精华内容
下载资源
问答
  • 偏导数存在并不一定表明函数的连续性
    2021-01-14 15:31:41

    《数学分析,欧阳光中版》第 159页说:

    由一元函数可导必定连续的结论可知,若 $f(x,y)$ 在点 $(x,y)$ 关于 $x$(或 $y$)可导,则 $f(x,y)$ 在点 $(x,y)$ 关于 $x$(或 $y$)连续.不过要注意,此时并不能推出 $f(x,y)$ 关于两个变量是连续的.

    在此,我要用一个失败的证明为此话做注解,以证明如上方框里的话很可能是对的(当然,书上的反例直接表明了方框里的话是对的,但是我愿意从“无法证明”的角度来看这个问题).我们要想证明 $f(x,y)$ 在点 $(x,y)$ 连续,就要证明

    $$\lim_{\Delta x\to 0,\Delta y\to 0}f(x+\Delta x,y+\Delta y)-f(x,y)=0.$$

    也就是证明

    $$\lim_{\Delta x\to 0,\Delta y\to 0}[f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)]+[f(x,y+\Delta y)-f(x,y)]=0.$$

    然而没有证据支持这一点.因为条件里并没有说函数在除去 $(x,y)$ 之外的点是关于 $x$ 或 $y$ 连续.

    更多相关内容
  • 多元函数可微则偏导数一定存在,可微偏导数存在要求强而偏导数连续可以退出可微,但反推不行。若函数对xy的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,...

    展开全部

    函数可微则这个函数一定32313133353236313431303231363533e58685e5aeb931333433643066连续,但连续不一定可微.多元函数可微则偏导数一定存在,可微比偏导数存在要求强而偏导数连续可以退出可微,但反推不行。

    若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

    设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

    △z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微。

    可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微,这个切面的方程应为Z-z=A(X-x0)+B(Y-y0)。

    扩展资料:

    可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。

    一般来说,若X是函数ƒ定义域上的一点,且ƒ′(X)有定义,则称ƒ在X点可微。这就是说ƒ的图像在(X,ƒ(X))点有非垂直切线,且该点不是间断点、尖点。

    实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。

    展开全文
  • 一、连续,偏导数不一定存在 ...二、偏导数存在,不一定连续 这个性质跟一元函数有很大差异。对于二元函数,偏导数存在是很弱的条件,甚至连极限都有可能不存在。 例子:f(x,y)={xyx2+y2,x2+y2≠00,x2+y2=0f

    一、连续,偏导数不一定存在

    这个很容易理解,跟一元函数一样。
    例如 f ( x , y ) = ∣ x ∣ f(x,y)=|x| f(x,y)=x,在 ( 0 , 0 ) (0,0) (0,0)连续,但 f x ( 0 , 0 ) = d ∣ x ∣ d x f_x(0,0)=\frac{\text{d}|x|}{\text{d}x} fx(0,0)=dxdx不存在。
    再例如, f ( x , y ) = x 2 + y 2 f(x,y)=\sqrt{x^2+y^2} f(x,y)=x2+y2 ,其在 ( 0 , 0 ) (0,0) (0,0)点显然连续,但 f x ( 0 , 0 ) = lim ⁡ x → 0 ∣ x ∣ x f_x(0,0)=\lim_{x\to0}\frac{|x|}{x} fx(0,0)=x0limxx不存在, f y ( 0 , 0 ) f_y(0,0) fy(0,0)同理也不存在。
    用Geogebra画图可以看出这个函数的图像是锥形,在 ( 0 , 0 ) (0,0) (0,0)点是尖的:
    在这里插入图片描述

    二、偏导数存在,不一定连续

    这个性质跟一元函数有很大差异。对于二元函数,偏导数存在是很弱的条件,甚至连极限都有可能不存在。
    例子: f ( x , y ) = { x y x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 f(x,y)=\begin{cases}\frac{xy}{x^2+y^2},&x^2+y^2\ne0\\0,&x^2+y^2=0\end{cases} f(x,y)={x2+y2xy,0,x2+y2=0x2+y2=0它在 ( 0 , 0 ) (0,0) (0,0)点的两个偏导数都存在: f x ( 0 , 0 ) = f y ( 0 , 0 ) = 0 f_x(0,0)=f_y(0,0)=0 fx(0,0)=fy(0,0)=0但是它在 ( 0 , 0 ) (0,0) (0,0)点的极限不存在,以 y = k x y=kx y=kx的路径逼近 ( 0 , 0 ) (0,0) (0,0) lim ⁡ x → 0 , y = k x x y x 2 + y 2 = k 1 + k 2 \lim_{x\to0,y=kx}\frac{xy}{x^2+y^2}=\frac{k}{1+k^2} x0,y=kxlimx2+y2xy=1+k2k随着 k k k的变化而变化,所以 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) \lim_{(x,y)\to(0,0)}f(x,y) (x,y)(0,0)limf(x,y)不存在。
    画图看出这个函数在 ( 0 , 0 ) (0,0) (0,0)点呈现一个很奇怪的样子:
    在这里插入图片描述

