物以数据的形式存储到计算机中,经历了对现实生活中事物特性的认识、概念化到计算机数据库里的具体表示的逐级抽象过程,即现实世界-概念世界-机器世界三个领域。有时也将概念世界称为信息世界;将机器世界称为存储或数据世界。

     

    1.现实世界

    人们管理的对象存于现实世界中。现实世界的事物及事物之间存在着联系,这种联系是客观存在的,是由事物本身的性质决定的。例如学校的教学系统中有教师、学生、课程,教师为学生授课,学生选修课程并取得成绩。

     

    2.概念世界(信息世界)

    概念世界是现实世界在人们头脑中的反映,是对客观事物及其联系的一种抽象描述,从而产生概念模型。概念模型是现实世界到机器世界必然经过的中间层次。涉及到下面几个术语:
    实体:我们把客观存在并且可以相互区别的事物称为实体。实体可以是实际事物,也可以是抽象事件。如一个职工、一场比赛等。
    实体集:同一类实体的集合称为实体集。如全体职工。注意区分"型"与"值"的概念。如每个职工是职工实体"型"的一个具体"值。
    属性:描述实体的特性称为属性。如职工的职工号,姓名,性别,出生日期,职称等。
    联系:实体集之间的对应关系称为联系,它反映现实世界事物之间的相互关联。联系分为两种,一种是实体内部各属性之间的联系。另一种是实体之间的联系。

     

    3.机器世界(数据世界)

    存入计算机系统里的数据是将概念世界中的事物数据化的结果。为了准确地反映事物本身及事物之间的各种联系,数据库中的数据必须有一定的结构,这种结构用数据模型来表示。数据模型将概念世界中的实体,及实体间的联系进一步抽象成便于计算机处理的方式。三个世界中的术语对照关系如下:

     

    模型

    模型就是对不能直接观察的事物进行形象的描述和模拟。即模型是对现实世界中复杂事物的抽象描述。

    模型分为信息世界的概念模型和数据世界的数据模型:

    概念模型:把现实世界转换为信息世界的模型,例如E-R模型。

    数据模型:把信息世界转化为数据世界的模型,例如关系模型。

     

    一、概念模型(信息世界)

    实体联系模型,亦称实体关系模型,它是由美籍华裔计算机科学家陈品山(Peter Chen)发明,该模型直接从现实世界中抽象出实体类型和实体间联系,然后用实体联系图(E-R图)表示数据模型,是描述概念世界,建立概念模型的实用工具。所以,在信息世界中使用E-R图建立的数据模型称为E-R模型。

    实体关系模型是现实世界到概念世界的第一层抽象,是数据库设计人员进行数据库设计的有利的数据建模工具,也是数据库设计人员和用户之间进行交流的语言。

     

    (一)E-R图的三要素

    实体(Entity):在E-R图中用矩形表示,矩形框内标注实体名称。实体表示一个离散对象。实体可以被(粗略地)认为是名词,如计算机、雇员、歌曲、数学定理等。


    属性(Attribute):在E-R图中用椭圆形表示,并用无向连线将其与相应的实体连接起来,同时在无向连线旁标上联系的类型(1 : 1,1 : n或m : n)。属性描述实体的特性(特征性质),例如学生的姓名、学号、性别、都是属性。

     

    联系(Relationship):在E-R图中用菱形框表示,框内标注联系名称,并用连线将菱形框分别与有关实体相连,并在连线上注明联系类型。联系可以被(粗略地)认为是动词,如:在公司和计算机之间的拥有关联,在雇员和部门之间的管理关联,在演员和歌曲之间的表演关联,在数学家和定理之间的证明关联等等。联系有三种类型:


    ① 一对一联系(1:1)
    设A、B为两个实体集。若A中的每个实体至多和B中的一个实体有联系,反过来,B中的每个实体至多和A中的一个实体有联系,称A对B或B对A是1:1联系。注意,1:1联系不一定都是一一对应的关系。可能存在着无对应。例如,一个部门有一个经理,而每个经理只在一个部门任职,则部门与经理的联系是一对一的,但经理也可能暂缺。


