-
cuDNN
2017-10-10 13:31:48cuDNN(CUDA Deep Neural Network),官网: https://developer.nvidia.com/cudnn 安装 相比标准的cuda,它在一些常用的神经网络操作上进行了性能的优化,比如卷积,pooling,归一化,以及激活层等等。 在理解...cuDNN(CUDA Deep Neural Network),官网:
https://developer.nvidia.com/cudnn
安装
相比标准的cuda,它在一些常用的神经网络操作上进行了性能的优化,比如卷积,pooling,归一化,以及激活层等等。在理解上面这段的基础上,我们可以猜测配置cuDNN时是要对cuda进行一些修改,所以我们要先安装cuda。cuDNN下载需要注册,这个过程耐心点也很快。下面以ubuntu为例说明如何配置cuDNN进行神经网络的加速。
1. 下载cuDNN压缩包2. 解压
3. 拷贝tar -zxvf cudnn-7.0-linux-x64-v3.0-prod.tgz
解压后会看到一个cuda文件夹,里面包含了include以及lib64两个子目录。将这两个文件夹里的文件复制到cuda对应的安装目录。这里以cuda的安装目录为/usr/local/cuda/为例:
注意:要加sudo,为了获取权限。sudo cp cuDNN/cuda/include/cudnn.h /usr/local/cuda/include sudo cp cuDNN/cuda/lib64/* /usr/local/cuda/lib64
4. 链接
使用#下面的操作在/usr/local/cuda/lib64/目录下进行 sudo rm -rf libcudnn.so libcudnn.so.7.0#删除两个符号链接; sudo ln -s libcudnn.so.7.0.64 libcudnn.so.7.0 sudo ln -s libcudnn.so.7.0 libcudnn.so
在编译caffe(或者其他深度学习库)时,只需要在make的配置文件Makefile.config中将USE_CUDNN取消注释即可。
-
cudnn
2018-07-08 15:38:27转自https://blog.csdn.net/lucifer_zzq/article/details/76675239为什么需要安装cudnncuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经...cuDNN为深度神经网络中的标准流程提供...转自https://blog.csdn.net/lucifer_zzq/article/details/76675239
为什么需要安装cudnn
cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计基于GPU的加速库。cuDNN为深度神经网络中的标准流程提供了高度优化的实现方式,例如convolution、pooling、normalization以及activation layers的前向以及后向过程。
cuDNN只是NVIDIA深度神经网络软件开发包中的其中一种加速库。想了解NVIDIA深度神经网络加速库中的其他包请戳链接https://developer.nvidia.com/deep-learning-software。
各深度学习框架安装cuDNN需知
基本上所有的深度学习框架都支持cuDNN这一加速工具,例如:Caffe、Caffe2、TensorFlow、Torch、Pytorch、Theano等。
Caffe可以通过修改Makefile.config中的相应选项来修改是否在编译Caffe的过程中编译cuDNN,如果没有编译cuDNN的话,执行一些基于Caffe这一深度学习框架的程序速度上要慢3-5倍(Caffe官网上说不差多少,明明差很多嘛)。Caffe对cuDNN的版本不是很严格,只要大于cuDNN 4就可以。
TensorFlow目前的版本r1.2,强行要求装cuDNN,而且对版本也有相应的限制(cuDNN 5.1)。不过就官方说明看,TensorFlow将在下一个版本r1.3中加入对cuDNN 6.0的支持。
Torch通过LuaJit可以自动检测目前系统中的cuDNN版本来进行相应的编译(如没有cuDNN,也可在进行Torch的安装)。
如何安装cudnn
首先说一下网上大多数中文安装cuDNN教程的错误方式,这种方式真的坑人无数。
简单地说网上的大多错误的安装cuDNN的方式都是将下载后的cuDNN压缩包解压。然后再将cudnn的头文件(cuda/include目录下的.h文件)复制到cuda安装路径的include路径下,将cudnn的库文件(cuda/lib64目录下的所有文件)复制到cuda安装路径的lib64路径下。这种方法如果不重置cuDNN相应的符号链接的话是不能成功的安装cuDNN的。
下面我们说一下正确的安装cuDNN方式,其实跟着官方安装说明进行安装就可以了。
从https://developer.nvidia.com/cudnn上下载cudnn相应版本的压缩包(可能需要注册或登录)。
如果这个压缩包不是.tgz格式的,把这个压缩包重命名为.tgz格式。解压当前的.tgz格式的软件包到系统中的任意路径(这个路径很重要,以下将该路径的绝对路径简称为/your/path/to/cudnn),解压后的文件夹名为cuda,文件夹中包含两个文件夹:一个为include,另一个为lib64。