    三、可微,一定连续、偏导数存在

    定理1(可微的必要条件) 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微,则
    (1) f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续;
    (2) f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的两个偏导数都存在,且有 d f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) d x + f y ( x 0 , y 0 ) d y \text{d}f(x_0,y_0)=f_x(x_0,y_0)\text{d}x+f_y(x_0,y_0)\text{d}y df(x0,y0)=fx(x0,y0)dx+fy(x0,y0)dy
    证明
    (1) 当 f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微时,存在常数 a 1 , a 2 a_1,a_2 a1,a2使得 Δ z = a 1 Δ x + a 2 Δ y + o ( ρ ) \Delta z=a_1\Delta x+a_2\Delta y+o(\rho) Δz=a1Δx+a2Δy+o(ρ),其中 ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 。令 ρ → 0 \rho\to0 ρ0,即 Δ x → 0 \Delta x\to0 Δx0 Δ y → 0 \Delta y\to0 Δy0,得 lim ⁡ ρ → 0 Δ z = 0 \lim_{\rho\to0}\Delta z=0 ρ0limΔz=0 lim ⁡ Δ x → 0 , Δ y → 0 f ( x 0 + Δ x , y 0 + Δ y ) = lim ⁡ Δ x → 0 , Δ y → 0 [ f ( x 0 , y 0 ) + Δ z ] = f ( x 0 , y 0 ) \lim_{\Delta x\to0,\Delta y\to0}f(x_0+\Delta x,y_0+\Delta y)=\lim_{\Delta x\to0,\Delta y\to0}[f(x_0,y_0)+\Delta z]=f(x_0,y_0) Δx0,Δy0limf(x0+Δx,y0+Δy)=Δx0,Δy0lim[f(x0,y0)+Δz]=f(x0,y0)因此 f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续。
    (2) 由可微的定义, f f f满足 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = a 1 Δ x + a 2 Δ y + o ( ρ ) f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=a_1\Delta x+a_2\Delta y+o(\rho) f(x0+Δx,y0+Δy)f(x0,y0)=a1Δx+a2Δy+o(ρ) Δ y = 0 \Delta y=0 Δy=0,则有 ρ = ∣ Δ x ∣ \rho=|\Delta x| ρ=Δx,上式变为 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) = a 1 + o ( ∣ Δ x ∣ ) f(x_0+\Delta x,y_0)-f(x_0,y_0)=a_1+o(|\Delta x|) f(x0+Δx,y0)f(x0,y0)=a1+o(Δx)两边除以 Δ x \Delta x Δx并取极限得 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = lim ⁡ Δ x → 0 [ a 1 + o ( ∣ Δ x ∣ ) Δ x ] = a 1 \lim_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=\lim_{\Delta x\to0}\left[a_1+\frac{o(|\Delta x|)}{\Delta x}\right]=a_1 Δx0limΔxf(x0+Δx,y0)f(x0,y0)=Δx0lim[a1+Δxo(Δx)]=a1 f x ( x 0 , y 0 ) = a 1 f_x(x_0,y_0)=a_1 fx(x0,y0)=a1
    同理,取 Δ x = 0 \Delta x=0 Δx=0 f y ( x 0 , y 0 ) = a 2 f_y(x_0,y_0)=a_2 fy(x0,y0)=a2。∎

