精华内容
下载资源
问答
  • 主成分分析法步骤,例子

    热门讨论 2009-05-15 07:47:54
    主成分分析(Principle Component Analysis, PCA)是最为常用的特征提取方法,被广泛应用到各领域,如图像处理、综合评价、语音识别、故障诊断等。有关主成分分析法例子,步骤,和代码,希望对大家有帮助
  • 主成分分析法案例

    2018-05-31 23:15:19
    主成分分析法案例讲解Ppt,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。
  • 层次分析法 模型应用实例 层次分析法(AHP)对人力资源中的经常碰到的问题:岗位工资等级、绩效评估进行一个量化的分析,从而定义一个合理的薪酬水平,对员工做出公正的绩效评估,使员工觉得公平,使公司得到效率。
  • 本文详细介绍了聚类分析方法的应用条件,并给了立体假意说明
  • 因果图分析法例子

    万次阅读 2015-01-10 19:05:04
    某软件规格说明书包含这样的要求:第一列字符必须是A或B,第二列字符必须是一个数字,在此情况下进行文件的...1. 根据需求,分析出原因和结果如下:  原因:  1——第一列字符是A;  2——第一列字符是B;  

    某软件规格说明书包含这样的要求:第一列字符必须是A或B,第二列字符必须是一个数字,在此情况下进行文件的修改,但如果第一列字符不正确,则给出信息L;如果第二列字符不是数字,则给出信息M。

    解答:

    1.        根据需求,分析出原因和结果如下:

           原因:

                1——第一列字符是A;

                2——第一列字符是B;

                3——第二列字符是一数字。

           结果:

                21——修改文件;

                  22 ——给出信息L;

                23——给出信息M。

    中间状态

          11——第一列字符已输入

    约束条件

    1、2互斥

    2.        其对应的因果图如下: 


    3.        根据因果图建立判定表。


    展开全文
  • 层次分析法原理及应用案例

    万次阅读 2020-10-30 15:04:00
    层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标...

    层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

    层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

    层次分析法具体步骤:

    1.建立层次结构模型

    将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。 最高层是指决策的目的、要解决的问题。 最低层是指决策时的备选方案。 中间层是指考虑的因素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。

    2.构造判断(成对比较)矩阵

    在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy等人提出一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较,对此时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,以提高准确度。

     重要性比较结果,表1列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的矩阵称作判断矩阵。判断矩阵具有如下性质:

    Aij度量方法:

    3.层次单排序及其一致性检验

    对应于判断矩阵最大特征根λ的特征向量,经归一化(使向量中各元素之和等于1)后记为W。W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。能否确认层次单排序,则需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。其中,n阶一致阵的唯一非零特征根为n;n 阶正互反阵A的最大特征根λ≥n,当且仅当λ=n时,A为一直矩阵,由于λ的连续依赖于aij,则λ 比n 大的越多,A的不一致性越严重,一致性指标用CI计算,CI越小,说明一致性越大。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用 λ-n 数值的大小来衡量A 的不一致程度。定义一致性指标为:

    CI=0,有完全的一致性;CI 接近于0,有满意的一致性;CI 越大,不一致越严重。

    为衡量CI 的大小,引入随机一致性指标 RI:

     

    其中,随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,其对应关系如表2:

    考虑到一致性的偏离可能是由于随机原因造成的,因此在检验判断矩阵是否具有满意的一致性时,还需将CI和随机一致性指标RI进行比较,得出检验系数CR,公式如下:

    一般,如果CR<0.1 ,则认为该判断矩阵通过一致性检验,否则就不具有满意一致性。

    4.层次总排序及其一致性检验

    计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。这一过程是从最高层次到最低层次依次进行的。

    5 算法举例

    算法举例:(成对矩阵中的值均需要人为按经验填写。)

    第一步:建立层次结构

    从苏州、杭州桂林三个城市选择一个城市去旅游。考虑的因素为景色、费用、居住、饮食、旅游5个因素。如下图所示:

    第二步:构造成对比较矩阵

    (注:矩阵中的各个元素均需要人为按经验填写)