    ② 一对多联系(1:n)
    如果A实体集中的每个实体可以和B中的几个实体有联系,而B中的每个实体至少和A中的一个实体有联系,那么A对B属于1:n联系。例如,一个部门有多名职工,而一名职工只在一个部门就职,则部门与职工的联系是一对多的。


    ③ 多对多联系(m:n)
    若实体集A中的每个实体可与和B中的多个实体有联系,反过来,B中的每个实体也可以与A中的多个实体有联系,称A对B或B对A是m:n联系。例如,一个学生可以选修多门课程,一门课程由多个学生选修,学生和课程间的联系是多对多的。
     

    (二)E-R图的设计方法

    E-R图通常都应经过以下两个阶段:

    (1)针对每一用户画出该用户信息的局部E-R图,确定该用户视图的实体、属性和联系。需注意的是:能作为属性的就不要作为实体,这有利于E-R图的简化。

     

    (2)综合局部E-R图,生成总体E-R图。在综合过程中,同名实体只能出现一次,还要去掉不必要的联系,以便消除冗余。一般来说,从总体E-R图必须能导出原来的所有局部视图,包括实体、属性和联系。

     

    案例:工厂(包括厂名和厂长名)需要建立一个数据库系统,有以下情况:

     

    1、该工厂生产若干产品,每种产品由不同的零件组成

    2、有的零件可以用在不同的产品,这些零件由不同的原材料组成,不同的零件所用的原材料可以相同。

    3、零件按照所属的不同产品分别放在仓库中,原材料按照类别分别放在若干仓库中。

     

    相关性质如下:

    工厂:长号,长名,长址,厂长名

    车间:车间号,车间名,电话

    产品:产品名,品种号,性能

    零件:零件号,零件名,生产日期

    原材料:材料号,产地,等级

    仓库:库号,电话

     

    (三)E-R模型到关系模型的转换

    把E-R图转换为关系模型可遵循如下原则:

    (1)对于E—R图中每个实体集,都应转换为一个关系,该关系应包括对应实体的全部属性,并应根据关系所表达的语义确定哪个属性或哪几个属性组作为“主关键字”,主关键字用来标识实体。

     

    (2)对于E—R图中的联系,情况比较复杂,要根据实体联系方式的不同,采取不同的手段加以实现。下面着重讨论联系的转换方法。

    A、两实体集间1:n联系

    两实体集间1:n联系,可将“一方”实体的主关键字纳入“n方”实体集对应的关系中作为“外部关键字”,同时把联系的属性也一并纳入“n方”对应的关系中。

     

    B、两实体集间m:n联系

    对于两实体集间m:n联系,必须对“联系”单独建立一个关系,用来联系双方实体集。该关系的属性中至少要包括被它所联系的双方实体集的“主关键字”,并且如果联系有属性,也要归入这个关系中。

     

    C、两实体集间的1:1的联系

    假设A实体集与B实体集是1:1的联系,联系的转换有三种方法:

    ①把A实体集的主关键字加入到B实体集对应的关系中,如果联系有属性也一并加入;

    ②把B实体集的主关键字加入到A实体集对应的关系中,如果联系有属性也一并加入;

    ③建立第三个关系,关系中包含两个实体集的主关键字,如果联系有属性也一并加入。

     

    (四)小结

    (1)把现实世界转换成为计算机能够处理的数据世界,需经过两个阶段:

             第一个阶段需使用概念模型把现实世界抽象成信息世界,最常用的概念模型是E-R模型,E-R模型的三个基本要素是实体、

             属性和联系。

             第二阶段是使用数据模型把信息世界转换为数据世界,最常用的数据模型是关系模型。

     

    (2)设计E-R图一般经过两个步骤,

            第一步是抽象出各相关对象的局部E-R图,

            第二步是把局部E-R图组合成全局E-R图。E-R图只是信息的一种抽象表示,还需把它转化成相应的实施数据模型才能转化为

            数据库中的数据。把E-R图转化为关系模型,不但要把实体转化成关系,而且在关系中还应反映出E-R图中各实体集之间的

            联系。

     

