精华内容
下载资源
问答
  • 本文从自然条件、地质因素以及开采因素三个方面分析了影响煤矿瓦斯涌出量的主要因素,并建立了基于GM(1,1)灰色系统的矿瓦斯涌出量预测模型。计算表明,预测模型能够为煤矿通风计算及瓦斯防治提供瓦斯涌出量的数据依据,...
  • 医疗保险 预测医疗保健成本并分析哪些因素影响医疗保健价格
  • 为了确定义安矿煤与瓦斯突出预测敏感指标,统计了义安矿12071胶带巷等9个掘进工作面的预测(效检)指标q,S,Δh2值的区间分布情况,并对这些指标变化的影响因素进行分析,认为义安矿运用q和Δh2值来预测煤层突出危险性是...
  • 基于VAR模型的CPI影响因素分析及预测基于VAR模型的CPI影响因素分析及预测基于VAR模型的CPI影响因素分析及预测
  • 基于-灰色预测的商品房价格影响因素预测研究.doc
  • 为了深入了解煤层瓦斯含量的影响因素及其准确含量,采用单因素法对某煤矿煤层瓦斯含量影响的地质因素进行了研究,运用支持向量机理论建立了煤层瓦斯含量与主要控制因素之间的非线性预测模型,并对其瓦斯含量进行了预测...
  • 为了准确掌握高瓦斯矿井巷道掘进时的...通过对考察数据的整理分析,找出了影响大断面、高瓦斯矿井掘进工作面瓦斯涌出的主要影响因素,提出了巷道掘进时的瓦斯涌出量计算模型。实际验证结果表明,该预测模型的准确率更高。
  • 在仔细分析施工钻孔岩性的基础上,发现区内一层灰褐色、含直径为1mm的石英泥岩较为稳定,可作为标志层对煤层进行预测,并以此提出了见煤深度预测公式,对该区煤层进行预测预测结果与实际见煤深度很近,从而证明该标志...
  • 电力系统短期负荷预测影响因素分析.pdf
  • 针对备件需求具有间断性需求特点,在实践中预测值与真实值往往具有很大偏差的问题,指出历史数据混淆和需求产生原因不明确是造成偏差的两项根本原因。提出了基于影响因素分析和数据重构的备件需求预测方法。在历史...
  • 13.影响预测准确度的因素

    千次阅读 2018-04-08 19:00:09
    首先,预测想达到完全准确是不可能的。然后,和随机猜测相比预测的...这篇主要谈谈影响预测准确度的因素。对于机器学习来说主要是自变量和因变量如何选取。自变量应该是我能得到的全部数据,因变量是我想得到的预测...

    首先,预测想达到完全准确是不可能的。

    然后,和随机猜测相比预测的效果也不容否认,只是预测越准参考价值越大。

    重点在于预测误差可以不断减小。对于分类问题用准确率衡量,对于回归问题用误差衡量。

    我研究的轨迹预测问题应该属于回归问题,衡量的标准就是预测出的位置和实际位置的距离。


    这篇主要谈谈影响预测准确度的因素。对于机器学习来说主要是自变量和因变量如何选取。

    自变量应该是我能得到的全部数据,因变量是我想得到的预测结果。。。这是最简单的选取

    如果改进一下,把自变量和因变量归一化。。。效果会好很多

    再改进,选择有效的自变量。

    对自变量和因变量做预处理,使两者的关系更直观。

    尽量只保留几个无法计算的参数留给模型学习,其他的处理的越好预测效果越好。



    这次研究把重心放在整体架构和数据预处理上,训练使用现成的模块。以后如果继续研究可以深入建立一个专门的机器学习模型,针对具体问题定制的模型效果应该会更好。

    展开全文
  • 数学建模房价预测影响因素问题.doc
  • 电力系统负荷预测影响因素及方法探讨.pdf
  • 财政收入影响因素分析及预测模型。

    财政收入影响因素分析及预测模型

    背景

    在我国现行的分税制财政管理体制下,地方财政收入不仅是国家财政收入的重要组成部分,还具有其相对独立的构成内容。如何有效地利用地方财政收入,合理地分配来促进地方的发展,提高市民的收入和生活质量是每个地方政府需要考虑的首要问题。因此,对地方财政收入进行预测,不但是必要的,而且是可能的。科学、合理地预测地方财政收入,对于克服年度地方预算收支规模的随意性和盲目性,正确处理地方财政与经济的相互关系具有十分重要的意义。某市作为改革开放的前沿城市,其经济发展在全国经济中的地位举足轻重。目前,该市在财政收入规模、结构等方面与北京、深圳和上海等城市仍有一定差距,存在不断完善的空间。