    第三步:层次单排序及一致性检验

    求该矩阵的最大特征值及其对应的最大特征向量

    A的最大特征值为λ=5.037,归一化后的特征向量W={0.263,0.475,0.055,0.099,0.110}

    进行一致性检验

    A通过了一次性验证,结果是可行的。

    第四步:层次总排序及一次性检验

    与此类似,求出方案层中各方案的成对比较矩阵

     

    对每个成对矩阵汇总并进行一致性检验。

    全部通过。计算每个方案对最终目标的权重:

    B3对应的值最大,所以去桂林方案最佳。 

    展开全文
  • AHP(层次分析法)原理及案例先结合日常生活中的例子深入浅出的讲解了AHP的原理,随后结合案例给出了层次分析法的具体操作实现过程。
  • 层次分析法(AHP)详细步骤

    万次阅读 多人点赞 2019-01-07 13:01:10
    1. 算法简介 层次分析法(AHP)是美国运筹学家萨蒂于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重...

    1. 算法简介

    层次分析法(AHP)是美国运筹学家萨蒂于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
    层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

    2. 算法基本原理

    例子:
    在这里插入图片描述

    2.1. 解决问题的思路

    层次分析法的基本思路是将所要分析的问题层次化;根据问题的性质和所要达成的总目标,将问题分解为不同的组成因素,并按照这些因素的关联影响及其隶属关系,将因素按不同层次凝聚组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较并排列。

    2.2. 层次分析法的步骤

    1.建立层次结构模型

    • 将决策的目标、考虑的因素(决策准则)和决策对象按照他们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
    • 最高层: 决策的目的、要解决的问题。
      最低层: 决策时的备选方案。
      中间层: 考虑的因素、决策的准则。
    • 对相邻的两层,称高层为目标层,低层为因素层

    层次分析法所要解决的问题是关于最低层对最高层的相对权重的问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中做出选择或形成选择方案的原则。

    2.构造判断矩阵
    层次分析法中构造判断矩阵的方法是一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较;对此时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。

    判断矩阵aija_{ij}的标度方法

    标度 含义
    1 表示两个因素相比,具有同样重要性
    3 表示两个因素相比,一个因素比另一个因素稍微重要
    5 表示两个因素相比,一个因素比另一个因素明显重要
    7 表示两个因素相比,一个因素比另一个因素强烈重要
    9 表示两个因素相比,一个因素比另一个因素极端重要
    2,4,6,8 上述两相邻判断的中值
    倒数 因素iijj比较的判断aija_{ij},则因素jjii比较的判断aji=1/aija_{ji}=1/a_{ij}

    3.层次单排序及其一致性检验
    对应于判断矩阵最大特征根λmax\lambda max的特征向量,经归一化(使向量中各元素之和为1)后记为WWWW的元素为同一层次元素对于上一层因素某因素相对重要性的排序权值,这一过程称为层次单排序

    定义一致性指标CI=λnn1CI=\frac {\lambda-n}{n-1}
    CI=0CI=0,有完全的一致性;
    CICI接近于0,有满意的一致性;
    CICI越大,不一致越严重。

    为了衡量CICI的大小,引入随机一致性指标RIRI

    随机一致性指标RI
    n 1 2 3 4 5 6 7 8 9 10 11
    RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

    定义一致性比率:CR=CIRICR=\frac{CI}{RI},一般认为一致性比率CR<0.1CR<0.1时,认为A的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵A,对aija_{ij}加以调整。

    示例:
    在这里插入图片描述在这里插入图片描述

    4.层次总排序及其一致性检验

    • 计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。
    • 这一过程是从最高层次到最低层次依次进行的。
      在这里插入图片描述
      A层mm个因素A1,A2,,Am,A_{1},A_{2},···,A_{m},对总目标Z的排序为a1,a2,,ama_{1},a_{2},···,a_{m}
      B层nn个因素对上层A中因素为AjA_{j}的层次单排序为b1j,b2j,,bnj(j=1,2,3,,m)b_{1j},b_{2j},···,b_{nj}(j=1,2,3,···,m)