例如:我将这个压缩包解压在了/usr/local目录下,那么该文件的绝对路径为/usr/local/cuda将解压后的文件中的lib64文件夹关联到环境变量中。这一步很重要。
cd ~ sudo gedit .bashrc
- 1
- 2
在弹出的gedit文档编辑器(.bashrc中)中最后一行加入:
export LD_LIBRARY_PATH=/your/path/to/cudnn/lib64:$LD_LIBRARY_PATH
- 1
其中/your/path/to/cudnn/lib64是指.tgz解压后的文件所在路径中的lib64文件夹。
保存更改的文件后,紧接着:source .bashrc
- 1
再重启一下Terminal(终端),该步骤可以成功的配置cuDNN的Lib文件。
配置cuDNN的最后一步就是将解压后的cuDNN文件夹(一般该文件名为cuda)中的include文件夹(/your/path/to/cudnn/include)中的cudnn.h文件拷贝到/usr/local/cuda/include中,由于进入了系统路径,因此执行该操作时需要获取管理员权限。
打开终端,进入/your/path/to/cudnn/include。其中/your/path/to/cudnn/include指的是.tgz解压后的文件所在路径中的include文件夹。例如:
cd cuda/include sudo cp *.h /usr/local/cuda/include
之后,再重置cudnn.h文件的读写权限:
sudo chmod a+r /usr/local/cuda/include
-
Ubuntu安装和卸载CUDA和CUDNN
2018-06-14 12:08:15最近在学习PaddlePaddle在各个显卡驱动版本的安装和使用,所以同时也学习如何在Ubuntu安装和卸载CUDA和CUDNN,在学习过程中,顺便记录学习过程。在供大家学习的同时,也在加强自己的记忆。 卸载CUDA 为什么一...原文博客:Doi技术团队
链接地址:https://blog.doiduoyi.com/authors/1584446358138
初心:记录优秀的Doi技术团队学习经历目录
前言
最近在学习PaddlePaddle在各个显卡驱动版本的安装和使用,所以同时也学习如何在Ubuntu安装和卸载CUDA和CUDNN,在学习过程中,顺便记录学习过程。在供大家学习的同时,也在加强自己的记忆。本文章以卸载CUDA 8.0 和 CUDNN 7.05 为例,以安装CUDA 10.0 和 CUDNN 7.4.2 为例。
安装显卡驱动
禁用nouveau驱动
sudo vim /etc/modprobe.d/blacklist.conf
在文本最后添加:
blacklist nouveau options nouveau modeset=0
然后执行:
sudo update-initramfs -u
重启后,执行以下命令,如果没有屏幕输出,说明禁用nouveau成功:
lsmod | grep nouveau
下载驱动
官网下载地址:https://www.nvidia.cn/Download/index.aspx?lang=cn ,根据自己显卡的情况下载对应版本的显卡驱动,比如笔者的显卡是RTX2070:
下载完成之后会得到一个安装包,不同版本文件名可能不一样:
NVIDIA-Linux-x86_64-410.93.run
卸载旧驱动
以下操作都需要在命令界面操作,执行以下快捷键进入命令界面,并登录:
Ctrl-Alt+F1
执行以下命令禁用X-Window服务,否则无法安装显卡驱动:
sudo service lightdm stop
执行以下三条命令卸载原有显卡驱动:
sudo apt-get remove --purge nvidia* sudo chmod +x NVIDIA-Linux-x86_64-410.93.run sudo ./NVIDIA-Linux-x86_64-410.93.run --uninstall
安装新驱动
直接执行驱动文件即可安装新驱动,一直默认即可:
sudo ./NVIDIA-Linux-x86_64-410.93.run
执行以下命令启动X-Window服务
sudo service lightdm start
最后执行重启命令,重启系统即可:
reboot
注意: 如果系统重启之后出现重复登录的情况,多数情况下都是安装了错误版本的显卡驱动。需要下载对应本身机器安装的显卡版本。
卸载CUDA
为什么一开始我就要卸载CUDA呢,这是因为笔者是换了显卡RTX2070,原本就安装了CUDA 8.0 和 CUDNN 7.0.5不能够正常使用,笔者需要安装CUDA 10.0 和 CUDNN 7.4.2,所以要先卸载原来的CUDA。注意以下的命令都是在root用户下操作的。
卸载CUDA很简单,一条命令就可以了,主要执行的是CUDA自带的卸载脚本,读者要根据自己的cuda版本找到卸载脚本:
sudo /usr/local/cuda-8.0/bin/uninstall_cuda_8.0.pl
卸载之后,还有一些残留的文件夹,之前安装的是CUDA 8.0。可以一并删除:
sudo rm -rf /usr/local/cuda-8.0/
这样就算卸载完了CUDA。