    目标

    本案例旨在通过研究,发现影响该市目前以及未来地方财源建设的因素,并对其进行深入分析,提出对该市地方财源优化的具体建议,供政府决策参考,同时为其他经济发展较快的城市提供借鉴。

    考虑到数据的可得性,本案例所用的财政收入分为地方一般预算收入和政府性基金收入。

    地方一般预算收入包括:1.税收收入,主要包括企业所得税和地方所得税中中央和地方共享的40%,地方享有的25%的增值税、营业税和印花税等;2.非税收入,包括专项收入、行政事业费收入、罚没收入、国有资本经营收入和其他收入等。政府性基金收入是国家通过向社会征收以及出让土地、发行彩票等方式取得的收入,并专项用于支持特定基础设施建设和社会事业发展的收入。由于1994年财政体制重大改革,所以1994年前后不具有可比性,仅对1994年后的进行分析,本案例数据来自《某市统计年鉴》(1995-2014)

    挖掘目标

    梳理影响地方财政收入的关键特征,分析、识别影响地方财政收入的关键特征的选择模型。结合目标1的因素分析,对某市2015年的财政总收入及各个类别收入进行预测。

    分析

    在以往的文献中,对影响财政收入的因素的分析大多采用普通最小二乘法来对回归模型的系数进行估计,预测变量的选取采用的则是逐步回归。然而,不论是最小二乘法还是逐步回归,都有其不足之处。它们一般都局限于局部最优解而不是全局最优解。如果预测变量过多,子集选择的计算过程具有不可实行性,且子集选择具有内在的不连续性,从而导致子集选择极度多变。

    Lasso是近年来被广泛使用于参数估计和变量选择的方法之一,并且在确定的条件下,使用Lasso方法进行变量选择已经被证明是一致的。案例选用Adaptive-Lasso方法来探究地方财政收入与各因素之间的关系。(该方法不在数学上具体叙述)

    在Adaptive-Lasso变量选择的基础上,鉴于灰色预测对小数据量数据预测的优良性能,对单个选定的影响因素建立灰色预测模型,得到它们在2014年及2015年的预测值。由于神经网络较强的适用性和容错能力,对历史数据建立训练模型,把灰色预测的数据结果代入训练好的模型中,就得到了充分考虑历史信息的预测结果,即2015年某市财政收入及各个类别的收入。

    下面是基于数据挖掘技术的财政收入分析预测模型流程

    1. 从某市统计局网站以及各统计年鉴搜集到该市财政收入以及各类别收入相关数据。
    2. 利用步骤1)形成的已完成数据预处理的建模数据,建立Adaptive-Lasso变量选择模型。
    3. 在步骤2)的基础上建立单变量的灰色预测模型以及人工神经网络预测模型。
    4. 利用步骤3)的预测值代入构建好的人工神经网络模型中,从而得到2014/2015年某市财政收入及各个类别的收入。

    处理过程

    • 数据获取
      • 已提供。
    • 数据探索
      • 描述分析
      • 相关分析
    • 数据预处理
      • 处理好的数据给出了。
    • 数据挖掘建模
      • Adaptive-Lasso变量选择模型
        • sklearn中Adaptive-Lasso模型已经删除了。
      • 财政收入及各类别收入预测模型
        • 某市财政收入预测模型
          • 真实值与预测值对比
        • 增值税预测模型
          • 真实值与预测值对比
        • 营业税预测模型
          • 真实值与预测值对比
        • 企业所得税预测模型
          • 真实值与预测值对比
        • 个人所得税预测模型
          • 真实值与预测值对比
        • 政府性基金收入预测模型
          • 真实值与预测值对比

