精华内容
下载资源
问答
  • 运用请求权基础分析法分析案例的实例演示.doc
  • 运用SWOT分析法分析一个企业实例.doc
  • 运用SWOT分析法分析一个企业实例.docx
  • PAGE 精品文档 运用请求权基础分析法分析案例的实例演示 案情介绍 ?旅游公司与汽运公司于2000年4月28日签订租车协议书一份约定旅游公司向汽运公司租用11辆空调大巴车每辆2.3万元汽运公司保证车辆行驶安全负责运送...
  • 数学建模:层次分析法实例以及代码

    万次阅读 多人点赞 2020-11-22 22:06:09
    目录层次分析法的思想层次分析法步骤具体案例(市政工程项目建设决策)1.问题提出2.建立递阶层次结构3.构造判断矩阵(成对比较阵)并赋值4.层次单排序(计算权向量)与检验(一致性检验)计算权向量一致性检验5.层次总...

    博主联系方式:
    QQ:1540984562
    微信:wxid_nz49532kbh9u22 QQ交流群:892023501

    层次分析法的思想

    层次分析法的思想:将所有要分析的问题层次化
    根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型
    最后,对问题进行优劣比较排序.

    层次分析法步骤

    1、找准各因素之间的隶属度关系,建立递阶层次结构
    2、构造判断矩阵,并赋值
    3、层次单排序(计算权向量)与检验(一致性检验)
    4、层次总排序(组合权向量)与检验(一致性检验)
    5、结果分析

    具体案例(市政工程项目建设决策)

    1.问题提出

    市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

    2.建立递阶层次结构

    1、明确决策目标:“合理建设市政工程,使综合效益最高”。

    2、为了实现这一目标,需要考虑的主要准则有三个,即经济效益社会效益环境效益
    还必须考虑直接经济效益间接经济效益方便日常出行方便假日出行减少环境污染改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

    3、解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

    这样递阶层次就形成了:
    在这里插入图片描述

    3.构造判断矩阵(成对比较阵)并赋值

    1、构造判断矩阵的方法:
    每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行第一列
    如下图所示:
    在这里插入图片描述
    2、如何对判断矩阵进行赋值:
    向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值。
    (可以类比模糊PID中的隶属程度,都是人为设定的,也是被人诟病的一个地方)
    在这里插入图片描述
    设填写后的判断矩阵为A=(aij)n×n,判断矩阵具有如下性质:

    (1) aij>0
    (2) aji=1/ aji
    (3) aii=1

    判断矩阵具有对称性,因此在填写时,通常先填写aii=1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
    在特殊情况下,判断矩阵可以具有传递性,即满足等式:aij*ajk=aik .
    当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
    对于上述的例子,可以构造出下面的判断矩阵:
    在这里插入图片描述

    4.层次单排序(计算权向量)与检验(一致性检验)

    计算权向量

    对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
    层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。
    这里简要介绍和法:
    对于一致性判断矩阵,每一列归一化后就是相应的权重。
    对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n个列向量求取算术平均值作为最后的权重。

    公式: 在这里插入图片描述
    在层层排序中,要对判断矩阵进行一致性检验。判断矩阵可以具有传递性和一致性。一般情况下,并不要求判断矩阵严格满足这一性质。

    但从人类认识规律看,一个正确的判断矩阵重要性排序是有一定逻辑规律的,例如若A比B重要,B又比C重要,则从逻辑上讲,A应该比C明显重要,若两两比较时出现A比C重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。

    因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。

    一致性检验

    第一步,计算一致性指标CI
    在这里插入图片描述
    第二步,查表确定相应的平均随机一致性指标RI
    据判断矩阵不同阶数查下表,得到平均随机一致性指标RI:
    在这里插入图片描述
    第三步,计算一致性比例CR并进行判断:
    在这里插入图片描述
    当C.R.<0.1时,认为判断矩阵的一致性是可以接受的,C.R.>0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。

    图1
    图2
    可以看出,所有单排序的C.R.<0.1,认为每个判断矩阵的一致性都是可以接受的。

    5.层次总排序(组合权向量)与检验(一致性检验)

    总排序是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。这一权重的计算采用从上而下的方法,逐层合成。
    文字性描述公式如下:
    在这里插入图片描述

    计算过程如下,更好理解过程:
    P(C1/A) = P(C1/B1) * P(B1/A) = 0.5 * 0.1429 = 0.07145
    CR(C1/A) = CR(C/B) * CR(B/A) = 0 * 0 = 0
    P(D1/A) = P(D1/C1) * P(C1/B1) * P(B1/A)
    + P(D1/C2) * P(C2/B1) * P(B1/A)
    + P(D1/C3) * P(C3/B2) * P(B2/A)
    + P(D1/C4) * P(C4/B2) * P(B2/A)
    + P(D1/C5) * P(C5/B3) * P(B3/A)
    + P(D1/C6) * P(C6/B3) * P(B3/A)
    =0.8333 * 0.5 * 0.1429
    +0.75 * 0.5 * 0.1429
    +0.1667 * 0.75 * 0.4286
    +0.8750 * 0.25 * 0.4286
    +0.1667 * 0.75 * 0.4286
    +0.8333 * 0.25 * 0.4286