安装CUDA
安装的CUDA和CUDNN版本:
- CUDA 10.0
- CUDNN 7.4.2
接下来的安装步骤都是在root用户下操作的。
下载和安装CUDA
我们可以在官网:CUDA10下载页面,
下载符合自己系统版本的CUDA。页面如下:
下载完成之后,给文件赋予执行权限:
chmod +x cuda_10.0.130_410.48_linux.run
执行安装包,开始安装:
./cuda_10.0.130_410.48_linux.run
开始安装之后,需要阅读说明,可以使用
Ctrl + C
直接阅读完成,或者使用空格键
慢慢阅读。然后进行配置,我这里说明一下:(是否同意条款,必须同意才能继续安装) accept/decline/quit: accept (这里不要安装驱动,因为已经安装最新的驱动了,否则可能会安装旧版本的显卡驱动,导致重复登录的情况) Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48? (y)es/(n)o/(q)uit: n Install the CUDA 10.0 Toolkit?(是否安装CUDA 10 ,这里必须要安装) (y)es/(n)o/(q)uit: y Enter Toolkit Location(安装路径,使用默认,直接回车就行) [ default is /usr/local/cuda-10.0 ]: Do you want to install a symbolic link at /usr/local/cuda?(同意创建软链接) (y)es/(n)o/(q)uit: y Install the CUDA 10.0 Samples?(不用安装测试,本身就有了) (y)es/(n)o/(q)uit: n Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...(开始安装)
安装完成之后,可以配置他们的环境变量,在
vim ~/.bashrc
的最后加上以下配置信息:export CUDA_HOME=/usr/local/cuda-10.0 export LD_LIBRARY_PATH=${CUDA_HOME}/lib64 export PATH=${CUDA_HOME}/bin:${PATH}
最后使用命令
source ~/.bashrc
使它生效。可以使用命令
nvcc -V
查看安装的版本信息:test@test:~$ nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2018 NVIDIA Corporation Built on Sat_Aug_25_21:08:01_CDT_2018 Cuda compilation tools, release 10.0, V10.0.130
测试安装是否成功
执行以下几条命令:
cd /usr/local/cuda-10.0/samples/1_Utilities/deviceQuery make ./deviceQuery
正常情况下输出:
./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "GeForce RTX 2070" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.5 Total amount of global memory: 7950 MBytes (8335982592 bytes) (36) Multiprocessors, ( 64) CUDA Cores/MP: 2304 CUDA Cores GPU Max Clock rate: 1620 MHz (1.62 GHz) Memory Clock rate: 7001 Mhz Memory Bus Width: 256-bit L2 Cache Size: 4194304 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 1024 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 3 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 10.0, NumDevs = 1 Result = PASS
下载和安装CUDNN
进入到CUDNN的下载官网:https://developer.nvidia.com/rdp/cudnn-download ,然点击Download开始选择下载版本,当然在下载之前还有登录,选择版本界面如下,我们选择
cuDNN Library for Linux
:
下载之后是一个压缩包,如下:
cudnn-10.0-linux-x64-v7.4.2.24.tgz
然后对它进行解压,命令如下:
tar -zxvf cudnn-10.0-linux-x64-v7.4.2.24.tgz
解压之后可以得到以下文件:
cuda/include/cudnn.h cuda/NVIDIA_SLA_cuDNN_Support.txt cuda/lib64/libcudnn.so cuda/lib64/libcudnn.so.7 cuda/lib64/libcudnn.so.7.4.2 cuda/lib64/libcudnn_static.a