    代码

    import pandas as pd
    import numpy as np
    from GM11 import GM11
    
    
    def adaptiveLasso():
        '''
        Adaptive-Lasso变量选择模型
        :return:
        '''
        inputfile = 'data/data1.csv'
        data = pd.read_csv(inputfile)
        # 导入AdaptiveLasso算法,要在较新的Scikit-Learn才有。
        from sklearn.linear_model import LassoLars
        model = LassoLars()
        model.fit(data.iloc[:, 0:13], data['y'])
        print(model.coef_)
    
    
    def huise():
        '''
        地方财政收入灰色预测
        :return:
        '''
        inputfile = 'data/data1.csv'
        outputfile = 'data/data1_GM11.xls'
        data = pd.read_csv(inputfile)
        data.index = range(1994, 2014)
    
        data.loc[2014] = None
        data.loc[2015] = None
        l = ['x1', 'x2', 'x3', 'x4', 'x5', 'x7']
        for i in l:
            f = GM11(data[i][np.arange(1994, 2014)].values)[0]
            # 2014年预测结果
            data[i][2014] = f(len(data) - 1)
            # 2015年预测结果
            data[i][2015] = f(len(data))
            data[i] = data[i].round(2)
    
        data[l + ['y']].to_excel(outputfile)
        print(data)
    
    
    def yuce():
        '''
        地方财政收入神经网络预测模型
        :return:
        '''
        inputfile = 'data/data1_GM11.xls'  # 灰色预测后保存的路径
        outputfile = 'data/revenue.xls'  # 神经网络预测后保存的结果
        modelfile = 'data/1-net.model'  # 模型保存路径
        data = pd.read_excel(inputfile)
        feature = ['x1', 'x2', 'x3', 'x4', 'x5', 'x7']  # 特征所在列
    
        data_train = data.loc[range(1994, 2014)].copy()  # 取2014年前的数据建模
        data_mean = data_train.mean()
        data_std = data_train.std()
        data_train = (data_train - data_mean) / data_std  # 数据标准化
        x_train = data_train[feature].values  # 特征数据
        y_train = data_train['y'].values  # 标签数据
    
        from keras.models import Sequential
        from keras.layers.core import Dense, Activation
    
        model = Sequential()  # 建立模型
        model.add(Dense(input_dim=6, units=12))
        model.add(Activation('relu'))  # 用relu函数作为激活函数,能够大幅提供准确度
        model.add(Dense(input_dim=12, units=1))
        model.compile(loss='mean_squared_error', optimizer='adam')  # 编译模型
        model.fit(x_train, y_train, nb_epoch=10000, batch_size=16)  # 训练模型,学习一万次
        model.save_weights(modelfile)  # 保存模型参数
    
        # 预测,并还原结果。
        x = ((data[feature] - data_mean[feature]) / data_std[feature]).values
        data[u'y_pred'] = model.predict(x) * data_std['y'] + data_mean['y']
        data.to_excel(outputfile)
    
        import matplotlib.pyplot as plt  # 画出预测结果图
        p = data[['y', 'y_pred']].plot(subplots=True, style=['b-o', 'r-*'])
        plt.show()
    
    
    def adaptiveLasso2():
        '''
        Adaptive-Lasso变量选择
        :return:
        '''
    
        inputfile = 'data/data2.csv'  # 输入的数据文件
        data = pd.read_csv(inputfile)  # 读取数据
        # 导入AdaptiveLasso算法,新版本已经删除
        from sklearn.linear_model import AdaptiveLasso
        model = AdaptiveLasso(gamma=1)
        model.fit(data.iloc[:, 0:6], data['y'])
        model.coef_  # 各个特征的系数
    
    
    def huise2():
        '''
        增值税灰色预测
        :return:
        '''
        inputfile = 'data/data2.csv'  # 输入的数据文件
        outputfile = 'data/data2_GM11.xls'  # 灰色预测后保存的路径
        data = pd.read_csv(inputfile)  # 读取数据
        data.index = range(1999, 2014)
    
        data.loc[2014] = None
        data.loc[2015] = None
        l = ['x1', 'x3', 'x5']
        for i in l:
            f = GM11(data[i][np.arange(1999, 2014)].values)[0]
            data[i][2014] = f(len(data) - 1)  # 2014年预测结果
            data[i][2015] = f(len(data))  # 2015年预测结果
            data[i] = data[i].round(6)  # 保留六位小数
        data[l + ['y']].to_excel(outputfile)  # 结果输出
        print(data)
    
    
    def yuce2():
        '''
        增值税神经网络预测模型
        :return:
        '''
        inputfile = 'data/data2_GM11.xls'  # 灰色预测后保存的路径
        outputfile = 'data/VAT.xls'  # 神经网络预测后保存的结果
        modelfile = 'data/2-net.model'  # 模型保存路径
        data = pd.read_excel(inputfile)  # 读取数据
        feature = ['x1', 'x3', 'x5']  # 特征所在列
    