    B层的层次总排序(即B层第ii个因素对总目标的权值为:j=1majbij\sum_{j=1}^{m}a_{j}b_{ij})为:
    B1:a1b11+a2b12++amb1m,B_{1}:a_{1}b_{11}+a_{2}b_{12}+···+a_{m}b_{1m},
    B2:a1b21+a2b22++amb2m,B_{2}:a_{1}b_{21}+a_{2}b_{22}+···+a_{m}b_{2m},
    ···
    Bn:a1bn1+a2bn2++ambnm,B_{n}:a_{1}b_{n1}+a_{2}b_{n2}+···+a_{m}b_{nm},

    层次总排序的一致性比率为:CR=a1CI1+a2CI2++amCIma1RI1+a2RI2++amRImCR=\frac{a_{1}CI_{1}+a_{2}CI_{2}+···+a_{m}CI_{m}}{a_{1}RI_{1}+a_{2}RI_{2}+···+a_{m}RI_{m}},当CR<0.1CR<0.1时,认为层次总排序通过一致性检验。
    例子:
    在这里插入图片描述在这里插入图片描述

    3.算法总结

    • 应用领域:经济计划个管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等。
    • 处理问题类型:决策、评价、分析、预测等。
    • 建立层次分析结构模型是关键一步,要有主要决策层参与。
    • 构造成对比较矩阵是数量依据,应由经验丰富、判断力强的专家给出。

    4.参考

    1. 层次分析法建模——《百度文库》
    展开全文
  • 数学建模:层次分析法实例以及代码

    千次阅读 多人点赞 2020-11-22 22:06:09
    目录层次分析法的思想层次分析法步骤具体案例(市政工程项目建设决策)1.问题提出2.建立递阶层次结构3.构造判断矩阵(成对比较阵)并赋值4.层次单排序(计算权向量)与检验(一致性检验)计算权向量一致性检验5.层次总...

    博主联系方式:
    QQ:1540984562
    微信:wxid_nz49532kbh9u22 QQ交流群:892023501

    层次分析法的思想

    层次分析法的思想:将所有要分析的问题层次化
    根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型
    最后,对问题进行优劣比较排序.

    层次分析法步骤

    1、找准各因素之间的隶属度关系,建立递阶层次结构
    2、构造判断矩阵,并赋值
    3、层次单排序(计算权向量)与检验(一致性检验)
    4、层次总排序(组合权向量)与检验(一致性检验)
    5、结果分析

    具体案例(市政工程项目建设决策)

    1.问题提出

    市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

    2.建立递阶层次结构

    1、明确决策目标:“合理建设市政工程,使综合效益最高”。

    2、为了实现这一目标,需要考虑的主要准则有三个,即经济效益社会效益环境效益
    还必须考虑直接经济效益间接经济效益方便日常出行方便假日出行减少环境污染改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

    3、解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

    这样递阶层次就形成了:
    在这里插入图片描述

    3.构造判断矩阵(成对比较阵)并赋值

    1、构造判断矩阵的方法:
    每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行第一列
    如下图所示:
    在这里插入图片描述
    2、如何对判断矩阵进行赋值:
    向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值。
    (可以类比模糊PID中的隶属程度,都是人为设定的,也是被人诟病的一个地方)
    在这里插入图片描述
    设填写后的判断矩阵为A=(aij)n×n,判断矩阵具有如下性质:

    (1) aij>0
    (2) aji=1/ aji
    (3) aii=1

    判断矩阵具有对称性,因此在填写时,通常先填写aii=1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
    在特殊情况下,判断矩阵可以具有传递性,即满足等式:aij*ajk=aik .
    当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
    对于上述的例子,可以构造出下面的判断矩阵:
    在这里插入图片描述

    4.层次单排序(计算权向量)与检验(一致性检验)

    计算权向量

    对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
    层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。
    这里简要介绍和法:
    对于一致性判断矩阵,每一列归一化后就是相应的权重。
    对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n个列向量求取算术平均值作为最后的权重。

