精华内容
下载资源
问答
  • 仪表放大电路学习

    千次阅读 2019-06-28 16:19:23
    1、典型差分放大电路 由虚短知Vx=V1……aVy=V2……b由虚断知,运算放大器输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的,电流I=(Vx-Vy)/R2……c则:Vo1-Vo2=I*(R1+R2+R3)=(Vx-Vy...

    1、典型差分放大电路

    由虚短知Vx=V1……aVy=V2……b由虚断知,运算放大器输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的,电流I=(Vx-Vy)/R2……c则:Vo1-Vo2=I*(R1+R2+R3)=(Vx-Vy)(R1+R2+R3)/R2……d由虚断知,流过R6与流过R7的电流相等,若R6=R7,则Vw=Vo2/2……e同理若R4=R5,则Vout–Vu=Vu–Vo1,故Vu=(Vout+Vo1)/2……f由虚短知,Vu=Vw……g由efg得Vout=Vo2–Vo1……h由dh得Vout=(Vy–Vx)(R1+R2+R3)/R2上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy–Vx)的放大倍数。这个电路就是传说中的差分放大电路了。

      

     

    差分信号接在两个前级运放的同相输入端,由这两个反馈回路可得:

    [公式]

    可解得 [公式] , [公式]

    再看第二级放大器反馈回路,由叠加原理可得:

    [公式]

    当 [公式] 时:

    [公式]

    最终可得:

    [公式]

    其实在实际应用中,改变 [公式] 就能改变整个电路的增益,但这要保证上述几个阻值的高度对称,如果工程师们用分立的元件实现这样的电路显得很困难,所以半导体厂家把上述电路制成在一块硅片上,硅片上的电阻可以做到近乎统一,所以实际的放大器内部结构如下图所示(图为TI公司的低功耗、零漂移的轨至轨放大器INA333)。

    图中 [公式] 即为公式中 [公式] ,可以看出电路图与之前的三运放仪表放大器电路图完全相同。其中 [公式] 。

     

     

    参考链接:

    https://mp.weixin.qq.com/s/EVPhRZXVThwgisreIoD5HA

    https://zhuanlan.zhihu.com/p/33040671

    展开全文
  • 仪表放大器将两个信号的差值放大。典型的差模信号来自传感器件,诸如电阻桥或热电偶。
  • 放大电路采用仪表放大器,其能有效抵抗共模干扰且具有很高的输入电阻,有效提高信噪比。 以下总结常用的仪表模拟放大电路设计。 1、单运放仪表放大器 2、双运放仪表放大器 3、三运放仪表放大器 4、改进...

    一般模拟信号在进入A/D采样前,需要先进行信号调理,模拟信号放大部分需要着重设计。放大电路采用仪表放大器,其能有效抵抗共模干扰且具有很高的输入电阻,有效提高信噪比。

    以下总结常用的仪表模拟放大电路设计。

    1、单运放仪表放大器

    2、双运放仪表放大器

    3、三运放仪表放大器

    4、改进三运放仪表放大器

     

    各类放大器的优劣,欢迎评论留言~~。

    展开全文
  • 仪表放大电路以其高输入阻抗、 高共模抑制比、 低漂移等特点在传感器输出的小信号放大领域得到了广泛的 应用
  • 摘要: 简述一种典型的差分输入差分输出放大电路的设计、仿真和测试方法, 讨论其设计原理及需要解决的问题。重点讲述差分滤波器的设计和计算, 指出与单端放大电路在设计和测试中的不同之处,并结合实际工作中的...
  • 摘要: 简述一种典型的差分输入差分输出放大电路的设计、仿真和测试方法, 讨论其设计原理及需要解决的问题。重点讲述差分滤波器的设计和计算, 指出与单端放大电路在设计和测试中的不同之处,并结合实际工作中的...
  • 电路组成 XMZ-101H型数字温度显示仪由冷端补偿、换、滤波、前置放大、A/D转如图1 所示,图中只画符合电路、EPROM线性化器、断偶指示和显示等部分组成,出了整机电路的主要部分。  图1 XMZ-101H型数字温度显示...
  • 降低仪表放大电路中的射频干扰整流误差pdf,在实际应用中,必须处理日益增多的射频干扰(RFI),对于信号传输线路较长且信号强度较低的情况尤其如此,而仪表放大器的典型应用就是这种情况,因为其内在的共模抑制能力...
  • 在实际应用中,必须处理日益增多的射频干扰(RFI),对于信号传输线路较长且信号强度较低的情况尤其如此,而仪表放大器的典型应用就是这种情况,因为其内在的共模抑制能力,它能从较强共模噪声和干扰中提取较弱的差分...
  • 仪表放大电路典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号...

    仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得共模抑制比得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在共模抑制比要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:Au=(1+2R1/Rg)(Rf/R3)。由公式可见,电路增益的调节可以通过改变Rg阻值实现,仪表放大器典型结构见图1。

    Rg可理解为下图中的R7和R8

    Multisim仿真图如下:

    上图中VIN1=3.3V,VIN2=2.8V。
    通过计算得到增益为Au=(1+2R1/Rg)(Rf/R3)=(1+20/22)=1.909
    理论输出应该为:Vout=1.909(3.3-2.8)=0.9545
    实际输出为:0.96
    理论和实际基本一致。

    展开全文
  • 运算放大典型电路及原理

    万次阅读 多人点赞 2019-06-10 20:08:24
     运算放大器组成的电路五花八门,令人眼花瞭乱,在分析运算放大器工作原理时倘没有抓住核心,往往令人头大。本文收集运放电路的应用电路,希望看完后有所收获。但是在分析各个电路之前,还是先回忆一下两个运放教材...

    1.运算放大器工作原理综述:
      运算放大器组成的电路五花八门,令人眼花瞭乱,在分析运算放大器工作原理时倘没有抓住核心,往往令人头大。本文收集运放电路的应用电路,希望看完后有所收获。但是在分析各个电路之前,还是先回忆一下两个运放教材里必教的技能,就是“虚短”和“虚断”。

    “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。

    “虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性 称为虚假开路,简称虚断。显然不能将两输入端真正断路。

    2.运算放大器工作原理经典电路图一
      图一运算放大器的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。流过R1的电流I1 = (Vi - V-)/R1 ……a 流过R2的电流I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代数方程得Vout = (-R2/R1)*Vi 这就是传说中的反向放大器的输入输出关系式了。

    在这里插入图片描述

    3.运算放大器工作原理经典电路图二
      图二中Vi与V-虚短,则 Vi = V- ……a 因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等,设此电流为I,由欧姆定律得: I = Vout/(R1+R2) ……b Vi等于R2上的分压, 即:Vi = IR2 ……c 由abc式得Vout=Vi(R1+R2)/R2 这就是传说中的同向放大器的公式了。

    在这里插入图片描述

    4.运算放大器工作原理经典电路图三
      图三中,由虚短知: V- = V+ = 0 ……a 由虚断及基尔霍夫定律知,通过R2与R1的电流之和等于通过R3的电流,故 (V1 – V-)/R1 + (V2 – V-)/R2 = (Vout – V-)/R3 ……b 代入a式,b式变为V1/R1 + V2/R2 = Vout/R3 如果取R1=R2=R3,则上式变为Vout=V1+V2,这就是传说中的加法器了。
    在这里插入图片描述

    (编辑者注)质疑:(V1 – V-)/R1 + (V2 – V-)/R2 = (V- – Vout)/R3 ……b 图三公式中少了个负号?

    5.运算放大器工作原理经典电路图四
      请看图四。因为虚断,运算放大器同向端没有电流流过,则流过R1和R2的电流相等,同理流过R4和R3的电流也相等。故 (V1 – V+)/R1 = (V+ - V2)/R2 ……a (Vout – V-)/R3 = V-/R4 ……b 由虚短知: V+ = V- ……c 如果R1=R2,R3=R4,则由以上式子可以推导出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2 也是一个加法器,呵呵!

    在这里插入图片描述

    6.运算放大器工作原理经典电路图五
      图五由虚断知,通过R1的电流等于通过R2的电流,同理通过R4的电流等于R3的电流,故有 (V2 – V+)/R1 = V+/R2 ……a (V1 – V-)/R4 = (V- - Vout)/R3 ……b 如果R1=R2, 则V+ = V2/2 ……c 如果R3=R4, 则V- = (Vout + V1)/2 ……d 由虚短知 V+ = V- ……e 所以 Vout=V2-V1 这就是传说中的减法器了。

    在这里插入图片描述

    7.运算放大器工作原理经典电路图六
      图六电路中,由运算放大器的虚短知,反向输入端的电压与同向端相等,由虚断知,通过R1的电流与通过C1的电流相等。通过R1的电流 i=V1/R1 通过C1的电流i=CdUc/dt=-CdVout/dt 所以 Vout=((-1/(R1C1))∫V1dt 输出电压与输入电压对时间的积分成正比,这就是传说中的积分电路了。若V1为恒定电压U,则上式变换为Vout = -Ut/(R1*C1) t 是时间,则Vout输出电压是一条从0至负电源电压按时间变化的直线。