    从这里我们可以看出,可微是很强得条件,远比偏导数存在要强。

    然而,这个条件仅仅是必要条件。我们举一个例子 f ( x , y ) = { x y x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 f(x,y)=\begin{cases}\frac{xy}{\sqrt{x^2+y^2}},&x^2+y^2\ne0\\0,&x^2+y^2=0\end{cases} f(x,y)={x2+y2 xy,0,x2+y2=0x2+y2=0它在 ( 0 , 0 ) (0,0) (0,0)点连续,因为 lim ⁡ ( x , y ) → ( 0 , 0 ) ∣ f ( x , y ) − f ( 0 , 0 ) ∣ = lim ⁡ ( x , y ) → ( 0 , 0 ) ∣ f ( x , y ) ∣ ≤ lim ⁡ ( x , y ) → ( 0 , 0 ) x 2 + y 2 2 x 2 + y 2 = 0 \lim_{(x,y)\to(0,0)}|f(x,y)-f(0,0)|=\lim_{(x,y)\to(0,0)}|f(x,y)|\le\lim_{(x,y)\to(0,0)}\frac{x^2+y^2}{2\sqrt{x^2+y^2}}=0 (x,y)(0,0)limf(x,y)f(0,0)=(x,y)(0,0)limf(x,y)(x,y)(0,0)lim2x2+y2 x2+y2=0两个偏导数也存在: f x ( 0 , 0 ) = f y ( 0 , 0 ) = 0 f_x(0,0)=f_y(0,0)=0 fx(0,0)=fy(0,0)=0但不可微。因为如果可微,那么 Δ f − f x ( 0 , 0 ) Δ x − f y ( 0 , 0 ) Δ y = o ( ρ ) \Delta f-f_x(0,0)\Delta x-f_y(0,0)\Delta y=o(\rho) Δffx(0,0)Δxfy(0,0)Δy=o(ρ)。然而 lim ⁡ ( x , y ) → ( 0 , 0 ) Δ f ρ = lim ⁡ ( x , y ) → ( 0 , 0 ) x y x 2 + y 2 \lim_{(x,y)\to(0,0)}\frac{\Delta f}{\rho}=\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2} (x,y)(0,0)limρΔf=(x,y)(0,0)limx2+y2xy不存在。也就是说,满足定理1的条件不一定可微。
    其函数图像如下:
    在这里插入图片描述