    公式: 在这里插入图片描述
    在层层排序中,要对判断矩阵进行一致性检验。判断矩阵可以具有传递性和一致性。一般情况下,并不要求判断矩阵严格满足这一性质。

    但从人类认识规律看,一个正确的判断矩阵重要性排序是有一定逻辑规律的,例如若A比B重要,B又比C重要,则从逻辑上讲,A应该比C明显重要,若两两比较时出现A比C重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。

    因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。

    一致性检验

    第一步,计算一致性指标CI
    在这里插入图片描述
    第二步,查表确定相应的平均随机一致性指标RI
    据判断矩阵不同阶数查下表,得到平均随机一致性指标RI:
    在这里插入图片描述
    第三步,计算一致性比例CR并进行判断:
    在这里插入图片描述
    当C.R.<0.1时,认为判断矩阵的一致性是可以接受的,C.R.>0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。

    图1
    图2
    可以看出,所有单排序的C.R.<0.1,认为每个判断矩阵的一致性都是可以接受的。

    5.层次总排序(组合权向量)与检验(一致性检验)

    总排序是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。这一权重的计算采用从上而下的方法,逐层合成。
    文字性描述公式如下:
    在这里插入图片描述

    计算过程如下,更好理解过程:
    P(C1/A) = P(C1/B1) * P(B1/A) = 0.5 * 0.1429 = 0.07145
    CR(C1/A) = CR(C/B) * CR(B/A) = 0 * 0 = 0
    P(D1/A) = P(D1/C1) * P(C1/B1) * P(B1/A)
    + P(D1/C2) * P(C2/B1) * P(B1/A)
    + P(D1/C3) * P(C3/B2) * P(B2/A)
    + P(D1/C4) * P(C4/B2) * P(B2/A)
    + P(D1/C5) * P(C5/B3) * P(B3/A)
    + P(D1/C6) * P(C6/B3) * P(B3/A)
    =0.8333 * 0.5 * 0.1429
    +0.75 * 0.5 * 0.1429
    +0.1667 * 0.75 * 0.4286
    +0.8750 * 0.25 * 0.4286
    +0.1667 * 0.75 * 0.4286
    +0.8333 * 0.25 * 0.4286

    在这里插入图片描述

    6.结果分析

    从方案层总排序的结果看,建地铁(D2)的权重(0.6592)远远大于建高速路(D1)的权重(0.3408),因此,最终的决策方案是建地铁。
    根据层次排序过程分析决策思路:

    1、对于准则层B的3个因子,直接经济效益(B1)的权重最低(0.1429),社会效益(B2)和环境效益(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重社会效益和环境效益
    2、对于不看重的经济效益,其影响的两个因子直接经济效益(C1)、间接带动效益(C2)单排序权重都是建高速路远远大于建地铁,对于比较看重的社会效益和环境效益,其影响的四个因子中有三个因子的单排序权重都是建地铁远远大于建高速路,由此可以推出,建地铁方案由于社会效益和环境效益较为突出,权重也会相对突出
    3、从准则层C总排序结果也可以看出,方便日常出行(C3)、减少环境污染(C5)是权重值较大的,而如果单独考虑这两个因素,方案排序都是建地铁远远大于建高速路。

    由此我们可以分析出决策思路:
    即决策比较看重的是社会效益和环境效益,不太看重经济效益;(总结准则层B)
    因此对于具体因子,方便日常出行和减少环境污染成为主要考虑因素,对于这两个因素,都是建地铁方案更佳,(总结准则层C)由此,最终的方案选择建地铁也就顺理成章了。

    7.层次分析法的优缺点

    优点:
    (1)系统性:层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
    (2)实用性:层次分析把定性和定量方法结合起来,能处理许多许多用传统的最优化技术无法着手的实际问题,应用范围很广。同时,这种方法将决策者和决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策者的了解和掌握。
    (3)简洁性:具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,并且所得的结果简单明确,容易为决策者了解和掌握。

    缺点:囿旧:只能从原有方案中选优,不能生成新方案;粗略:它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;主观:从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受。当然,采取专家群体判断的办法是克服这个缺点的一种途径。