使用以下两条命令复制这些文件到CUDA目录下:
cp cuda/lib64/* /usr/local/cuda-10.0/lib64/ cp cuda/include/* /usr/local/cuda-10.0/include/
拷贝完成之后,可以使用以下命令查看CUDNN的版本信息:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
测试安装结果
到这里就已经完成了CUDA 10 和 CUDNN 7.4.2 的安装。可以安装对应的Pytorch的GPU版本测试是否可以正常使用了。安装如下:
pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.0-cp35-cp35m-linux_x86_64.whl pip3 install torchvision
然后使用以下的程序测试安装情况:
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.backends.cudnn as cudnn from torchvision import datasets, transforms class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def main(): cudnn.benchmark = True torch.manual_seed(1) device = torch.device("cuda") kwargs = {'num_workers': 1, 'pin_memory': True} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True, **kwargs) model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) for epoch in range(1, 11): train(model, device, train_loader, optimizer, epoch) if __name__ == '__main__': main()
如果正常输出一下以下信息,证明已经安装成了:
Train Epoch: 1 [0/60000 (0%)] Loss: 2.365850 Train Epoch: 1 [640/60000 (1%)] Loss: 2.305295 Train Epoch: 1 [1280/60000 (2%)] Loss: 2.301407 Train Epoch: 1 [1920/60000 (3%)] Loss: 2.316538 Train Epoch: 1 [2560/60000 (4%)] Loss: 2.255809 Train Epoch: 1 [3200/60000 (5%)] Loss: 2.224511 Train Epoch: 1 [3840/60000 (6%)] Loss: 2.216569 Train Epoch: 1 [4480/60000 (7%)] Loss: 2.181396
参考资料
- https://developer.nvidia.com
- https://www.cnblogs.com/luofeel/p/8654964.html
深度学习与PyTorch实战
-
真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)
2018-05-28 22:55:17ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前,大多情况下,能搜到的基本上都ubuntu 14.04.或者是ubuntu 16.04的操作系统安装以及GPU 环境搭建过程,博主就目前自身实验室环境进行分析,总结一下安装过程。 1.实验室...ubuntu 18.04 安装GPU +CUDA+cuDNN :
目前,大多情况下,能搜到的基本上都ubuntu 14.04.或者是ubuntu 16.04的操作系统安装以及GPU 环境搭建过程,博主就目前自身实验室环境进行分析,总结一下安装过程。
1.实验室硬件配置(就需要而言):
gpu : GeForce titan xp 12G 显存
内存: 64G
硬盘 :512 SDD +2T 机械
主板: 微星 x299 SLI PLUS
就配置而言,唯一有遗憾的就是主板,微星主板安装ubuntu 各种报小毛病,打电话给微星客服,客服说,这块主板供应商只在window 10 环境下进行过测试,但是,LINUX 系统,不知道行不行得通,让我自己想办法解决,-_-|| 。 此处还是建议要采购设备的主板选择技嘉或者华硕的,注意看主板是否支持安装linux操作系统。
2 .ubuntu18.04 系统安装
首先,建议制作U盘启动盘(点击此处)进行安装,安装时需要设定主板 grub+legacy方式(重启进bios,boot项里面的),博主在安装系统时,尝试安装了各种版本的ubuntu系统,包括14.01、14.03、16.01、16.03、16.04,均未成功,所有的问题,都是,系统安装到一半,直接就报错,无法安装,在网上查找了许久,据说是显卡的问题导致的,有相关文档说,18.04版本可以避免这个问题。于是,尝试安装ubuntu18.04版本,OK ,按照大神推荐的双硬盘分配方案(点击此处)进行安装配置。安装成功。