    在这里插入图片描述

    8.运算放大器工作原理经典电路图七
      图七中由虚断知,通过电容C1和电阻R2的电流是相等的,由虚短知,运算放大器同向端与反向端电压是相等的。则: Vout = -i * R2 = -(R2*C1)dV1/dt 这是一个微分电路。如果V1是一个突然加入的直流电压,则输出Vout对应一个方向与V1相反的脉冲。

    在这里插入图片描述

    9.运算放大器工作原理经典电路图八
      图八.由虚短知 Vx = V1 ……a Vy = V2 ……b 由虚断知,运算放大器输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的,电流I=(Vx-Vy)/R2 ……c 则: Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d 由虚断知,流过R6与流过R7的电流相等,若R6=R7, 则Vw = Vo2/2 ……e 同理若R4=R5,则Vout – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f 由虚短知,Vu = Vw ……g 由efg得 Vout = Vo2 – Vo1 ……h 由dh得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy –Vx)的放大倍数。这个电路就是传说中的差分放大电路了。

    在这里插入图片描述

    10.运算放大器工作原理经典电路图九
      分析一个大家接触得较多的电路。很多控制器接受来自各种检测仪表的020mA或420mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,图九就是这样一个典型电路。如图420mA电流流过采样100Ω电阻R1,在R1上会产生0.42V的电压差。由虚断知,运算放大器输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。故: (V2-Vy)/R3 = Vy/R5 ……a (V1-Vx)/R2 = (Vx-Vout)/R4 ……b 由虚短知: Vx = Vy ……c 电流从0~20mA变化,则V1 = V2 + (0.4~2) ……d 由cd式代入b式得(V2 + (0.4~2)-Vy)/R2 = (Vy-Vout)/R4 ……e 如果R3=R2,R4=R5,则由e-a得Vout = -(0.4~2)R4/R2 ……f 图九中R4/R2=22k/10k=2.2,则f式Vout = -(0.884.4)V,即是说,将420mA电流转换成了-0.88 ~ -4.4V电压,此电压可以送ADC去处理。

    在这里插入图片描述

    11.运算放大器工作原理经典电路图十
      电流可以转换成电压,电压也可以转换成电流。图十就是这样一个电路。上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。只要是放大电路,虚短虚断的规律仍然是符合的!

    在这里插入图片描述

    由虚断知,运算放大器输入端没有电流流过,

    则 (Vi – V1)/R2 = (V1 – V4)/R6 ……a

    同理 (V3 – V2)/R5 = V2/R4 ……b

    由虚短知 V1 = V2 ……c

    如果R2=R6,R4=R5,则由abc式得V3-V4=Vi

    上式说明R7两端的电压和输入电压Vi相等,则通过R7的电流I=Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基本相同。

    12.运算放大器工作原理经典电路图十一
      来一个复杂的,呵呵!图十一是一个三线制PT100前置放大电路。PT100传感器引出三根材质、线径、长度完全相同的线,接法如图所示。有2V的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2、Z3可视为短路,D11、D12、D83及各电容可视为开路。由电阻分压知, V3=2R20/(R14+20)=200/1100=2/11 ……a 由虚短知,U8B第6、7脚 电压和第5脚电压相等 V4=V3 ……b 由虚断知,U8A第2脚没有电流流过,则流过R18和R19上的电流相等。 (V2-V4)/R19=(V5-V2)/R18 ……c 由虚断知,U8A第3脚没有电流流过, V1=V7 ……d 在桥电路中R15和Z1、PT100及线电阻串联,PT100与线电阻串联分得的电压通过电阻R17加至U8A的第3脚, V7=2(Rx+2R0)/(R15+Rx+2R0) ……e 由虚短知,U8A第3脚和第2脚电压相等, V1=V2 ……f 由abcdef得, (V5-V7)/100=(V7-V3)/2.2 化简得 V5=(102.2V7-100V3)/2.2 即 V5=204.4(Rx+2R0)/(1000+Rx+2R0) – 200/11 ……g 上式输出电压V5是Rx的函数我们再看线电阻的影响。Pt100最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至U8C的第10脚,由虚断知, V5=V8=V9=2R0/(R15+Rx+2R0) ……a (V6-V10)/R25=V10/R26 ……b 由虚短知, V10=V5 ……c 由式abc得 V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] ……h 由式gh组成的方程组知,如果测出V5、V6的值,就可算出Rx及R0,知道Rx,查pt100分度表就知道温度的大小了。