    四、偏导数连续,一定可微

    定理2(可微的充分条件) 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)得的某个邻域内有定义,若 f ( x , y ) f(x,y) f(x,y)的两个偏导数均在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,则该函数在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微。
    证明 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = [ f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 + Δ y ) ] + [ f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) ] \begin{aligned}\Delta z&=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)\\&=[f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0+\Delta y)]+[f(x_0,y_0+\Delta y)-f(x_0,y_0)]\end{aligned} Δz=f(x0+Δx,y0+Δy)f(x0,y0)=[f(x0+Δx,y0+Δy)f(x0,y0+Δy)]+[f(x0,y0+Δy)f(x0,y0)]右边的每一项都是一元函数的改变量,故可以采用拉格朗日中值定理( f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)),即存在 θ 1 , θ 2 ∈ ( 0 , 1 ) \theta_1,\theta_2\in(0,1) θ1,θ2(0,1)使得 Δ z = f x ( x 0 + θ 1 Δ x , y 0 + Δ y ) Δ x + f y ( x 0 , y 0 + θ 2 Δ y ) Δ y \Delta z=f_x(x_0+\theta_1\Delta x,y_0+\Delta y)\Delta x+f_y(x_0,y_0+\theta_2\Delta y)\Delta y Δz=fx(x0+θ1Δx,y0+Δy)Δx+fy(x0,y0+θ2Δy)Δy由于 f x ( x , y ) f_x(x,y) fx(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)连续,取极限 ρ = ( Δ x ) 2 + ( Δ y ) 2 → 0 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2}\to0 ρ=(Δx)2+(Δy)2 0 lim ⁡ ρ → 0 f x ( x 0 + θ 1 Δ x , y 0 + Δ y ) = f x ( x 0 , y 0 ) \lim_{\rho\to0}f_x(x_0+\theta_1\Delta x,y_0+\Delta y)=f_x(x_0,y_0) ρ0limfx(x0+θ1Δx,y0+Δy)=fx(x0,y0)因此有 f x ( x 0 + θ 1 Δ x , y 0 + Δ y ) = f x ( x 0 , y 0 ) + α 1 ( ρ ) f_x(x_0+\theta_1\Delta x,y_0+\Delta y)=f_x(x_0,y_0)+\alpha_1(\rho) fx(x0+θ1Δx,y0+Δy)=fx(x0,y0)+α1(ρ)同理有 f y ( x 0 , y 0 + θ 2 Δ y ) = f ( x 0 , y 0 ) + α 2 ( ρ ) f_y(x_0,y_0+\theta_2\Delta y)=f(x_0,y_0)+\alpha_2(\rho) fy(x0,y0+θ2Δy)=f(x0,y0)+α2(ρ)其中 α 1 , 2 ( ρ ) \alpha_{1,2}( \rho) α1,2(ρ) ρ \rho ρ的高阶无穷小。整理得 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = [ f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 + Δ y ) ] + [ f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) ] = [ f x ( x 0 , y 0 ) + α 1 ( ρ ) ] Δ x + [ f ( x 0 , y 0 ) + α 2 ( ρ ) ] Δ y = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + α 1 ( ρ ) Δ x + α 2 ( ρ ) Δ y \begin{aligned}\Delta z&=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)\\&=[f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0+\Delta y)]+[f(x_0,y_0+\Delta y)-f(x_0,y_0)]\\&=[f_x(x_0,y_0)+\alpha_1(\rho)]\Delta x+[f(x_0,y_0)+\alpha_2(\rho)]\Delta y\\&=f_x(x_0,y_0)\Delta x+f_y(x_0,y_0)\Delta y+\alpha_1(\rho)\Delta x+\alpha_2(\rho)\Delta y\end{aligned} Δz=f(x0+Δx,y0+Δy)f(x0,y0)=[f(x0+Δx,y0+Δy)f(x0,y0+Δy)]+[f(x0,y0+Δy)f(x0,y0)]=[fx(x0,y0)+α1(ρ)]Δx+[f(x0,y0)+α2(ρ)]Δy=fx(x0,y0)Δx+fy(x0,y0)Δy+α1(ρ)Δx+α2(ρ)Δy只需证明后面两项是 ρ \rho ρ的高阶无穷小。而 Δ x ≤ ρ \Delta x\le\rho Δxρ Δ y ≤ ρ \Delta y\le\rho Δyρ,所以 ∣ α 1 ( ρ ) Δ x + α 2 ( ρ ) Δ y ∣ ≤ ∣ α 1 ( ρ ) + α 2 ( ρ ) ∣ ρ |\alpha_1(\rho)\Delta x+\alpha_2(\rho)\Delta y|\le|\alpha_1(\rho)+\alpha_2(\rho)|\rho α1(ρ)Δx+α2(ρ)Δyα1(ρ)+α2(ρ)ρ lim ⁡ ρ → 0 ∣ α 1 ( ρ ) Δ x + α 2 ( ρ ) Δ y ρ ∣ = lim ⁡ ρ → 0 α 1 ( ρ ) + α 2 ( ρ ) = o ( ρ ) \lim_{\rho\to0}\left|\frac{\alpha_1(\rho)\Delta x+\alpha_2(\rho)\Delta y}{\rho}\right|=\lim_{\rho\to0}\alpha_1(\rho)+\alpha_2(\rho)=o(\rho) ρ0limρα1(ρ)Δx+α2(ρ)Δy=ρ0limα1(ρ)+α2(ρ)=o(ρ)于是 α 1 ( ρ ) Δ x + α 2 ( ρ ) Δ y \alpha_1(\rho)\Delta x+\alpha_2(\rho)\Delta y α1(ρ)Δx+α2(ρ)Δy ρ \rho ρ的高阶无穷小。因此有 Δ z = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + o ( ρ ) \Delta z=f_x(x_0,y_0)\Delta x+f_y(x_0,y_0)\Delta y+o(\rho) Δz=fx(x0,y0)Δx+fy(x0,y0)Δy+o(ρ) f f f ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微。∎

    注意:这只是充分条件。有些函数,例如 f ( x , y ) = { ( x 2 + y 2 ) sin ⁡ 1 x 2 + y 2 , x 2 + y 2 ≠ 0 0 , x 2 + y 2 = 0 f(x,y)=\begin{cases}(x^2+y^2)\sin{\frac{1}{x^2+y^2}},&x^2+y^2\ne0\\0,&x^2+y^2=0\end{cases} f(x,y)={(x2+y2)sinx2+y21,0,x2+y2=0x2+y2=0它在 ( 0 , 0 ) (0,0) (0,0)处可微,但 f x ( x , y ) f_x(x,y) fx(x,y) f y ( x , y ) f_y(x,y) fy(x,y) ( 0 , 0 ) (0,0) (0,0)处间断。