    在这里插入图片描述

    6.结果分析

    从方案层总排序的结果看,建地铁(D2)的权重(0.6592)远远大于建高速路(D1)的权重(0.3408),因此,最终的决策方案是建地铁。
    根据层次排序过程分析决策思路:

    1、对于准则层B的3个因子,直接经济效益(B1)的权重最低(0.1429),社会效益(B2)和环境效益(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重社会效益和环境效益
    2、对于不看重的经济效益,其影响的两个因子直接经济效益(C1)、间接带动效益(C2)单排序权重都是建高速路远远大于建地铁,对于比较看重的社会效益和环境效益,其影响的四个因子中有三个因子的单排序权重都是建地铁远远大于建高速路,由此可以推出,建地铁方案由于社会效益和环境效益较为突出,权重也会相对突出
    3、从准则层C总排序结果也可以看出,方便日常出行(C3)、减少环境污染(C5)是权重值较大的,而如果单独考虑这两个因素,方案排序都是建地铁远远大于建高速路。

    由此我们可以分析出决策思路:
    即决策比较看重的是社会效益和环境效益,不太看重经济效益;(总结准则层B)
    因此对于具体因子,方便日常出行和减少环境污染成为主要考虑因素,对于这两个因素,都是建地铁方案更佳,(总结准则层C)由此,最终的方案选择建地铁也就顺理成章了。

    7.层次分析法的优缺点

    优点:
    (1)系统性:层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
    (2)实用性:层次分析把定性和定量方法结合起来,能处理许多许多用传统的最优化技术无法着手的实际问题,应用范围很广。同时,这种方法将决策者和决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策者的了解和掌握。
    (3)简洁性:具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,并且所得的结果简单明确,容易为决策者了解和掌握。

    缺点:囿旧:只能从原有方案中选优,不能生成新方案;粗略:它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;主观:从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受。当然,采取专家群体判断的办法是克服这个缺点的一种途径。

    层次分析法的代码实现(matlab)

    disp('请输入判断矩阵A(n阶)');
    A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    使用示例:
    将上面代码保存名为test1,并在点运行的时候添加到路径;
    输入的A矩阵是要以向量的形式输入的;
    之后按下回车即可,可以看到和之前的第4步得到的结果是一样的。
    在这里插入图片描述
    通过不断的使用这个式子计算相应矩阵(准则层B到准则层C、准则层C到方案层D)的权向量,最后可以得到最终的结果。
    简单的修改上面的程序,传入参数为矩阵,免得每次都要打。

    function w= test1(A)
    % disp('请输入判断矩阵A(n阶)');
    % A=input('A=');
    [n,n]=size(A);
    x=ones(n,100);
    y=ones(n,100);
    m=zeros(1,100);
    m(1)=max(x(:,1));
    y(:,1)=x(:,1);
    x(:,2)=A*y(:,1);
    m(2)=max(x(:,2));
    y(:,2)=x(:,2)/m(2);
    p=0.0001;i=2;k=abs(m(2)-m(1));
    while  k>p
      i=i+1;
      x(:,i)=A*y(:,i-1);
      m(i)=max(x(:,i));
      y(:,i)=x(:,i)/m(i);
      k=abs(m(i)-m(i-1));
    end
    a=sum(y(:,i));
    w=y(:,i)/a;
    t=m(i);
    disp(w);disp(t);
             %以下是一致性检验
    CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
    CR=CI/RI(n);
    if CR<0.10
        disp('此矩阵的一致性可以接受!');
        disp('CI=');disp(CI);
        disp('CR=');disp(CR);
    end
    

    输入:

    Array1=[1 1/3 1/3;3 1 1;3 1 1];
    Array2=[1 1;1 1];
    Array3=[1 3;1/3 1];
    Array4=[1 3;1/3 1];
    Array5=[1 5;1/5 1];
    Array6=[1 3;1/3 1];
    Array7=[1 1/5;5 1];
    Array8=[1 7;1/7 1];
    Array9=[1 1/5;5 1];
    Array10=[1 1/3;7 1];
    
    A=test1(Array1);
    B1=test1(Array2);
    B2=test1(Array3); 
    B3=test1(Array4);
    C1=test1(Array5);
    C2=test1(Array6);
    C3=test1(Array7);
    C4=test1(Array8);
    C5=test1(Array9);
    C6=test1(Array10);
    

    得到相应的矩阵:
    在这里插入图片描述

    展开全文
  • 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路...除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
  • 插值是数值分析领域的一个主要部分,插值理论能解决物理已知的表格数值中查找未知的值。结合插值理论建立插值函数进行插值计算,得到甘油在某一温度下的粘度。内插和外插在实际预测汽油价格中的比较,得到外插的稳定性...
  • AHP层次分析法

    万次阅读 多人点赞 2014-02-21 01:07:12
    在比赛中,我们运用了层次分析法(AHPAnalytic Hierarchy Process)进行建模,好不容易理解了这一方法的思想,在自己的博客里记录一下,希望可以帮助初次接触层次分析法的人,更快地理解这一的整体思想,也利于...