大家在安装好系统后,要记得更新源。
3.安装GPU(针对ubuntu18.04)
进入系统后,系统默认是使用主板上的集成显卡,那么,我们需要做的事就是安装上自己的独立显卡,也就是titan xp的驱动,网上有3中安装方法,给大家推荐一下,可以收藏一下如何安装NVIDIA显卡(点击此处)。
此处给大家示范其中一个方法(自己的显卡对应自己的信息,以下只是示例):
修改root密码:
1. $ sudo passwd 输入两次新密码
2. $ su root 登陆 root账户
step .1:首先,检测你的NVIDIA图形卡和推荐的驱动程序的模型。执行命令:
$ ubuntu-drivers devices
输出结果为:
== /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 == modalias : pci:v000010DEd00001180sv00001458sd0000353Cbc03sc00i00 vendor : NVIDIA Corporation model : GK104 [GeForce GTX 680] driver : nvidia-304 - distro non-free driver : nvidia-340 - distro non-free driver : nvidia-384 - distro non-free recommended driver : xserver-xorg-video-nouveau - distro free builtin == cpu-microcode.py == driver : intel-microcode - distro free
从中可以看到,这里有一个设备是GTX 680 ,对应的驱动是NVIDIA -304,340,384 ,而推荐是安装384版本的驱动。
$ sudo ubuntu-drivers autoinstall
$ sudo apt install nvidia-340
OK 驱动安装完成,重新启动,查看系统配置---》详细信息---》关于 ,图形处理是否对应于自己的独立显卡。
4.安装CUDA(针对18.04)
安装CUDA 这里需要注意;
咱们需要根据cuDNN 来选择,如图,首先,cuda只能支持17.04,16.04的ubuntu 下载安装,但,实际上,有点类似于word一样(高版本word能打开低版本的word文件 .)18.04版本的系统,能够安装16.04版本对应的CUDA。
目前cuda 最高版本为9.2,且只支持 16.04,17.04 这两个系统,而且,我们安装完CUDA 之后还需要安装cuDNN。
那么cuDNN 的版本又有什么选择呢,如下
首先,根据cuDNN 的版本,目前,较为完善的,是cuDNN v7.0.5 ,其适用于 CUDA 9.1 版本,所以,咱们在选择安装cuda的时候,选择 CUDA 9.1。下载地址
按下图进行选择
对应的有一下四个文件,需要统统下载,第一个是主文件,后3个相当于补丁。
开始安装:
step .1 GCC 降级
由于CUDA 9.0仅支持GCC 6.0及以下版本,而Ubuntu 18.04预装GCC版本为7.3,
故手动进行降级:
sudo apt-get install gcc-4.8
sudo apt-get install g++-4.8装完后进入到/usr/bin目录下
$ls -l gcc*
会显示以下结果
lrwxrwxrwx 1 root root 7th May 16 18:16 /usr/bin/gcc -> gcc-7.3
发现gcc链接到gcc-7.0, 需要将它改为链接到gcc-4.8,方法如下:
sudo mv gcc gcc.bak #备份
sudo ln -s gcc-4.8 gcc #重新链接同理,对g++也做同样的修改:
ls -l g++*
lrwxrwxrwx 1 root root 7th May 15:17 g++ -> g++-7.3
需要将g++链接改为g++-4.8:
sudo mv g++ g++.bak
sudo ln -s g++-4.8 g++再查看gcc和g++版本号:
gcc -v g++ -v
均显示gcc version 4.8 ,说明gcc 4.8安装成功。
step. 2 安装cuda ,及其补丁
输入命令安装Base Installer:
sudo sh cuda_9.1.85_387.26_linux.run
需要注意的是,之前已经安装过显卡驱动程序,故在提问是否安装显卡驱动时选择no,其他 选择默认路径或者yes即可。
然后,继续执行以下操作安装3个 patch :
sudo sh cuda_9.1.85.1_linux.run
sudo sh cuda_9.1.85.2_linux.run
sudo sh cuda_9.1.85.3_linux.run
安装完毕之后,将以下两条加入
.bashrc
文件中.sudo vim ~/.bashrc
export PATH=/usr/local/cuda-9.1/bin${PATH:+:$PATH}} #注意,根据自己的版本,修改cuda-9.2/9.0...
export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}#注意,根据自己的版本,修改cuda-9.2/9.0...