    另外, f x ( x , y ) , f y ( x , y ) f_x(x,y),f_y(x,y) fx(x,y),fy(x,y)二元函数,它们连续是指满足二元函数连续的条件,而不仅仅是在 x x x方向或在 y y y方向上连续。

    五、偏导数连续,函数一定连续

    这是定理1和定理2结合起来后一个很显然的推论。

    六、可微,则沿任一方向的方向导数存在

    定理3 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)可微,则函数 f f f在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)沿任意 l \bm l l方向的方向导数均存在,且 ∂ f ∂ l ∣ x 0 , y 0 = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \left.\frac{\partial f}{\partial\bm l}\right|_{x_0,y_0}=f_x(x_0,y_0)\cos\alpha+f_y(x_0,y_0)\cos\beta lfx0,y0=fx(x0,y0)cosα+fy(x0,y0)cosβ其中 l \bm l l方向上的单位向量是 e l = ( cos ⁡ α , cos ⁡ β ) \bm e_l=(\cos\alpha,\cos\beta) el=(cosα,cosβ)
    证明:由定理1,当 ( x , y ) → ( 0 , 0 ) (x,y)\to(0,0) (x,y)(0,0)时,有 f ( x , y ) − f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y + o ( ρ ) f(x,y)-f(x_0,y_0)=f_x(x_0,y_0)\Delta x+f_y(x_0,y_0)\Delta y+o(\rho) f(x,y)f(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy+o(ρ) ( x , y ) = ( x 0 , y 0 ) + t e l = ( x 0 , y 0 ) + ( t cos ⁡ α , t cos ⁡ β ) (x,y)=(x_0,y_0)+t\bm e_l=(x_0,y_0)+(t\cos\alpha,t\cos\beta) (x,y)=(x0,y0)+tel=(x0,y0)+(tcosα,tcosβ),即 Δ x = t cos ⁡ α , Δ y = t cos ⁡ β , ∣ t ∣ = ( Δ x ) 2 + ( Δ y ) 2 \Delta x=t\cos\alpha,\Delta y=t\cos\beta,|t|=\sqrt{(\Delta x)^2+(\Delta y)^2} Δx=tcosα,Δy=tcosβ,t=(Δx)2+(Δy)2 ,可得 f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) t cos ⁡ α + f y ( x 0 , y 0 ) t cos ⁡ β + o ( ρ ) f(x_0,y_0)=f_x(x_0,y_0)t\cos\alpha+f_y(x_0,y_0)t\cos\beta+o(\rho) f(x0,y0)=fx(x0,y0)tcosα+fy(x0,y0)tcosβ+o(ρ)由方向导数的定义有 ∂ f ∂ l ∣ x 0 , y 0 = lim ⁡ t → 0 f ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β ) − f ( x 0 , y 0 ) t = lim ⁡ t → 0 f x ( x 0 , y 0 ) t cos ⁡ α + f y ( x 0 , y 0 ) t cos ⁡ β + o ( ∣ t ∣ ) t = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \begin{aligned}\left.\frac{\partial f}{\partial\bm l}\right|_{x_0,y_0}&=\lim_{t\to0}\frac{f(x_0+t\cos\alpha,y_0+t\cos\beta)-f(x_0,y_0)}{t}\\&=\lim_{t\to0}\frac{f_x(x_0,y_0)t\cos\alpha+f_y(x_0,y_0)t\cos\beta+o(|t|)}{t}\\&=f_x(x_0,y_0)\cos\alpha+f_y(x_0,y_0)\cos\beta\end{aligned} lfx0,y0=t0limtf(x0+tcosα,y0+tcosβ)f(x0,y0)=t0limtfx(x0,y0)tcosα+fy(x0,y0)tcosβ+o(t)=fx(x0,y0)cosα+fy(x0,y0)cosβ证毕。∎


    总结

    综合以上所有讨论,我们将各个条件之间的关系理成下面这张图:

    可以看出偏导数连续是最强的条件,可微是很强的条件,(任意方向)偏导数存在是很弱的条件。

    展开全文
  • 为什么偏导数连续,函数就可微

    万次阅读 多人点赞 2018-10-23 17:50:27
    如果函数 的偏导数 、 在点 连续,那么函数在该点可微。 下面来解释这个结论,并且减弱这个结论的条件。 先简单阐述下“连续”、“偏导数”、“可微”的意义,后面要用到。如果非常熟悉了,可以直接跳到最后...