    2014年参加数学建模美赛, 其中一道题是选出5大优秀教练,数据来源要求自行寻找。 在比赛中,我们运用了层次分析法(AHPAnalytic Hierarchy Process)进行建模,好不容易理解了这一方法的思想,在自己的博客里记录一下,希望可以帮助初次接触层次分析法的人,更快地理解这一的整体思想,也利于进一步针对细节进行学习。文章内容主要参阅 《matlab数学建模算法实例与分析》,部分图片来源于WIKI

     

     

    文章分为2部分:

    1第一部分以通俗的方式简述一下层次分析法的基本步骤和思想

    2第二部分介绍一下我们队伍数学建模过程中,对层次分析法的应用,中间有些地方做了不严谨的推理,例如关于一致性的检验,如有人发现不正确,希望可以指正

     

    第一部分:

     

    层次分析法(Analytic Hierarchy Process ,简称 AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于上世纪 70 年代初期提出的一种简便、灵活而又实用的多准则决策方法。

    人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 


    运用层次分析法建模,大体上可按下面四个步骤进行: 
    (i )建立递阶层次结构模型; 
    (ii )构造出各层次中的所有判断矩阵; 
    (iii )层次单排序及一致性检验; 
    (iv )层次总排序及一致性检验。 

     

    这四个步骤中,前两个步骤最容易理解,后两个步骤需要一点时间理解

     

    首先从层次结构模型说起

    层次分析法是用来根据多种准则,或是说因素从候选方案中选出最优的一种数学方法

    最顶层是我们的目标,比如说选leader,选工作,选旅游目的地

    中间层是判断候选方物或人优劣的因素或标准

    选工作时有:发展前途  ,待遇 ,工作环境等

    选leader时有:年龄,经验,教育背景,魅力

     

    在分层以后,为了选出最优候选

    给目标层分配值1.000

    然后将这一值作为权重,分配给不同因素,对应因素的权重大小代表该因素在整个选择过程中的重要性程度

    然后对于候选方案,每一个标准再将其权重值分配给所有的候选方案,每一方案获得权重值,来源于不同因素分得的权重值的和

     

    如下图:

                目标层分配值为1, 然后我们给了4个候选方案评估标准 criterion 1 、 criterion 2、criterion 3、criterion 4

                假设我们认为这四个标准同等重要, 于是目标层的值1 就被均分到 4个准则上, 每个准则获得的值为 0.25

                然后我们从评估标准 criterion 1 出发, 考虑在该评估标准下, 3 个候选方案的优劣比如何。 假如我们认为在标准1 的衡量下,   3 个方案完全平等, 方案1 在该标准下的得分就应该是: 0.25 * (1/3) 

               同理, 如果我们假设剩下的 3 个标准下, 3个候选方案都是平分秋色, 那么方案 1 的最终得分就应该是

               0.33 =  0.25 * (1/3)   +   0.25 * (1/3)   +  0.25 * (1/3)  +  0.25 * (1/3) 

               最终获得的各个方案的的权重值的和依然为1

     

    这不就是一个简单的权重打分的过程吗?为什么还要层次分析呢。这里就有两个关键问题:

    1每个准则(因素)权重具体应该分配多少

    2每一个候选方案在每一个因素下又应该获得多少权重

     

    这里便进入层次分析法的第二个步骤,也是层次分析法的一个精华(构造比较矩阵(判断矩阵)comparison matrix):

     

    首先解决第一个问题:每个准则(因素)权重具体应该分配多少?

    如果直接要给各个因素分配权重比较困难,在不同因素之间两两比较其重要程度是相对容易的

     

    现在将不同因素两两作比获得的值aij  填入到矩阵的 i 行 j 列的位置,则构造了所谓的比较矩阵,对角线上都是1, 因为是自己和自己比

    这个矩阵容易获得,我们如何从这一矩阵获得对应的权重分配呢

    这里便出现了一个比较高级的概念,正互反矩阵和一致性矩阵

    首先正互反矩阵的定义是:

     

    我们目前构造出的矩阵很明显就是正互反矩阵

     

    而一致性矩阵的定义是:


    这里我们构造出的矩阵就不一定满足一致性,比如我们做因素1:因素2= 4:1  因素2:因素3=2:1    因素1:因素3=6:1(如果满足一致性就应该是8:1),我们就是因为难以确定各因素比例分配才做两两比较的,如果认为判断中就能保证一致性,就直接给出权重分配了

     

    到了关键部分,一致性矩阵有一个性质可以算出不同因素的比例

     

    这里的w就是我们想要知道的权重,所以通过 求比较矩阵的最大特征值所对应的特征向量,就可以获得不同因素的权重,归一化一下(每个权重除以权重和作为自己的值,最终总和为1)就更便于使用了。(实际上写这篇博客就是因为,重新翻了线代的书才好不容易理解这里的,就想记录下来)

     