    层次分析法的代码实现(matlab)

    disp('请输入判断矩阵A(n阶)');
    A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    使用示例:
    将上面代码保存名为test1,并在点运行的时候添加到路径;
    输入的A矩阵是要以向量的形式输入的;
    之后按下回车即可,可以看到和之前的第4步得到的结果是一样的。
    在这里插入图片描述
    通过不断的使用这个式子计算相应矩阵(准则层B到准则层C、准则层C到方案层D)的权向量,最后可以得到最终的结果。
    简单的修改上面的程序,传入参数为矩阵,免得每次都要打。

    function w= test1(A)
    % disp('请输入判断矩阵A(n阶)');
    % A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    输入:

    Array1=[1 1/3 1/3;3 1 1;3 1 1];
    Array2=[1 1;1 1];
    Array3=[1 3;1/3 1];
    Array4=[1 3;1/3 1];
    Array5=[1 5;1/5 1];
    Array6=[1 3;1/3 1];
    Array7=[1 1/5;5 1];
    Array8=[1 7;1/7 1];
    Array9=[1 1/5;5 1];
    Array10=[1 1/3;7 1];
    
    A=test1(Array1);
    B1=test1(Array2);
    B2=test1(Array3); 
    B3=test1(Array4);
    C1=test1(Array5);
    C2=test1(Array6);
    C3=test1(Array7);
    C4=test1(Array8);
    C5=test1(Array9);
    C6=test1(Array10);
    

    得到相应的矩阵:
    在这里插入图片描述

    展开全文
  • 目录层次分析法概述定义步骤归纳例子应用实例Python实现程序如下:运行结果截图 层次分析法概述 定义 本文所有图片均来自本人的OneNote笔记 步骤归纳 例子 建立层次结构模型 构造判断(成对比较)矩阵 第...
  • 是一种实用的多准则决策方法。它把复杂的决策问题表示为一个有序的递阶层次结构,通过人们的主观判断和科学计算给出备选方案的优劣顺序。
  • 现代地理学中的数学方法是地理建模中最基本的数学工具,熟练掌握了这些数学工具,才能很好地运用地理建模的方法解决地学中的基本问题,为科研论文写作创造必要条件。本文以案例的形式详细讲解主成分分析法
  • 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成
  • 【AHP】层次分析法 | 过程解读 案例实践

    千次阅读 多人点赞 2020-08-20 19:56:21
    AHP 层次分析法 一. AHP 层次分析法介绍 AHP 层次分析法简介 AHP,即层次分析法(Analytic Hierarchy Process,AHP)是一种系统化的、层次化的多目标综合评价方法。在评价对象的待评价属性复杂多样,结构各异,...
  • 点此链接
  • 主成分分析法

    千次阅读 2015-08-11 12:57:34
    主成分分析法的基本原理及应用 什么是主成分分析法  主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。  在统计学中,主成分分析(principal components analysis,PCA)是一种...
  • 机器学习 | AHP层次分析法

    千次阅读 多人点赞 2019-05-15 20:39:47
    3 AHP层次分析法的实现3.1 步骤3.2 实际的例子3.2.1 背景3.2.2 Step1 构建层次结构模型3.2.3 Step2 构造成对比较矩阵3.2.4 Step3 一致性检验3.2.5 Step4 确定权重和最优方案3.3 Python实现3.3.1 直接将打分ok的excel...
  • 层次分析法在matlab上的实现

    万次阅读 多人点赞 2018-06-12 10:36:17
    层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯.塞蒂(T.L.saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题...
  • 层次分析法实例:选择旅游目的地

    千次阅读 2020-04-14 19:40:16
    小白打算去旅游,打算使用层次分析法选择旅游目的地。 建立递阶层次结构 目标层 选择旅游目的地的 准则层 不要超过9个因素,这里选取5个:景色、费用、居住、饮食、旅途 方案层 广州、昆明、拉萨 构造比较判别矩阵...
  • 如何玩转杜邦分析法