    多变量微积分里面有这么一个结论:

    如果函数z=f(x,y) 的偏导数\frac{\partial z}{\partial x} 、\frac{\partial z}{\partial y} 在点(x_0,y_0) 连续,那么函数在该点可微。

    下面来解释这个结论,并且减弱这个结论的条件。

    先简单阐述下“连续”、“偏导数”、“可微”的意义,后面要用到。如果非常熟悉了,可以直接跳到最后一节“偏导数连续推出可微”。

    1 连续的含义

    通俗来说,用笔作画,不提笔画出来的曲线就是连续的:

    1.1 没有缝隙

    我们对连续的函数曲线的直观感受是没有缝隙:

    如果把曲线看作一条道路的话,那么不管是蚂蚁、人还是自行车,都有能力从左边走到右边:

    而不连续的曲线会有断裂:

    蚂蚁通过能力太差,就没有办法跨过裂缝:

    1.2 另一层含义

    从代数上我们可以看到另外一层含义。假设f(x_0) 附近某点为f(x_0+\Delta x) ,根据连续的性质有:

    \lim_{\Delta x\to 0}f(x_0+\Delta x)=f(x_0)

    利用极限的性质可以得到:

    \lim_{\Delta x\to 0}f(x_0+\Delta x)=f(x_0)\implies f(x_0+\Delta x)=f(x_0)+\underbrace{o(\Delta x)}_{代表非常小的值}

    因此上式表明,f(x_0) 与附近f(x_0+\Delta x) 的值相差非常小,这层含义也是没有“缝隙”的另外一种阐述。

    2 可微的含义

    2.1 单变量函数的微分

    一元的情况下,在(x_0,f(x_0)) 点可微指的是,在(x_0,f(x_0)) 点附近可以用直线来近似曲线,这根直线就是切线:

    距离(x_0,f(x_0)) 越近,这种近似越好,体现为切线和曲线之间的相差越来越小:

    \Delta x=x-x_0 ,那么x_0 附近曲线与直线的近似可以表示为:

    \underbrace{f(x_0+\Delta x)}_{曲线}\quad=\quad\underbrace{f(x_0)+f'(x_0)\Delta x}_{切线}\quad+\quad\underbrace{o(\Delta x)}_{代表非常小的值}

    2.2 多变量函数的微分

    多元的情况下,就要复杂一些。关于下面内容,想了解更详细的可以参看:

    2.2.1 偏导数

    首先要对偏导数有所了解。多变量的函数f(x,y) 可以是三维空间中的曲面

    平面y=t,t\in\mathbb{R} 是一系列平面,它们与曲面交于一条条曲线:

    很显然,点在这些曲线上运动,y 是不会变化的,只有x 会变化:

    偏导数\frac{\partial f}{\partial x} 所求的也就是在这些曲线上运动的点的速度(变化率),对于(x_0,y_0,f(x_0,y_0)) 点,知道它的偏导数就可以得到这条曲线在此点的线性近似,也就是这条曲线的切线,或者称为偏微分:

    这种近似关系可以表示为:

    \underbrace{f(x_0+\Delta x,y_0)}_{曲线}\quad=\quad\underbrace{f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x}_{切线}\quad+\quad\underbrace{o(\Delta x)}_{代表非常小的值}

    同样的道理,偏导数\frac{\partial f}{\partial y} 描述的是只有y 值变化的曲线上的点的速度,假设这样的曲线为f_y(x,y) ,其切线与之的近似关系可以表示为::

    \underbrace{f(x_0,y_0+\Delta y)}_{曲线}\quad=\quad\underbrace{f(x_0,y_0)+\frac{\partial f}{\partial y}\Delta y}_{切线}\quad+\quad\underbrace{o(\Delta y)}_{代表非常小的值}

    2.2.2 微分

    多变量的函数f(x,y) 在(x_0,y_0,f(x_0,y_0)) 点的微分,指的是在(x_0,y_0,f(x_0,y_0)) 点找到一个平面来近似曲面,这就是切平面:

    切平面与曲面的近似可以表示为:

    \underbrace{f(x_0+\Delta x, y_0+\Delta y)}_{曲面}\quad=\quad\underbrace{f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x+\frac{\partial f}{\partial y}\Delta y}_{平面}\quad+\quad\underbrace{o(\sqrt{(\Delta x)^2+(\Delta y)^2})}_{代表非常小的值}