    这里补充一点线性代数的知识:

        n阶矩阵有n个特征值,每个特征值对应一个n维特征列向量,特征值和特征向量的计算方法这里就省略了,反正书中的程序是直接用matlab 的eig函数求的

     

    这里不能忘了,我们给出的比较矩阵一般是不满足一致性的,但是我们还是把它当做一致矩阵来处理,也可以获得一组权重,但是这组权重能不能被接受,需要进一步考量

    例如在判断因素1,2,3重要性时,可以存在一些差异,但是不能太大,1比2重要,2比3 重要,1和3比时却成了3比1重要,这显然不能被接受

     

    于是引入了一致性检验:

              一致性的检验是通过计算一致性比例CR 来进行的

              

              当 10 . 0 < CR 时,认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作适当修正。 

     

    CI的值由判断矩阵计算获得,RI的值查表获得,具体的计算公式这里就略去,重点是理解为什么要做一致性检验

     

     

    接下来解决第二个问题:每一个候选方案在每一个因素下又应该获得多少权重

     

    这里则需要将不同候选方案,在不同因素下分别比较,具体的比较方法,还是使用比较矩阵,只不过之前准则层的比较矩阵比较的对象是因素,这里比较的是某一因素下,候选方案的优劣, n个因素则需构造出来n个比较矩阵

    例如在工作环境的因素下,工作1与工作2相比为 :4:2,工作2与工作3=2:1  工作1:工作3=6:1.,这样构造一个矩阵,再用之前的一致性矩阵的方法就可以求出一个权重,然后相对应因素(这里是工作环境)所拥有的权值就可以按这个权重比例分配给不同候选物或人。

     

    其他因素同理

     

     

    至此两个问题就都得到了解决

    最终将每个候选物、人从不同因素获得的权值求和,就可以得到不同候选对于目标层的权值大小,继而可以根据值的大小,来选出优劣

     

    对于第一部分的总结:

     

    • 通过对层次分析法的基本了解,不难发现层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依据。 

     

    • 但很明显的缺点是,整个分析过程似乎都是依赖于人的主观判断思维,一来不够客观,二来两两比较全部人为完成,还是非常耗费精力的,尤其是当候选方案比较多的时候

     

     

     

    文章的第二部分:


    层次分析法的变形应用(也可能本来就是这样用的,只不过参考书上没这样说,外语
    论文没细看)解决最优教练选择问题

     

    目标:选最优教练

     

    准则:  

     

     

    1. 职业生涯所带队伍的胜率      
    2. 职业生涯所带队伍的胜场            
    3. 从教时长(年)          
    4. 职业生涯所带队伍获奖状况(化成分数)

     

      

    候选:  众多教练

     

    准则层比较矩阵获得

     

     

    • 准则层的比较矩阵好构造 ,作6次两两比较,就可以获得4*4的比较矩阵

     

     

    候选层比较矩阵

     

    每一个准则对应下来的 候选层 已经有定量的数据了。 这里其实就不再需要候选层比较矩阵了, 因为有4000个教练的话, 得比4000*3999次,可以直接利用定量的数据计算权重

    • 例如“职业生涯所带队伍的胜场” 这一准则对应到每个教练都有直接相应数据的,例如教练 A, B, C 职业生涯所带队伍胜场数为 100,150, 90. 此时该准则下得到的分数, 就应当按照 10:5:9 的比例来进一步划分。 

     

    类似的,胜率准则 下就根据  “胜率   计算权重分配比例。 从教时长准则下就根据 “从教时间的年数” 计算权重分配比例

     

    这里又有两点可以注意:

     

    1.不同因素下数据的量纲和性质不一样,直接用数据作比来分配,不一定合适,比如胜率越要接近1越难,0.7比胜率0.5  和胜率0.9比0.7  ,后者比值比前者小,这显然不合适。这里可以利用指数函数和对数函数对数据先做一次处理, 再作为权重分配的依据。

     

    2.这里的用定量数据作比获得的矩阵显然满足一致性要求,不需要做一致性检验。以职业生涯所带队伍的胜场数为例,如果教练 A, B, C 职业生涯所带队伍胜场数为 100,150, 90。 那么 A:B :C 无论怎么作比, 都不会违反 10:15:9 的一致性。 

     

    综上就对层次分析法完成了定性定量结合的应用,以及对多个候选方案的比较(其实只是就是用程序控制数据作比,我们水平有限,能成功应用该方法已经不容易了)

     

    很遗憾的是比赛时编写的代码存放的优盘不慎丢失, 没有办法把代码共享出来, 这里只能将书中的代码贴出。比赛建模时, 就是在这个代码基础上进行修改实现。 只要理解了下列代码,编写符合自己需求的程序, 应当是水到渠成的事。

     

     

     

     matlab 代码(对应于文章第一部分选 Leader 的内容):

     