        data_train = data.loc[np.arange(1999, 2014)].copy()  # 取2014年前的数据建模
        data_mean = data_train.mean()
        data_std = data_train.std()
        data_train = (data_train - data_mean) / data_std  # 数据标准化
        x_train = data_train[feature].values  # 特征数据
        y_train = data_train['y'].values  # 标签数据
    
        from keras.models import Sequential
        from keras.layers.core import Dense, Activation
    
        model = Sequential()  # 建立模型
        model.add(Dense(input_dim=3, units=6))
        model.add(Activation('relu'))  # 用relu函数作为激活函数,能够大幅提供准确度
        model.add(Dense(input_dim=6, units=1))
        model.compile(loss='mean_squared_error', optimizer='adam')  # 编译模型
        model.fit(x_train, y_train, nb_epoch=10000, batch_size=16)  # 训练模型,学习一万次
        model.save_weights(modelfile)  # 保存模型参数
    
        # 预测,并还原结果。
        x = ((data[feature] - data_mean[feature]) / data_std[feature]).values
        data[u'y_pred'] = model.predict(x) * data_std['y'] + data_mean['y']
        data[u'y_pred'] = data[u'y_pred'].round(2)
        data.to_excel(outputfile)
    
        import matplotlib.pyplot as plt  # 画出预测结果图
        p = data[['y', 'y_pred']].plot(subplots=True, style=['b-o', 'r-*'])
        plt.show()
    
    
    
    def adaptiveLasso3():
        '''
        Adaptive-Lasso变量选择
        :return:
        '''
        inputfile = 'data/data3.csv'  # 输入的数据文件
        data = pd.read_csv(inputfile)  # 读取数据
    
        # 导入AdaptiveLasso算法,要在较新的Scikit-Learn才有。
        from sklearn.linear_model import AdaptiveLasso
        model = AdaptiveLasso(gamma=1)
        model.fit(data.iloc[:, 0:10], data['y'])
        model.coef_  # 各个特征的系数
    
    
    def huise3():
        '''
        营业税灰色预测
        :return:
        '''
        inputfile = 'data/data3.csv'  # 输入的数据文件
        outputfile = 'data/data3_GM11.xls'  # 灰色预测后保存的路径
        data = pd.read_csv(inputfile)  # 读取数据
        data.index = range(1999, 2014)
    
        data.loc[2014] = None
        data.loc[2015] = None
        l = ['x3', 'x4', 'x6', 'x8']
        for i in l:
            f = GM11(data[i][np.arange(1999, 2014)].values)[0]
            data[i][2014] = f(len(data) - 1)  # 2014年预测结果
            data[i][2015] = f(len(data))  # 2015年预测结果
            data[i] = data[i].round()  # 取整
    
        data[l + ['y']].to_excel(outputfile)  # 结果输出
        print(data)
    
    
    def yuce3():
        '''
        营业税神经网络预测模型
        :return:
        '''
        inputfile = 'data/data3_GM11.xls'  # 灰色预测后保存的路径
        outputfile = 'data/sales_tax.xls'  # 神经网络预测后保存的结果
        modelfile = 'data/3-net.model'  # 模型保存路径
        data = pd.read_excel(inputfile)  # 读取数据
        feature = ['x3', 'x4', 'x6', 'x8']  # 特征所在列
    
        data_train = data.loc[range(1999, 2014)].copy()  # 取2014年前的数据建模
        data_mean = data_train.mean()
        data_std = data_train.std()
        data_train = (data_train - data_mean) / data_std  # 数据标准化
        x_train = data_train[feature].values  # 特征数据
        y_train = data_train['y'].values  # 标签数据
    
        from keras.models import Sequential
        from keras.layers.core import Dense, Activation
    
        model = Sequential()  # 建立模型
        model.add(Dense(input_dim=4, units=8))
        model.add(Activation('relu'))  # 用relu函数作为激活函数,能够大幅提供准确度
        model.add(Dense(input_dim=8, units=1))
        model.compile(loss='mean_squared_error', optimizer='adam')  # 编译模型
        model.fit(x_train, y_train, nb_epoch=10000, batch_size=16)  # 训练模型,学习一万次
        model.save_weights(modelfile)  # 保存模型参数
    