    3E-R数据模型作为语义数据模型,是软件工程和数据库设计的有力工具,综合E-R数据模型的特点如下:
          (1) 有丰富的语义表达能力,能充分反映现实世界,包括实体和实体间的联系,能满足用户对数据对象的处理要求。
          (2) 易于交流和理解,因为它不依赖于计算机系统和具体的DBMS,所以,它是DBA、系统开发人员和用户之间的桥梁。
          (3) 易于修改和扩充。
          (4) 易于向其他各种数据模型(层次,网状,关系模型)转换。
          (5) 实体、属性和联系这三个概念是有明确区分的,但对于某个具体的数据对象,究竟是作为实体,还是作为属性或联系,

                  则是相对的。这取决于应用背景和用户的观点。

     

    二、数据模型(数据世界)

    在用计算机处理信息世界的信息时,必须抽取局部范围的主要特征,模拟和抽象出一个能反映信息世界中实体和实体之间联系的模型,即数据模型。也就是说,数据模型是抽象描述信息世界的一种工具和方法,是概念模型在数据世界中的表示形式。

    数据模型的三要素:模型结构、数据操作、完整性规则。

    数据模型模型结构分为:层次模型、网状模型、关系模型、面向对象模型。

     

    (一)层次模型

    在现实世界中,许多实体集之间的联系就是一个自然的层次关系。例如,行政机构、家族关系等都是层次关系。下图就是学校中系的层次模型。

    层次模型是最早用于商品数据库管理系统的数据模型。其典型代表是于1969问世、由IBM公司开发的数据库管理系统

    IMS(Information Management System)。

    (1) 层次模型的定义:用树形结构表示实体之间联系的模型叫层次模型。

    (2)层次模型的表示方法:树的结点表示记录(实体),每个记录可包含若干个字段(实体的属性),结点之间的连线表示相连两记录(实体)之间的关系,这种关系只能是“1-M”的。通常把表示1的实体集放在上方,称为父结点,表示M的实体集放在下方,称为子结点。

    (3)层次模型的特点:①有且仅有一个根结点。②根结点以外的其它结点有且仅有一个父结点。

    在层次模型中,记录的组织不再是一张杂乱无章的图,而是一棵树。例如,系记录型有:计算机系、电信系等记录值。而计算机系的下层记录值有软件、结构、应用等研究室和数据结构、操作系统、数据库等课程,软件研究室下层又有员工和项目记录值,如下图所示:

    根据层次模型的特点可知,层次模型只能表示“1-M”关系,而不能直接表示“M-M”关系。因此对于层次模型中实体集之间多对多的联系的处理,解决的方法是引入冗余结点。例如,学生和课程之间的多对多的联系,引入学生和课程的冗余结点,即转换为两棵树:一棵树的根是学生,子结点是课程,它表现了一个学生可以选多门课程;一棵树的根是课程,子结点是学生,它反映了一门课程可以被多个学生选。至于冗余结点可以用虚拟结点实现:在冗余结点处仅存放一个指针,指向实际结点。

     

    (4)层次模型的优点

    ① 层次数据库模型比较简单。

    ② 层次模型对具有一对多的层次关系(例如部门和职员的关系)的描述非常自然、直观,容易理解。

    ③ 层次数据库模型提供了良好的完整性支持。

     

    (5)层次模型的缺点

    ① 在现实世界中有很多的非层次性的联系,如多对多的联系,一个结点具有多个父结点等,层次模型表示这类联系的方法

    很笨拙。

    ② 难以实现系统扩充,对于插入和删除操作时,限制比较多,涉及到大量链接指针的调整。

    ③ 查询子结点必须经过父结点。

    ④ 由于结构严密,层次命令趋于程序化。

     

    (二)网状模型

    在现实世界中,事物之间的联系更多的是非层次关系的,用层次模型表示非树型结构是很不直接的,网状模型则可以克服这一弊病。层次模型中的记录只能组织成树的集合而不能是任意图的集合,而网状模型则可以。

    (1) 网状模型的定义:用网状结构表示实体之间联系的模型叫网状模型。

    (2) 网状模型的表示方法:网的结点表示记录(实体),每个记录可包含若干个字段(实体的属性),结点之间的连线表示相连两记录(实体)之间的关系,这种关系可以是“1-M”的,也可以是“M-M”的。