     

    clc,clear
    fid=fopen('txt3.txt','r');
    n1=6;n2=3;
    a=[];
    for i=1:n1
    	tmp=str2num(fgetl(fid));
    	a=[a;tmp]; %读准则层判断矩阵
    end
    for i=1:n1
    	str1=char(['b',int2str(i),'=[];']);
    	str2=char(['b',int2str(i),'=[b',int2str(i),';tmp];']);
    	eval(str1);
    	for j=1:n2
    		tmp=str2num(fgetl(fid));
    		eval(str2); %读方案层的判断矩阵
    	end
    end
    ri=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45]; %一致性指标
    [x,y]=eig(a);  % matlab eig(a) 返回矩阵的特征值和特征向量, 这里的 x 为矩阵 a 的 n 个特征向量, y 为矩阵 a 的 n 个特征值
    lamda=max(diag(y));  %  eig 函数返回的 y 是矩阵形式保存的, dig(y) 提取对角线上的n 个特征值到一个数组中, 求出最大特征值 lamda
    num=find(diag(y)==lamda);  % 返回最大特征的索引
    w0=x(:,num)/sum(x(:,num));  % x( :num) 为最大特征值所对应的那一列特征向量。 w0 中准则层计算出的 包含归一化后的n 个权重值
    cr0=(lamda-n1)/(n1-1)/ri(n1)
    
    for i=1:n1 % 循环 n 个维度, 针对每个维度, 都计算一次方案层的比较矩阵及其权重值
    	[x,y]=eig(eval(char(['b',int2str(i)])));
    	lamda=max(diag(y));
    	num=find(diag(y)==lamda);
    	w1(:,i)=x(:,num)/sum(x(:,num));
    	cr1(i)=(lamda-n2)/(n2-1)/ri(n2);
    end
    cr1, ts=w1*w0, cr=cr1*w0

     

    txt3.txt 中的内容, 前6行为准则层的 6 x 6 比较矩阵, 后 18 行则为 6 个准则下, 各自的 3 x 3 的比较矩阵。 

    1 1 1 4 1 1/2
    1 1 2 4 1 1/2
    1 1/2 1 5 3 1/2
    1/4 1/4 1/5 1 1/3 1/3
    1 1 1/3 3 1 1
    2 2 2 3 3 1
    1 1/4 1/2
    4 1 3
    2 1/3 1
    1 1/4 1/5
    4 1 1/2
    5 2 1
    1 3 1/3
    1/3 1 1/7
    3 7 1
    1 1/3 5
    3 1 7
    1/5 1/7 1
    1 1 7
    1 1 7
    1/7 1/7 1
    1 7 9
    1/7 1 1
    1/9 1 1

     

    再上一段 JAVA 代码, 方便 JAVA 童鞋参考, 这部分仅仅展示了如何用JAVA 代码进行准则层比较矩阵计算 。 

     

    import org.apache.commons.math3.linear.*;
    
    
    public class MatrixTester {
        public static void main(String[] args) {
    
            // Create a real matrix with two rows and three columns, using a factory
            // method that selects the implementation class for us.
            double[][] matrixData = {   {1d,    1d,     1d,     4d,     1d,     1d/2d},
                                        {1d,    1d,     2d,     4d,     1d,     1d/2d},
                                        {1d,    1d/2d,  1d,     5d,     3d,     1d/2d },
                                        {1d/4d, 1d/4d,  1d/5d,  1d,     1d/3d,  1d/3d },
                                        {1d,   1d,     1d/3d,  3d,     1d,     1d },
                                        {2d,    2d,     2d,     3d,     3d,     1d },
                                    };
            RealMatrix m = MatrixUtils.createRealMatrix(matrixData);
    
    
    
            // One more with three rows, two columns, this time instantiating the
            // RealMatrix implementation class directly.
            double[][] matrixData2 = {{1d, 2d}, {2d, 5d}, {1d, 7d}};
            RealMatrix n = new Array2DRowRealMatrix(matrixData2);
    
            // Note: The constructor copies  the input double[][] array in both cases.
            // Now multiply m by n
    //        RealMatrix p = m.multiply(n);
    //        System.out.println(p.getRowDimension());    // 2
    //        System.out.println(p.getColumnDimension()); // 2
    //
    //        // Invert p, using LU decomposition
    //        RealMatrix pInverse = new LUDecomposition(p).getSolver().getInverse();
    
    
            RealMatrix D = new EigenDecomposition(m).getD();
            RealMatrix V = new EigenDecomposition(m).getV();
    
            for(int i=0; i<D.getRowDimension();i++)
            {
                System.out.println(D.getRowMatrix(i));
            }
    
            for(int i=0; i<V.getRowDimension();i++)
            {
                System.out.println(V.getRowMatrix(i));
            }
    
            // 特征值
            double maxLamda;
            int columIndexForMaxLamda=0;
            maxLamda=D.getEntry(0,0);
    
            for(int i =0, j=0; i<D.getRowDimension()&&j<D.getColumnDimension();i++,j=i)
            {
                double lamda = D.getEntry(i,j);
                if(maxLamda<lamda)
                {
                    maxLamda=lamda;
                    columIndexForMaxLamda = j;
                }
                System.out.println(lamda);
            }
    
            // 输出尚未做归一化 w1, w2, w3, w4, w5, w6 , 
            System.out.println(V.getColumnMatrix(columIndexForMaxLamda));
    
        }
    }
    

     

     

    展开全文
  • 层次分析法 层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模 糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美 国运筹学家 T. L. Saaty 教授于上世纪 70...