        # 预测,并还原结果。
        x = ((data[feature] - data_mean[feature]) / data_std[feature]).values
        data[u'y_pred'] = model.predict(x) * data_std['y'] + data_mean['y']
        data[u'y_pred'] = data[u'y_pred'].round(2)
        data.to_excel(outputfile)
    
        import matplotlib.pyplot as plt  # 画出预测结果图
        p = data[['y', 'y_pred']].plot(subplots=True, style=['b-o', 'r-*'])
        plt.show()
    
    
    def adaptiveLasso4():
        '''
        Adaptive-Lasso变量选择
        :return:
        '''
        inputfile = 'data/data4.csv'  # 输入的数据文件
        data = pd.read_csv(inputfile)  # 读取数据
    
        # 导入AdaptiveLasso算法,要在较新的Scikit-Learn才有。
        from sklearn.linear_model import AdaptiveLasso
        model = AdaptiveLasso(gamma=1)
        model.fit(data.iloc[:, 0:10], data['y'])
        model.coef_  # 各个特征的系数
    
    
    def huise4():
        '''
        企业所得税灰色预测
        :return:
        '''
        inputfile = 'data/data4.csv'  # 输入的数据文件
        outputfile = 'data/data4_GM11.xls'  # 灰色预测后保存的路径
        data = pd.read_csv(inputfile)  # 读取数据
        data.index = range(2002, 2014)
    
        data.loc[2014] = None
        data.loc[2015] = None
        l = ['x1', 'x2', 'x3', 'x4', 'x6', 'x7', 'x9', 'x10']
        for i in l:
            f = GM11(data[i][np.arange(2002, 2014)].values)[0]
            data[i][2014] = f(len(data) - 1)  # 2014年预测结果
            data[i][2015] = f(len(data))  # 2015年预测结果
            data[i] = data[i].round(2)  # 保留两位小数
        data[l + ['y']].to_excel(outputfile)  # 结果输出
        print(data)
    
    
    def yuce4():
        '''
        企业所得税神经网络预测模型
        :return:
        '''
        inputfile = 'data/data4_GM11.xls'  # 灰色预测后保存的路径
        outputfile = 'data/enterprise_income.xls'  # 神经网络预测后保存的结果
        modelfile = 'data/4-net.model'  # 模型保存路径
        data = pd.read_excel(inputfile)  # 读取数据
        feature = ['x1', 'x2', 'x3', 'x4', 'x6', 'x7', 'x9', 'x10']  # 特征所在列
    
        data_train = data.loc[range(2002, 2014)].copy()  # 取2014年前的数据建模
        data_mean = data_train.mean()
        data_std = data_train.std()
        data_train = (data_train - data_mean) / data_std  # 数据标准化
        x_train = data_train[feature].values  # 特征数据
        y_train = data_train['y'].values  # 标签数据
    
        from keras.models import Sequential
        from keras.layers.core import Dense, Activation
    
        model = Sequential()  # 建立模型
        model.add(Dense(input_dim=8, units=6))
        model.add(Activation('relu'))  # 用relu函数作为激活函数,能够大幅提供准确度
        model.add(Dense(input_dim=6, units=1))
        model.compile(loss='mean_squared_error', optimizer='adam')  # 编译模型
        model.fit(x_train, y_train, nb_epoch=5000, batch_size=16)  # 训练模型,学习五千次
        model.save_weights(modelfile)  # 保存模型参数
    
        # 预测,并还原结果。
        x = ((data[feature] - data_mean[feature]) / data_std[feature]).values
        data[u'y_pred'] = model.predict(x) * data_std['y'] + data_mean['y']
        data[u'y_pred'] = data[u'y_pred'].round()
        data.to_excel(outputfile)
    
        import matplotlib.pyplot as plt  # 画出预测结果图
        p = data[['y', 'y_pred']].plot(subplots=True, style=['b-o', 'r-*'])
        plt.show()
    
    
    def adaptiveLasso5():
        '''
        Adaptive-Lasso变量选择
        :return:
        '''
        inputfile = 'data/data5.csv'  # 输入的数据文件
        data = pd.read_csv(inputfile)  # 读取数据
    