    万次阅读 2019-04-22 21:17:55
    今天就整理一篇如何玩转杜邦分析法的文章给分享给大家,做个抛砖引玉,希望雪球越来越多有兴趣共同学习、进步的朋友加入,分享更多的干货。  当然,在玩转杜邦分析法的前提是,你必须得知道每一个财务指标的含义,...
  • 测试用例设计方法---边界值分析法

    千次阅读 2019-08-31 14:05:05
    1、为什么要学习边界值分析法案例:两位数加法计算器 要求:输入两个1-100之间整数的和 请猜测程序为什么会出现上述问题? 输入的参数值必须大于0同时小于100的整数,边界条件设置错误:把>写成了>=,把&...
  • 层次分析法matlab代码及使用方法

    万次阅读 多人点赞 2019-05-11 23:26:09
    例子: 选拔干部考虑5个条件:品德x1,才能x2,资历x3,年龄x4,群众关系x5。某决策人用成对比较,得到成对比较阵如下: [1,2,7,5,5; 1/2,1,4,3,3; 1/7,1/4,1,1/2,1/3; 1/5,1/3,2,1,1; 1/5,1/3,3,1,1] 其中...
  • 递归与分治经典例子

    千次阅读 2019-06-23 15:06:44
    文章目录关于算法递归与分治基本概念递归经典例子hanoi塔分治经典例子整数排列(全排列问题)*整数划分*二分搜索*大数乘法棋盘覆盖合并排序、归并排序循环赛程表最接近点对 关于算法 问题1:算法基本概念/...
  • 决策矩阵分析法

    千次阅读 2018-11-06 10:26:28
    网格分析,也被称为是决策矩阵分析,是由英国管理学家斯图尔特•普提出的一种多因素辅助决策工具。因此该方法也被称为普氏分析或者多因素辅助分析。它是一款非常有效的辅助决策工具,当你面临很多好的项目选择,同时...
  • 数学建模(2)topsis分析法

    千次阅读 2020-07-21 09:30:09
    当我们用层次分析法来解决问题,发现行不通或者得出的结果不太精确的时候,就可以考虑用TOPSIS法。比如当评价的决策层太多时,n也会很大,容易使判断矩阵和一致矩阵差距较大(平均随机一致性指标RI表格中n≤15),...
  • 枚举法应用实例

    千次阅读 2018-10-27 22:21:31
    内容:一个口袋里放有12个球,已知其中3个是红的,3个是白的,6个是黑的,现在从中任取8个,问共有 多少种可能的颜色搭配? 作答者:小白杨 收获: 设8个球中红球为x1个,白球为x2个,则黑球为8-x1-x2。又已知12个球...
  • 层次分析法(AHP)原理以及应用

    千次阅读 多人点赞 2021-02-12 18:36:02
    阅览研究许多篇博客或文章发现,AHP方法的实际运用例子都比较单一,本篇博客的愿景是希望我或者读者通过阅读这篇博客能够学会AHP方法并能实际运用,而且能够记录到你的思想之中。当然个人不是数学专业对一些专业性的...
  • 层次分析法

    万次阅读 2017-09-04 16:08:31
    层次分析分为两个方面:一个是有数据的情况下使用层次分析,一个是无数据的情况下是使用层次分析: (1)无数据的情况下使用层次分析 参考姜启源《数学模型》第四版,因为没有数据,比如景色、舒适度,这些没有...
  • PERT网络分析法

    千次阅读 2012-04-14 20:49:15
    PERT网络分析法 PERT网络分析法(计划评估和审查技术,Program Evaluation and Review Technique) 目录 [隐藏] 1 什么是PERT网络分析?2 PERT的基本要求[1]3 PERT的计算特点4 PERT网络分析...
  • SWOT分析法(引用)

    千次阅读 2012-06-02 19:49:51
    SWOT分析法常常被用于制定集团发展战略和分析竞争对手...SWOT分析法主要有以下三个内容:  (1)分析环境因素  运用各种调查研究方法,分析出企业所处的各种环境因素,即外部环境因素和内部能力因素。外部

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 70,222
精华内容 28,088
关键字:

内容分析法案例例子