    在这里插入图片描述
    本文改自:http://forum.eepw.com.cn/thread/196953/1
    图片来自网络

    展开全文
  • 电路组成 XMZ-101H型数字温度显示仪由冷端补偿、换、滤波、前置放大、A/D转如图1 所示,图中只画符合电路、EPROM线性化器、断偶指示和显示等部分组成,出了整机电路的主要部分。  图1 XMZ-101H型数字温度显示...
  • 利用四通道单刀单掷开关ADG1611和仪表放大器AD620构建低成本可编程增益仪表放大电路   (CN0146)  下载PDF版本打印电路类型: 开关优化目标: 低成本, 低失真, 低噪声, 低功耗应用: 通信, 工业与...
  • 在之前中,我谈到了布局仪表放大器(运放)印刷电路板 (PCB)的正确方法,并提供了一系列可供参考的良好布局实践。在本文中,我将探讨布局仪表放大器(INA)时常见的错误,然后展示INA正确布局的一个例子。 INA 用于...
  • 下图是一个用于通用仪表放大器的RFI电路,例如,AD620系列,它具有比AD8221高的噪声(12nV/Hz1/2)和低的带宽。    图 用于AD620系列仪表放大器的RFI电路  相应地,采用了相同的输入电阻器,但电容器C2的电容...
  • 仪器|仪表放大器是在有噪声的环境下放大小信号的器件...此外,由于仪表放大器往往要驱动输入阻抗很低的后级电路,如A/D转换器等,因此要求仪表放大器的输出阻抗很低。仪表放大器工作频率通常在直流到1 MHz之间,而在MH
  •  随着电子技术的飞速发展,运算放大电路也得到广泛的应用。仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、...
  • 典型差动放大电路既可利用电路的对称性、采用双端输出的方式抑制零点漂移;又可利用发射极公共电阻RE的作用抑制每个三极管的零点漂移、稳定静态工作点。
  •  三运放仪表放大典型的三运放仪表放大器(见图1)可提供出色的共模抑制,并可通过单个电阻设置差分增益。其结构由两级电路构成:级提供单位共模增益和整体的(或大部分)差分增益,第二级则提供单位(或更小的)差模...
  • 仪表器的选型很多,我们这里介绍一种用途非常广泛的仪表放大器,其实就是典型的差动放大器。它只需三个廉价的普通运算放大器和几只电阻器,即可构成性能优越的仪表用放大器。广泛应用于工业自动控制、仪器仪表、电气...
  • 仪表放大器multisim仿真,仿真倍数可调
  • 三运放仪表放大典型的三运放仪表放大器(见图1)可提供出色的共模抑制,并可通过单个电阻精确设置差分增益。其结构由两级电路构成:第一级提供单位共模增益和整体的(或大部分)差分增益,第二级则提供单位(或更...
  •  三运放仪表放大典型的三运放仪表放大器(见图1)可提供出色的共模抑制,并可通过单个电阻精确设置差分增益。其结构由两级电路构成:第一级提供单位共模增益和整体的(或大部分)差分增益,第二级则提供单位(或更小的...
  • 文中介绍了INA326/327的内部结构和主要性能指标,同时给出其典型的应用电路。 关键词:仪表放大器 电源正负限 INA326/3271 概述INA326/327是美国德州仪器公司推出的精密电源正负限输入/输出仪表放大器。它的主要特点...
  • 大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。其输入偏置电流也应很低,典型值为 1 nA至 50 nA。与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。运算放大器的...
  • 我们导出了这个经典电路的来龙去脉: 差分放大器-->前置电压跟随器-->电压跟随器变为同相放大器-->三运放组成的仪用放大器。
  • 摘要:LTC6915是具有14级可编程增益的仪表放大器,采用轨对轨输出,其增益可通过串行或并行接口方便设置。适用于温度或压力检测,医疗仪器和数据采集等领域。文中介绍LTC6915的技术性能、工作原理及应用电路。  ...
  • 二、为仪表放大器、运算放大器和ADC提供基准电压 ...图7 典型单电源电路仪表放大器驱动ADC  通常认为仪表放大器基准输入端是高阻抗,因为它是一个输入端口。因此,设计师可能将高阻抗源,比如电阻分压器连
  • 目录 差分输入的是将两个输入端的差值作为信号,这样可以免去一些误差,比如你输入一个1V的信号电源有偏差,比实际输入要大0.1....什么是仪表放大器  什么是运算放大器  仪表放大器的优缺点  仪表放...
  • INA326/327是TI公司生产的精密仪表放大器。它采用独特的拓扑结构,可实现电源正负限输入/输出,非常适用于单电源、低功耗和精密测量的应用场合。文中介绍了INA326/327的内部结构和主要性能指标,同时给出其典型的...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,103
精华内容 441
关键字:

典型仪表放大电路