        # 导入AdaptiveLasso算法,要在较新的Scikit-Learn才有。
        from sklearn.linear_model import AdaptiveLasso
        model = AdaptiveLasso(gamma=1)
        model.fit(data.iloc[:, 0:7], data['y'])
        model.coef_  # 各个特征的系数
    
    
    def huise5():
        '''
        个人所得税灰色预测
        :return:
        '''
        inputfile = 'data/data5.csv'  # 输入的数据文件
        outputfile = 'data/data5_GM11.xls'  # 灰色预测后保存的路径
        data = pd.read_csv(inputfile)  # 读取数据
        data.index = range(2000, 2014)
    
        data.loc[2014] = None
        data.loc[2015] = None
        l = ['x1', 'x4', 'x5', 'x7']
        for i in l:
            f = GM11(data[i][np.arange(2000, 2014)].values)[0]
            data[i][2014] = f(len(data) - 1)  # 2014年预测结果
            data[i][2015] = f(len(data))  # 2015年预测结果
            data[i] = data[i].round()  # 取整
    
        data[l + ['y']].to_excel(outputfile)  # 结果输出
        print(data)
    
    
    def yuce5():
        '''
        个人所得税神经网络预测模型
        :return:
        '''
        inputfile = 'data/data5_GM11.xls'  # 灰色预测后保存的路径
        outputfile = 'data/personal_Income.xls'  # 神经网络预测后保存的结果
        modelfile = 'data/5-net.model'  # 模型保存路径
        data = pd.read_excel(inputfile)  # 读取数据
        feature = ['x1', 'x4', 'x5', 'x7']  # 特征所在列
    
        data_train = data.loc[range(2000, 2014)].copy()  # 取2014年前的数据建模
        data_mean = data_train.mean()
        data_std = data_train.std()
        data_train = (data_train - data_mean) / data_std  # 数据标准化
        x_train = data_train[feature].values  # 特征数据
        y_train = data_train['y'].values  # 标签数据
    
        from keras.models import Sequential
        from keras.layers.core import Dense, Activation
    
        model = Sequential()  # 建立模型
        model.add(Dense(input_dim=4, units=8))
        model.add(Activation('relu'))  # 用relu函数作为激活函数,能够大幅提供准确度
        model.add(Dense(input_dim=8, units=1))
        model.compile(loss='mean_squared_error', optimizer='adam')  # 编译模型
        model.fit(x_train, y_train, nb_epoch=15000, batch_size=16)  # 训练模型,学习一万五千次
        model.save_weights(modelfile)  # 保存模型参数
    
        # 预测,并还原结果。
        x = ((data[feature] - data_mean[feature]) / data_std[feature]).values
        data[u'y_pred'] = model.predict(x) * data_std['y'] + data_mean['y']
        data[u'y_pred'] = data[u'y_pred'].round()
        data.to_excel(outputfile)
    
        import matplotlib.pyplot as plt  # 画出预测结果图
        p = data[['y', 'y_pred']].plot(subplots=True, style=['b-o', 'r-*'])
        plt.show()
    
    
    def huise6():
        '''
        政府性基金收入灰色预测
        :return:
        '''
        x0 = np.array([3152063, 2213050, 4050122, 5265142, 5556619, 4772843, 9463330])
        f, a, b, x00, C, P = GM11(x0)
        print(u'2014年、2015年的预测结果分别为:\n%0.2f万元和%0.2f万元' % (f(8), f(9)))
        print(u'后验差比值为:%0.4f' % C)
        p = pd.DataFrame(x0, columns=['y'], index=range(2007, 2014))
        p.loc[2014] = None
        p.loc[2015] = None
        p['y_pred'] = [f(i) for i in range(1, 10)]
        p['y_pred'] = p['y_pred'].round(2)
        p.index = pd.to_datetime(p.index, format='%Y')
    
        import matplotlib.pylab as plt
        p.plot(style=['b-o', 'r-*'], xticks=p.index)
        plt.show()
    
    
    if __name__ == '__main__':
        # adaptiveLasso()
        # huise()
        # yuce()
        # adaptiveLasso2()
        # huise2()
        # yuce2()
        # adaptiveLasso3()
        # huise3()
        # yuce3()
        # adaptiveLasso4()
        # huise4()
        # yuce4()
        # adaptiveLasso5()
        # huise5()
        # yuce5()
        huise6()
    
    