    层次分析法
    层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模 糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美 国运筹学家 T. L. Saaty 教授于上世纪 70 年代初期提出的一种简便、灵活而又实用的 多准则决策方法。
    层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
    层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
    层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
    1.层次分析法的基本原理与步骤
    人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是 一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次 分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 运用层次分析法建模,大体上可按下面四个步骤进行:
    (i)建立递阶层次结构模型;
    (ii)构造出各层次中的所有判断矩阵;
    (iii)层次单排序及一致性检验;
    (iv)层次总排序及一致性检验。

    1.建立层次结构模型
    将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。 最高层是指决策的目的、要解决的问题。 最低层是指决策时的备选方案。 中间层是指考虑的因素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。
    2.构造判断(成对比较)矩阵
    在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy等人提出一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较,对此时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,以提高准确度。如对某一准则,对其下的各方案进行两两对比,并按其重要性程度评定等级。重要性比较结果,表1列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的矩阵称作判断矩阵。判断矩阵具有如下性质:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    4.层次总排序及一致性检验
    在这里插入图片描述
    在这里插入图片描述层次分析法的缺点。
    (i)它在很大程度上依赖于人们的经验,主观因素的影响很大,它至多只能排除思维 过程中的严重非一致性,却无法排除决策者个人可能存在的严重片面性。
    (ii)比较、 判断过程较为粗糙,不能用于精度要求较高的决策问题。AHP 至多只能算是一种半定 量(或定性与定量结合)的方法。
    在这里插入图片描述

    实例+代码:
    在这里插入图片描述
    在这里插入图片描述
    注:用此函数分别算出每个的权向量和CR,最后根据各层之间的关系,算出总权值,得出结论

    展开全文
  • 数学建模 层次分析法

    2013-08-22 22:30:35
    数学建模 层次分析法 陈 义 华 阐述了数学建模层次分析法的基本思想、方法和核心问题, 运用层次分析法 建立数学模型的一般步骤和计算方法, 并通过实例分析, 说明了层次分析法在决策中 的有效性.
  • 提出运用层次分析法进行机械设备维修策略的决策,建立机械设备维修决策层次分析法结构模型。设备的维修策略主要有事后维修、定期维修和状态维修,根据运用...实例证明,层次分析法能有效的解决机械设备维修策略的决策。
  • 层次分析法

    万次阅读 2015-06-11 18:11:53
    层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初...
            层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和 定量分析 的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为 美国国防部 研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
     
    应用实例编辑
    1、建立递阶层次结构;
    2、构造两两比较判断矩阵;( 正互反矩阵
    购物层次分析模型                      购物层次分析模型
    对各指标之间进行两两对比之后,然后按9分位比率排定各评价指标的相对优劣顺序,依次构造出评价指标的判断矩阵。
    3、针对某一个标准,计算各备选元素的权重;
    关于判断矩阵权重计算的方法有两种,即几何平均法(根法)和规范列平均法(和法)。
    (1)几何平均法(根法)
    计算矩阵A各行各个元素的乘积,得到一个n行一列的矩阵B;
    计算矩阵每个元素的n次方根得到矩阵C;
    对矩阵C进行归一化处理得到矩阵D;
    该矩阵D即为所求权重向量。
    (2)规范列平均法(和法)
    矩阵A每一列归一化得到矩阵B;
    将矩阵B每一行元素的平均值得到一个一列n行的矩阵C;
    矩阵C即为所求权重向量。
     

    2定义

    所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
    层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造 判断矩阵 ,求出其最大 特征值 。及其所对应的 特征向量 W, 归一化 后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。
     

    3优缺点

    优点

    1. 系统性的分析方法
    层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
    2. 简洁实用的决策方法
    这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
    3. 所需定量数据信息较少
    层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。[1]