    (3) 网状模型的特点:①允许一个以上的结点无父亲结点。②一个结点可以有多于一个的父亲结点。

    网状模型是一种比层次模型更具普遍性的结构,它去掉了层次模型的两个限制,允许多个结点没有父亲结点,允许结点有多个父亲结点,此外它还允许两个结点之间有多种联系。因此网状模型可以更直接地去描述现实世界,而层次模型实际上是网状模型的一个特例。网状模型示例如下:

     

    (4) 网状数据模型的优点

    ①能够更为直接地描述现实世界,如一个结点可以有多个父亲节点。

    ②具有良好的性能,存取效率较高。

     

    (5) 网状数据模型的缺点

    ①结构比较复杂,而且随着应用环境的扩大,数据库的结构就变得越来越复杂,不利于最终用户掌握。

    ②难以实现系统扩充,对于插入和删除操作时,限制比较多,涉及到大量链接指针的调整。

    ③其DDL,DML语言复杂,用户不容易使用。由于记录之间联系是通过存取路径实现的,应用程序在访问数据时必须选择

    适当的存取路径,因此,用户必须了解系统结构的细节,加重了编写应用程序的负担。

     

    (三)关系模型

     

    (1) 关系模型的定义:用二维表格数据来表示实体及实体之间联系的模型叫关系模型。

    (2) 关系模型的特点:

    ① 每个表有多个列,每一列中的字段(属性)唯一且是类型相同的数据;

    ② 列的顺序可以是任意的;

    ③ 行的顺序可以是任意的;

    ④ 表中的字段(属性)是不可再分割的最小数据项,即表中不允许有子表;

    ⑤ 表中的任意两行不能完全相同。

    在关系模型中,无论是从客观事物中抽象出的实体,还是实体之间的联系,都用单一的结构类型—关系(表)来表示。在对关系进行各种处理之后,得到的还是关系—一张新的二维表。如图所示:

    关系数据库采用关系模型作为数据的组织方式。关系数据库因其严格的数学理论、使用简单灵活、数据独立性强等特点,而被公认为最有前途的一种数据库管理系统。它的发展十分迅速,目前已成为占据主导地位的数据库管理系统。自20世纪80

    年代以来,作为商品推出的数据库管理系统几乎都是关系型的,例如,Oracle,Sybase,Informix,Visual FoxPro,Mysql,Sqlserver等。

     

    (3) 关系模型的设计范式

    只有满足一定条件的关系模式,才能避免操作(例如插入、删除、修改)异常和数据异常(例如数据冗余),关系模式要满足的条件称为规范化形式,简称范式。 

     

    ① 第一范式(1NF)

    第一范式是对表属性的原子性约束,要求属性具有原子性,不可再分解成其它属性;其目的是消除重复字段(列)。

     

    ②  第二范式(2NF)

    第二范式是对表记录的惟一性约束,要求记录有惟一标识,能唯一地区分其它记录;其目的是消除重复记录(行)。

     

    ③ 第三范式(3NF)

    第三范式是对表字段冗余性的约束,要求字段没有冗余,任何字段都不能由其他字段派生出来;其目的是消除字段冗余。

     

    ④  第四范式(4NF)

    第四范式是对表记录冗余性的约束,要求记录没有冗余,同一表不存在一对多或多对多关系;其目的是消除记录冗余。

     

    ⑤  第五范式(5NF)

    第五范式是将表分割成尽可能小的块,目的是消除表中所有的冗余。

     

    在设计关系数据库表的时候,你应该总是要遵循这五大范式。

     

     

    展开全文
  • 各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③...