OK ,那么,到这一步,cuda 就安装完成了
5.安装cuDNN(针对18.04)
cuDNN 的安装,就是将 cuDNN 包内的文件,拷贝到cuda文件夹中即可。
step.1按照第四点分析的内容,我们需要下载的cuDNN 版本为
cuDNN v7.0.0 library for liunx,下载地址(需要注册才能进行下载)
下载完毕后,切到默认的Downloads文件夹,可以看到 cudnn-9.1-linux-x64-v7.tgz 压缩包
先解压,然后将其中的内容复制到CUDA安装文件夹里面.
step.2 复制cuDNN内容到cuda相关文件夹内
sudo cp cuda/include/cudnn.h /usr/local/cuda/include 注意,解压后的文件夹名称为cuda ,将对应文件复制到 /usr/local中的cuda内
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*到此处,所以的安装就完成。
接下来就可以安装相应的软件,如:anaconda,pycharm tensorflow 等。
-
Cudnn library
2018-08-15 16:53:57CUDNN库开发文档CUDNN库开发文档CUDNN库开发文档CUDNN库开发文档 -
Ubuntu16.04下安装cuda和cudnn的三种方法(亲测全部有效)
2018-08-15 11:44:49目录 1.cuda的安装 ...安装之前首先要确认你需要安装的cuda和cudnn的版本,假如你后续还需要安装tensorflow的话,请看我的另外一篇博客,确认你需要的版本。 1.cuda的安装 cuda的安装比较费事... -
Win10安装CUDA10和cuDNN
2018-10-12 15:50:48官方安装教程 CUDA:...cuDNN:https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows WIN10安装CUDA10 CUDA ... -
查看 CUDA cudnn 版本
2017-08-01 15:27:09https://medium.com/@changrongko/nv-how-to-check-cuda-and-cudnn-version-e05aa21daf6ccuda 版本 cat /usr/local/cuda/version.txtcudnn 版本 cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 -
cudnn 7.3.1
2018-11-27 14:58:03cudnn库windows版本,详细:cudnn-10.0-windows10-x64-v7.3.1.20 -
tensorflow CUDA cudnn 版本对应关系
2018-07-14 15:23:52linux下: windows下: 上面两张图是在这里找到的:https://tensorflow.google.cn/install/source (右上角...cudnn 下载地址(需要注册账号)点击打开链接 tensorflow-cpu 下载地址点击打开链接 te... -
cudnn_7.dll_cudnn.h_cudnn.lib
2018-04-17 16:27:41文件原名为cudnn-9.0-windows10-x64-v7.zip,解压后包含三个文件bin/cudnn_7.dll, include/cudnn.h 和lib/x64/cudnn.lib -
tensorflow各个版本的CUDA以及Cudnn版本对应关系
2019-04-08 14:50:34概述,需要注意以下几个问题: (1)NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以... -
Ubuntu安装cuDNN
2017-07-24 09:47:26cuDNN -
【cudnn】cudnn 安装
2021-01-07 10:19:40官方下载: ...安装 解压下载的文件,可以...sudo cp cuda/include/cudnn.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn.h sudo chm -
如何查看CUDA版本和CUDNN版本
2018-01-17 10:20:15cuda一般安装在 /usr/local/cuda/ 路径下,该路径下有一个version.txt文档,里面记录了cuda的版本信息 cat /usr/local/cuda/...cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 即可查询 另附我... -
解决RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED
2019-01-23 16:03:25最终环境:win10 ,2080ti ,cuda10,cudnn7.3.1,vs2017,python3.6.6,pytorch1.0.0 现象:cuda用窗口命令nvcc -V,可以显示cuda版本号,说明cuda没问题(torch.cuda.is_available()返回的... -
cudnn 安装