    缺点

    1. 不能为决策提供新方案
    层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够企业所做出来的效果好。而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。但显然,层次分析法还没能做到这点。
    2. 定量数据较少,定性成分多,不易令人信服
    在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出来的结果也和你的不一致,这个时候该如何解决?
    比如说,对于一件衣服,我认为评价的指标是舒适度、耐用度,这样的指标对于女士们来说,估计是比较难接受的,因为女士们对衣服的评价一般是美观度是最主要的,对耐用度的要求比较低,甚至可以忽略不计,因为一件便宜又好看的衣服,我就穿一次也值了,根本不考虑它是否耐穿我就买了。这样,对于一个我原本分析的‘购买衣服时的选择方法’的题目,充其量也就只是‘男士购买衣服的选择方法’了。也就是说,定性成分较多的时候,可能这个研究最后能解决的问题就比较少了。
    对于上述这样一个问题,其实也是有办法解决的。如果说我的评价指标太少了,把美观度加进去,就能解决比较多问题了。指标还不够?我再加嘛!还不够?再加!还不够?!不会吧?你分析一个问题的时候考虑那么多指标,不觉得辛苦吗?大家都知道,对于一个问题,指标太多了,大家反而会更难确定方案了。这就引出了层次分析法的第三个不足之处。
    3. 指标过多时数据统计量大,且权重难以确定
    当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。这就像系统结构理论里,我们要分析一般系统的结构,要搞清楚关系环,就要分析到基层次,而要分析到基层次上的相互关系时,我们要确定的关系就非常多了。指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵。那么我们就需要对许多的指标进行两两比较的工作。由于一般情况下我们对层次分析法的两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就出现困难了,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定是合理的。不能通过,就需要调整,在指标数量多的时候这是个很痛苦的过程,因为根据人的思维定势,你觉得这个指标应该是比那个重要,那么就比较难调整过来,同时,也不容易发现指标的相对重要性的取值里到底是哪个有问题,哪个没问题。这就可能花了很多时间,仍然是不能通过一致性检验,而更糟糕的是根本不知道哪里出现了问题。也就是说,层次分析法里面没有办法指出我们的判断矩阵里哪个元素出了问题。[1]  
    4. 特征值和特征向量的精确求法比较复杂
    在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。在二阶、三阶的时候,我们还比较容易处理,但随着指标的增加,阶数也随之增加,在计算上也变得越来越困难。不过幸运的是这个缺点比较好解决,我们有三种比较常用的近似计算方法。第一种就是和法,第二种是幂法,还有一种常用方法是根法。
     

    4基本步骤

    建立层次结构模型
    在深入分析实际问题的基础上,将有关的各个因素按照不同属性 自上而下 地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。
    构造成对比较阵
    从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用 成对比较法 和1—9比较尺度构造成对比较阵,直到最下层。
    计算权向量并做一致性检验
    对于每一个成对比较阵计算最大特征根及对应 特征向量 ,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量( 归一化 后)即为权向量:若不通过,需重新构造成对比较阵。
    计算组合权向量并做组合一致性检验
    计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。
    美国运筹学家T.L.saaty于20世纪70年代提出的层次分析法(Analytic Hierarchy Process,简称AHP方法),是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模型化、数量化。应用这种方法,决策者通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案的权重,为最佳方案的选择提供依据。运用AHP方法,大体可分为以下三个步骤:
    步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;
    步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;
    步骤3:计算各层次对于系统的总排序权重,并进行排序。
    最后,得到各方案对于总目标的总排序。
    构造判断矩阵
    层次分析法的一个重要特点就是用两两重要性程度之比的形式表示出两个方案的相应重要性程度等级。如对某一准则,对其下的各方案进行两两对比,并按其重要性程度评定等级。记为第 和第 因素的重要性之比,表3列出Saaty给出的9个重要性等级及其 赋值 。按两两比较结果构成的矩阵 称作判断矩阵。判断矩阵 具有如下性质:
    且 / ( =1,2,… ) 即 为 正互反矩阵
    表3比例标度表
    因素 比因素
    量化值
    同等重要
    1
    稍微重要
    3
    较强重要
    5
    强烈重要
    7
    极端重要
    9
    两相邻判断的中间值
    2,4,6,8
    计算权重向量
    为了从判断矩阵中提炼出有用信息,达到对事物的规律性的认识,为决策提供出科学依据,就需要计算判断矩阵的权重向量。
    定义:判断矩阵 ,如对 … ,成立 ,则称 满足一致性,并称 为一致性矩阵。
    一致性矩阵A具有下列简单性质:
    1、 存在唯一的非零特征值 ,其对应的特征向量归一化后 记为 ,叫做权重向量,且 ;
    2、 的列向量之和经规范化后的向量,就是权重向量;
    3、 的任一列向量经规范化后的向量,就是权重向量;
    4、对 的全部列向量求每一分量的几何平均,再规范化后的向量,就是权重向量。
    因此,对于构造出的判断矩阵,就可以求出最大特征值所对应的特征向量,然后归一化后作为权值。根据上述定理中的性质2和性质4即得到 判断矩阵 满足一致性的条件下求取权值的方法,分别称为和法和根法。而当 判断矩阵 不满足一致性时,用和法和根法计算权重向量则很不精确。
    一致性检验
    判断矩阵 的阶数 时,通常难于构造出满足一致性的矩阵来。但判断矩阵偏离 一致性条件 又应有一个度,为此,必须对判断矩阵是否可接受进行鉴别,这就是一致性检验的内涵。
    定理:设 是正互反矩阵 的最大特征值则必有 ,其中等式当且仅当 为一致性矩阵时成立。
    应用上面的定理,则可以根据 是否成立来检验矩阵的一致性,如果 比 大得越多,则 的非一致性程度就越严重。因此,定义一致性指标
    (1)
    CI越小,说明一致性越大。考虑到一致性的偏离可能是由于随机原因造成的,因此在检验 判断矩阵 是否具有满意的一致性时,还需将CI和平均随机一致性指标RI进行比较,得出检验系数CR,即
    (2)
    如果CR<0.1 ,则认为该判断矩阵通过一致性检验,否则就不具有满意一致性。
    其中,随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,其对应关系如表4:
    表4 平均随机一致性指标RI标准值(不同的标准不同,RI的值也会有微小的差异)
    矩阵阶数
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    RI
    0
    0
    0.58
    0.90
    1.12
    1.24
    1.32
    1.41
    1.45
    1.49
    可见,AHP方法不仅原理简单,而且具有扎实的理论基础,是定量与定性方法相结合的优秀的决策方法,特别是定性因素起主导作用的决策问题。