    一 、形状特征

    (一)特点

    各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。另外,从2-D图像中表现的3-D物体实际上只是物体在空间某一平面的投影,从2-D图像中反映出来的形状常不是3-D物体真实的形状,由于视点的变化,可能会产生各种失真。

    (二)常用的特征提取与匹配方法

    1.几种典型的形状特征描述方法

    通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
    几种典型的形状特征描述方法:

    (1)边界特征法

    边界特征法通过对边界特征的描述来获取图像的形状参数。其中Hough变换检测平行直线方法和边界方向直方图方法是经典方法。Hough变换(http://blog.csdn.net/h532600610/article/details/52983490)是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。

    (2)傅里叶形状描述符法

    傅里叶形状描述符(Fourier shape deors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。
    由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。

    (3)几何参数法

    形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在QBIC系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
    需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。

    (4)形状不变矩法

    利用目标所占区域的矩作为形状描述参数。

    (5)其它方法

    近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或FEM)、旋转函数(Turning)和小波描述符(Wavelet Deor)等方法。

    2.基于小波和相对矩的形状特征提取与匹配

    该方法先用小波变换模极大值得到多尺度边缘图像,然后计算每一尺度的7个不变矩,再转化为10个相对矩,将所有尺度上的相对矩作为图像特征向量,从而统一了区域和封闭、不封闭结构。

     

    二、空间关系特征

    (一)特点

    所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。

    空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。为了检索,除使用空间关系特征外,还需要其它特征来配合。

    (二)常用的特征提取与匹配方法

    提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。
    姿态估计问题就是:确定某一三维目标物体的方位指向问题。姿态估计在机器人视觉、动作跟踪和单照相机定标等很多领域都有应用。
    在不同领域用于姿态估计的传感器是不一样的,在这里主要讲基于视觉的姿态估计。
    基于视觉的姿态估计根据使用的摄像机数目又可分为单目视觉姿态估计和多目视觉姿态估计。根据算法的不同又可分为基于模型的姿态估计和基于学习的姿态估计。

    一基于模型的姿态估计方法

    基于模型的方法通常利用物体的几何关系或者物体的特征点来估计。其基本思想是利用某种几何模型或结构来表示物体的结构和形状,并通过提取某些物体特征,在模型和图像之间建立起对应关系,然后通过几何或者其它方法实现物体空间姿态的估计。这里所使用的模型既可能是简单的几何形体,如平面、圆柱,也可能是某种几何结构,也可能是通过激光扫描或其它方法获得的三维模型。
    基于模型的姿态估计方法是通过比对真实图像和合成图像,进行相似度计算更新物体姿态。目前基于模型的方法为了避免在全局状态空间中进行优化搜索,一般都将优化问题先降解成多个局部特征的匹配问题,非常依赖于局部特征的准确检测。当噪声较大无法提取准确的局部特征的时候,该方法的鲁棒性受到很大影响。