2020-11-09 20:40:381. 找到对的cudnn https://developer.nvidia.com/rdp/cudnn-archive 2. cp cudnn-10.0-linux-x64-v7.3.0.29.solitairetheme8 cudnn-10.0-linux-x64-v7.3.0.29.tgz tar -xvf cudnn-8.0-linux-x64-v5.1.tgz ... -
cudnn安装
2020-08-30 12:54:09https://developer.nvidia.com/rdp/cudnn-archive cudnn下载地址 https://zhuanlan.zhihu.com/p/35828626 cudnn安装 -
cuDNN概述
2020-12-28 06:55:41cuDNN概述 NVIDIACUDA®深度神经网络库(cuDNN)是GPU加速的用于深度神经网络的原语库。cuDNN为标准例程提供了高度优化的实现,例如向前和向后卷积,池化,规范化和激活层。 全球的深度学习研究人员和框架开发人员都... -
安装cudnn
2020-08-12 14:21:28https://developer.nvidia.com/rdp/cudnn-download ... Abstract This cuDNN 8.0.2 Installation Guide provides step-by-step instructions on how to install and check for corre. -
cudnn 7.6.4 linux
2020-04-15 16:22:51cudnn 7.6.4 的so文件,配合cuda10.0,配合TensorFlow1.14,export LD_LIBRARY_PATH使用 -
cudnn资源列表
2017-10-16 11:38:25cudnn-7.5-linux-v5.0,cudnn-8.0-linux-v5.1,cudnn-8.0-windows10-x64-v6.0 -
cudnn_samples
2018-07-20 11:17:31cudnn的测试程序。用来检验cuda和cudnn的安装结果。需要在linux gcc环境下编译运行。 -
安装Cudnn
2019-11-20 17:47:22安装Cudnn 步骤 内容 1 下载 2 安装(移动) 3 测试 4 恭喜你,成功安装完了有关深度学的基础软件 一,下载 1,Cudnn各种版本的下载链接,需要先注册,登录后直接打开此网址 ... -
cuda cudnn
2018-11-07 20:27:30推荐cuda安装使用.run文件,cudnn安装使用三个deb文件安装,简单方便. cudnn的安装教程可以参考官方地址. 查看cuda版本: cat /usr/local/cuda/version.txt 查看cudnn版本: cat /usr/local/cuda/include/cudnn.h | ... -
安装cuDNN
2019-09-24 16:11:26cuDNN cuDNN是GPU加速计算深层神经网络的库(下载链接,前文已提供)。 本人的下载文件是:cudnn-7.0-linux-x64-v4.0-prod.tgz 在终端中切换到文件所在文件夹,输入下面指令: $ sudo tar xvf cudnn-7.0-linux... -
Ubuntu同时安装cudnn5和cudnn6
2018-04-09 19:30:44tensorflow-gpu1.2版本需要cudnn5,1.3之后需要Cudnn6。想要一种方式能够同时安装两个版本的,这样tensorflow-gpu不同版本可以通过python虚拟环境实现,cudnn多版本也能配合使用。 方法 其实cudnn多版本是兼容的,... -
Cudnn 安装
2018-07-17 09:34:23官网下载需要的cudnn版本:https://developer.nvidia.com/rdp/cudnn-archive 下载需要注册账号 我安装的是cuda8.0,对应cudnn6.0 下载后解压,进入 cudnn目录,有... cp cuda/include/cudnn.h/usr/local/... -
cudnn_v6[cudnn6.0] for Linux
2017-11-16 14:44:16tensorflow更新需要v6版本的cudnn6.0,而NVIDIA官网最近一直无法下载。
-
Go语言官方文档学习笔记(第六季-一撮金游戏)
-
web前端开发规范
-
【数据分析-随到随学】机器学习模型及应用
-
大数据Hive on MR/TEZ与hadoop的整合应用
-
Ubuntu16.04 下 Python3 虚拟环境安装 OpenCV
-
OpenCV中的显著性检测 Saliency Detection
-
前端架构师和3D-VR
-
aix5.3上安装jdk1.6
-
基于Arduino WemosD1的智能感应开盖垃圾桶
-
东华大学819有机化学历年考研真题
-
2021全网最详细【WEB前端】从零入门实战教程,全课程119节
-
mysql-5.7.29-winx64.zip
-
最新人教版五年级下册语文第四单元基础过关知识整理.doc
-
2013年水资源公报.docx
-
Windows上nginx-openresty添加rtmp模块的方法
-
继承和派生(2)--继承中对构造函数、同名函数的处理方式
-
国家注册渗透测试工程师(Web安全)
-
Soul网关源码学习(三)——Dubbo插件详解
-
手机HOSTS解决卫图谷歌.zip
-
自动驾驶激光雷达物体检测技术