    后续处理

    应用模型进行推理。

    补充说明

    案例参考书《Python数据分析与挖掘实战》,与原书有借鉴,但是较大改动代码,修复了原书一些旧版本代码错误,具体数据集和代码可以查看我的Github,欢迎star或者fork。再次补充,相关数据集的获取直接clone整个仓库即可。

    展开全文
  • 农田水位及环境因素对小麦生理指标影响预测,于智恒,,通过对人工神经网络理论中BP网络的分析,建立描述在不同水位不同环境条件下,小麦生理指标非线形变化的模拟模型。该模型采用光合�
  • 瓦斯涌出量预测是矿井初步设计中的一个重要因素,对做好矿井的瓦斯管理及相应的通风、抽放等工作有着重要作用。...研究发现邻近层瓦斯排放率是影响近距离煤层瓦斯涌出量预测结果相差较大的最主要因素
  • 由于煤层中瓦斯的含量是防治煤矿瓦斯的一项重要指标,以常村矿3#煤层钻孔的统计数据为基础,对这些数据进行统计线性回归并利用瓦斯地质因素分析的方法,找到了影响煤层瓦斯含量的主要因素,运用丰富的钻孔数据和量化的...
  • 为预防煤粉灾害事故发生,研究最低着火温度对应着火延迟时间等关键临界参数的影响因素预测具有重要义。通过搭建煤粉自然发火演化试验系统,采集硫磺沟矿和红柳矿的2种变质程度煤粉,并放置于反应池进行恒温氧化...
  • 最后对影响钻屑量测定准确度的因素(钻杆的弯曲程度和连接形式,钻孔施工速度,人为因素和设备因素等)进行了归纳,提出了定期检查和检修设备、加强预测人员专业知识培训、规范操作等改进意见,以便提高预测煤与瓦斯突出的...
  • 电动汽车充电站需求影响因素预测方法.pdf
  • 通过分析某儿童医院传染科就医人数异常(突增、突减)情况,建立就医人数与气象特征间的分类模型,实现对传染科就医突变情况的高准确率预测,以便院方合理调配科室、安排医生出诊人数。建立的模型对就医人数突增情况...
  • 基于影响因素的企业融资规模预测比较研究,司马则茜,冯鲁闽,建立影响因素的融资规模预测模型,为企业资金精细化管理提供理论依据。以用友集团13年的历史数据为例,通过灰色模型、线性回归模�
  • 一篇讲述信用卡违约预测模型分析以及影响因素探究的论文,信用卡对于银行来说是高收益和高风险并存的业务,伴随信用卡业务发展的是各大银行都在利用网络和 移动端的数据来建立客户的信用评分系统。如何从客户所填的...
  • 通过统计、对比论证等方式,详细分析了影响煤炭价格的供需、价值、进口和政策四个方面,认为煤炭价格主要受供需关系影响,煤炭价值是基础支撑,进口煤、国家调控政策也是重要影响因素,长期来看,煤炭价格稳定在500~550元/...
  • 文章对前人总结的一些方法进行了深入研究,从薄层理论出发,编写应用程序并采用钻井约束频域谱矩法定量预测煤厚,同时分析影响煤厚预测的各种因素。实例表明,该方法具有简单、快速、预测精度高的特点,并在山东兴隆庄...
  • 在收集陈家山煤矿大量瓦斯地质资料基础上,分析了矿井主采4-2号煤层采面瓦斯涌出规律及其影响因素,研究认为,采面瓦斯涌出量为矿井主要瓦斯来源,其涌出量与煤层埋藏深度、煤层瓦斯含量、顶板含油气小街砂岩厚度及工作...
  • 消费者电动汽车购买行为的影响因素预测.pdf
  • 基于机器学习的日用气量预测影响因素分析.pdf
  • 研究最终建立了2个煤层瓦斯渗透率预测模型,模型1不做影响因素优选,模型2基于影响因素优选,对模型进行试算和误差分析,结果表明:模型2具有更好的预测稳定性和精度,能很好地反映煤层瓦斯渗透率与其影响因素间隐含的映射...
  • 苏州市区地价预测影响因素的灰色关联分析,唐倩,魏娜,利用已苏州市区地价相关的数据指标,构建了可用于苏州市区综合地价水平预测分析的GM(1,1)模型,据此模型对苏州市区未来几年的综�

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 181,512
精华内容 72,604
关键字:

影响预测的因素有哪些