    二基于学习的姿态估计方法

    基于学习的方法借助于机器学习(machine learning)方法,从事先获取的不同姿态下的训练样本中学习二维观测与三维姿态之间的对应关系,并将学习得到的决策规则或回归函数应用于样本,所得结果作为对样本的姿态估计。基于学习的方法一般采用全局观测特征,不需检测或识别物体的局部特征,具有较好的鲁棒性。其缺点是由于无法获取在高维空间中进行连续估计所需要的密集采样,因此无法保证姿态估计的精度与连续性。
    基于学习的姿态估计方法源于姿态识别方法的思想。姿态识别需要预先定义多个姿态类别,每个类别包含了一定的姿态范围;然后为每个姿态类别标注若干训练样本,通过模式分类的方法训练姿态分类器以实现姿态识别。
    这一类方法并不需要对物体进行建模,一般通过图像的全局特征进行匹配分析,可以有效的避免局部特征方法在复杂姿态和遮挡关系情况下出现的特征匹配歧义性问题。然而姿态识别方法只能将姿态划分到事先定义的几个姿态类别中,并不能对姿态进行连续的精确的估计。
    基于学习的方法一般采用全局观测特征,可以保证算法具有较好的鲁棒性。然而这一类方法的姿态估计精度很大程度依赖于训练的充分程度。要想比较精确地得到二维观测与三维姿态之间的对应关系,就必须获取足够密集的样本来学习决策规则和回归函数。而一般来说所需要样本的数量是随状态空间的维度指数级增加的,对于高维状态空间,事实上不可能获取进行精确估计所需要的密集采样。因此,无法得到密集采样而难以保证估计的精度与连续性,是基于学习的姿态估计方法无法克服的根本困难。
    和姿态识别等典型的模式分类问题不同的是,姿态估计输出的是一个高维的姿态向量,而不是某个类别的类标。因此这一类方法需要学习的是一个从高维观测向量到高维姿态向量的映射,目前这在机器学习领域中还是一个非常困难的问题。
    特征是描述模式的最佳方式,且我们通常认为特征的各个维度能够从不同的角度描述模式,在理想情况下,维度之间是互补完备的。
    特征提取的主要目的是降维。特征抽取的主要思想是将原始样本投影到一个低维特征空间,得到最能反应样本本质或进行样本区分的低维样本特征。
    一般图像特征可以分为四类:直观性特征、灰度统计特征、变换系数特征与代数特征。
    直观性特征主要指几何特征,几何特征比较稳定,受人脸的姿态变化与光照条件等因素的影响小,但不易抽取,而且测量精度不高,与图像处理技术密切相关。
    代数特征是基于统计学习方法抽取的特征。代数特征具有较高的识别精度,代数特征抽取方法又可以分为两类:一种是线性投影特征抽取方法;另外一种是非线性特征抽取方法。
    习惯上,将基于主分量分析和Fisher线性鉴别分析所获得的特征抽取方法,统称为线性投影分析。
    基于线性投影分析的特征抽取方法,其基本思想是根据一定的性能目标来寻找一线性变换,把原始信号数据压缩到一个低维子空间,使数据在子空间中的分布更加紧凑,为数据的更好描述提供手段,同时计算的复杂度得到大大降低。在线性投影分析中,以主分量分析(PCA,或称K-L变换)和Fisher线性鉴别分析(LDA)最具代表性,围绕这两种方法所形成的特征抽取算法,已成为模式识别领域中最为经典和广泛使用的方法。
    线性投影分析法的主要缺点为:需要对大量的已有样本进行学习,且对定位、光照与物体非线性形变敏感,因而采集条件对识别性能影响较大。
    非线性特征抽取方法也是研究的热点之一。“核技巧”最早应用在SVM中,KPCA和KFA是“核技巧”的推广应用。
    核投影方法的基本思想是将原样本空间中的样本通过某种形式的非线性映射,变换到一个高维甚至无穷维的空间,并借助于核技巧在新的空间中应用线性的分析方法求解。由于新空间中的线性方向也对应原样本空间的非线性方向,所以基于核的投影分析得出的投影方向也对应原样本空间的非线性方向。
    核投影方法也有一些弱点:几何意义不明确,无法知道样本在非显式映射后变成了什么分布模式;核函数中参数的选取没有相应选择标准,大多数只能采取经验参数选取;不适合训练样本很多的情况,原因是经过核映射后,样本的维数等于训练样本的个数,如果训练样本数目很大,核映射后的向量维数将会很高,并将遇到计算量上的难题。
    就应用领域来说,KPCA远没有PCA应用的广泛。如果作为一般性的降维KPCA确实比PCA效果好,特别是特征空间不是一般的欧式空间的时候更为明显。PCA可以通过大量的自然图片学习一个子空间,但是KPCA做不到。
    变换系数特征指先对图像进行Fourier变换、小波变换等,得到的系数后作为特征进行识别。

    展开全文
  • 贝尔梅尔娜美2019.03.15采纳率:60%等级:39已帮助:91565人数据库系统的基本概念数据:实际上就是描述事物的符号记录。数据的特点:有一定的结构,有型与值之分,如...数据库存放数据是按数据所提供的数据模式存...
  • 模型特征选择

    千次阅读 2019-06-11 16:19:38
      RF、GBDT、XGboost都可以做特征选择,属于特征选择中的嵌入式方法。比如在sklearn中,可以属性feature_importances_去查看特征的重要度, 比如:from sklearn import ensemble#grd = e...
  • 关系型数据库、关系模型、E-R图