    5注意事项

    如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。
    为保证递阶层次结构的合理性,需把握以下原则:
    1、分解简化问题时把握主要因素,不漏不多;
    2、注意相比较元素之间的强度关系,相差太悬殊的要素不能在同一层次比较。
     
     
     
    展开全文
  • python中selenium的运用实例

    千次阅读 2020-11-14 17:49:55
    python中selenium应用实例 一个废物大学生的python笔记,共有三个实例:1.郑州某大学的打卡签到脚本2.某宝双十一的剁手脚本3.某省的答题脚本 #这几个脚本运行需要一点python基础(一点点就可以) #有不懂的可以联系我...
  • 分治具体实例

    千次阅读 2018-05-12 15:38:40
    分治——见名知意,即分而治之,从而得到我们想要的最终结果。分治的思想是将一个规模为N的问题分解为k个较小的子问题,这些子问题遵循的原则就是互相独立且与原问题相同。下面我们就用具体的例子来理解分治的...
  • 穷举(枚举)实例解析

    千次阅读 2020-09-13 19:55:57
    穷举法在c\c++编程上的实际运用 生活中我们常常会遇到很多看似简单,...穷举法的运用确实比较广泛,但是我们要充分明确穷举法运用的实际条件: 1、循环条件; 2、穷举对象; 3、穷举算法 接下来,让我们进入实际例题中
  • 主成分分析法(PCA)是一种高效处理多维数据的多元统计分析方法,将主成分分析用于多指标(变量)的综合评价较为普遍。 该方法的基本思想是运用较少的变量去解释原始数据中的大部分变异,通过对原始数据相关矩阵内部...
  • 数学建模之层次分析法及其应用

    千次阅读 多人点赞 2020-07-28 23:57:16
    层次分析法在数学建模中是非常常见的,其原理、应用场景及实例本文里都有。希望能对数学建模爱好者、挑战者提供一些帮助。如有不清楚或错误的地方还望指出。
  • 根据植物外部形态将所选植物分为草本类、灌木类、乔木类,运用层次分析法进行比较选择,最终选取9种适合该采石场生态恢复治理的植物,草本类为:沙打旺、狗尾草;灌木类为:柠条、沙棘、胡枝子;乔木类为:构树、侧柏、山榆...
  • 通过运用层次分析法确定各分目标函数之间的权重系数和利用MATLAB优化工具箱中的序列二次规划法对优化设计模型进行求解。通过实例计算,得到了更加合理的优化设计参数,证明了该方法在减速器优化设计中的合理性、可行性...
  • 这是关于数学建模中层次分析应用,通过具体的实例得出一般方法的运用并予以推广!
  • 应用层次分析法(AHP)和模糊综合评判法系统研究装备科研招标项目评标问题,通过层次分析法确定指标体系 的权重,运用模糊综合评判法进行模糊综合评判,得出最终结论,通过实例证明此评标方法是合理有效的。
  • 针对传统的威胁评估方法存在指标数据冗余、指标权值设置合理性、推理有效性等问题,建立结合网络层次分析法的云推理威胁评估模型,能够合理精简指标,有效优化推理规则。将该模型用于目标识别系统的威胁评估,首先给...
  • 将现行的钻屑指标、钻孔瓦斯涌出初速度、电磁辐射和单项指标等单因素单数值预测煤与瓦斯突出的方法和指标,通过集对理论综合运用一个具体的集对联系度数学模型表达出来,结合系统聚类分析思想,通过计算预测...
  • 叙述了正交设计的原理并进行了实例操作,运用实例进行正交数据表生成及具体的分析过程。
  • 5W1H 和 鱼骨分析法

    千次阅读 2015-09-24 20:47:34
    1. 5W1H 分析法 解决事件 Who (谁来做) When?(何时做) Where?(何地做) What? (做什么) Why? (为什么做) How? ( 怎么做)。 5W1H 思考点 人WHO 第一步  用利益分析法把这个...
  • 客运站股道运用实时决策问题是一个半结构化问题,实时决策推理研究为解决特殊情况下...实例分析结果表明,所提出的模型与算法能有效解决特殊情况下客运站股道运用实时决策问题,提高了股道运用实时决策的智能化水平。
  • 多中间层的层次分析法(一)

    千次阅读 2019-06-18 00:16:12
    一、层次分析法概述 层次分析法(Analytical Hierarchy Process 简称 AHP 是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 24,958
精华内容 9,983
关键字:

内容分析法的运用实例