    千次阅读 2021-11-06 09:38:16
    文章目录一、关系型数据库重要知识点二、实体-联系-模型1、实体2、属性3、联系三、关系模型1、关系的基本概念2、关系模式3、关系的基本特点4、关系运算5、关系的完整性约束---(限定表中数据的约束)6、关系模型的...
  • 通过建立目标光谱辐射的包络模型和目标姿态角的动态特征模型, 分析了目标机动模式与姿态角变化率之间的关系。建立了红外辐射的响应信号模型, 并对影响信号特征的关键因素进行了理论分析。结果表明, 空间距离的指数项...
  •     定义:层次数据模型树状<层次>结构来组织数据的数据模型。     满足下面两个条件的基本层次联系的集合为层次模型     1. 有且只有一个结点没有双亲结点,这个结点称为根结点     2. ...
  • 数据模型模型的一种,实现实世界对象特征的一种抽象。 数据模型应满足三方面要求: 1)便于在计算机中实现。 2)容易被人理解 3)能够较真的模拟真实世界 数据模型是用来描述数据,组织数据和对数据进行操作的。 ...
  • 第一类概念模型第二类是逻辑模型和物理模型层次模型网状模型关系模型:每个关系的数据结构是一张规范化的二维表面向对象数据模型对象关系数据模型半结构化数据模型数据库管理系统在三级模式之间提供了两层映像:外...
  • 其次在关系层,将Bi-Tree-LSTM嵌套在序列层之上,并将序列层的隐状态与实体特征信息传入关系层,利用共享参数对三种不同的句法结构进行加权学习,通过端到端的模型训练并实现语义关系分类。实验结果表明,该模型在...
  • 关系数据模型 2.1 数据模型 2.1.1 概念模型 实体:客观世界中存在的且可互相区分的事物 属性:实体具有的某种特性 联系:一个或多个实体之间的关联关系。 概念 解释 度 参与实体类型的个数 角色名称...
  • 试图在人力资源管理学、组织行为学和心理学的有关理论,以及访谈研究的基础上,构建工作特征、工作家庭关系和主观幸福感的关系研究构思模型。并运用问卷调查的方法,以及LISREL统计分析方法,对该理论模型进行初步...
  • 关系,基本关系关系模式,元组,分量,属性,域,基数,域,键,码,超键,候选键,候选码,主键,全键,非码属性,外码;数据库:DB;数据库系统:DBS;数据库管理员:DBA;数据库管理系统:DBMS;结构化查询语言...
  • 三维模型特征提取方法概述

    千次阅读 2021-11-09 00:37:06
    作者I开拓者5号@CSDN编辑I3D视觉开发者社区一、三维特征提取概述三维特征提取是模式识别中最基本的研究内容之一,可以有效地缓解模式识别领域经常出现的“维数灾难”问题并对识别性能起着...
  • 本文转载自:http://www.cnblogs.com/yue-blog/p/6010527.html一、层次数据模型定义:层次数据模型树状结构来组织数据的数据模型。其实层次数据模型就是的图形表示就是一个倒立生长的树,由基本数据结构中的树...
  • 数据库实体联系模型与关系模型

    千次阅读 2020-03-02 19:11:33
    数据库设计是指根据用户的需求,在某一具体...这就需要规划课程、学生、老师、学习资料等数据构成以及相互之间的关系。因此,规划数据构成及数据间关系,并应用某一具体的数据库管理系统如MySQL构建数据库的过程就是...
  • 数据模型的概念2.两大类数据模型客观对象的抽象过程---两步抽象3.数据模型的组成要素(1)数据结构(2)数据操作(3)数据的完整性约束条件4.概念模型(1)用途与基本要求(2) 信息世界中的基本概念(3)两个实体型之间的联系①...
  • 该库主要内容是我的机器学习笔记,同时挑选和收集各类与机器学习技术相关的高质量资源,欢迎大家关注和Star!会一直更新下去。 (1)基础概念 特征(Feature):特征是所有独立单元共享的属性,是进行分析或预测的...
  • 对于每种关系类型利用模型投票的方法,即选择训练集中得到性能较好的模型作为该类的模型,最后使用训练好的模型对测试集进行测试。结果显示,该方法对于人物关系抽取任务取得了总体F1值为67.64%的性能。

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 311,166
精华内容 124,466
热门标签
关键字:

关系模型的主要特征是用