    上面出现了o(\sqrt{(\Delta x)^2+(\Delta y)^2}) ,这是因为此点的邻域是一个平面(下面用圆来表示这个平面,实际上这个圆可以任意大小):

    此圆的半径可以表示为:

    r=\sqrt{(\Delta x)^2+(\Delta y)^2}

    2.3 微分与偏微分的关系

    很显然,过(x_0,y_0,f(x_0,y_0)) 点,并不是只有x,y 方向的曲线(两个方向的曲线的切线就是偏微分):

    还有无数别的方向的曲线(随便画了两条):

    这些曲线的切线(假如有的话)要在同一个平面,这个平面就是切平面,才叫做可微(详情参考之前给出的参考文章)。

    而偏微分只是无数切线中的两条,所以:

    偏导数存在\mathrel{\rlap{\hskip .5em/}}\Longrightarrow 可微

    比如f(x,y)= \frac{x y}{\sqrt{x^2+y^2}} 就是偏导数存在,但是不可微。它的图像是:

    (0,0,0) 点,f(x,y) 与x=0,y=0 的交线是下面红色的直线,分别与x 轴和y 轴重叠:

    因此,在(0,0,0) 点的偏微分就是x 轴和y 轴。但是f(x,y) 与y=x 的交线是:

    (0,0,0) 点形成了一个尖点:

    很显然此曲线的切线不存在(此曲线的左右切线由方向导数决定)。因此f(x,y) 在(0,0,0) 点不可微(具体细节也请参看参考文章)。

    3 偏导数连续推出可微

    前面说了很多,就是为了得到下面这个表格:

    \begin{array}{c|c}    \hline    \quad 连续 \quad&\quad f(x_0+\Delta x)=f(x_0)+o(\Delta x)\quad\\    \hline    \quad 偏导数 \quad&\quad f(x_0+\Delta x,y_0)=f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x+o(\Delta x)\quad\\    \quad \quad&\quad f(x_0,y_0+\Delta y)=f(x_0,y_0)+\frac{\partial f}{\partial y}\Delta y+o(\Delta y)\quad\\    \hline    \quad 多元可微 \quad&\quad f(x_0+\Delta x, y_0+\Delta y)=f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x+\frac{\partial f}{\partial y}\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2})\quad\\    \hline\end{array}

    下面讲解涉及的三维图像太复杂,不容易看清,所以把三维图像画到二维中,应该不会影响理解。

    先给出A 、B 、C 、D 四个点,把它们的三维坐标也标出来:

    A 点的偏导数连续,分别为:

    \frac{\partial f}{\partial x}\quad \frac{\partial f}{\partial y}

    A 出发,运动到B ,很显然只有x 方向有变化:

    因此B 点的值为:

    \underbrace{f(x_0+\Delta x,y_0)}_{B点}=\underbrace{f(x_0,y_0)}_{A点}+\frac{\partial f}{\partial x}\Delta x+o(\Delta x)

    继续往上走到C 点:

    因为偏导数连续,所以附近的偏导数也是存在的,假设B 的偏导数为\frac{\partial f}{\partial y_b} ,那么可得:

    \begin{aligned}\underbrace{f(x_0+\Delta x,y_0+\Delta y)}_{C点}    &=\underbrace{f(x_0+\Delta x,y_0)}_{B点}+\frac{\partial f}{\partial y_b}\Delta y+o(\Delta y)\\    \\    &=\underbrace{f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x+o(\Delta x)}_{B点}+\frac{\partial f}{\partial y_b}\Delta y+o(\Delta y)    \\    &=f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x+\frac{\partial f}{\partial y_b}\Delta y+o(\Delta x)+o(\Delta y)\end{aligned}

    这里就是关键了,因为偏导数连续,所以A 、B 偏导数差不多,有:

    \underbrace{\frac{\partial f}{\partial y_b}}_{B点偏导}=\underbrace{\frac{\partial f}{\partial y}}_{A点偏导}+o(\Delta x)

    因此上式可以改写为:

    \begin{aligned}f(x_0+\Delta x,y_0+\Delta y)    &=f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x+\underbrace{\frac{\partial f}{\partial y_1}}_{\frac{\partial f}{\partial y}+o(\Delta x)}\Delta y+o(\Delta x)+o(\Delta y)\\    \\    &=f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x+\frac{\partial f}{\partial y}\Delta y+\underbrace{o(\Delta x)\Delta y+o(\Delta x)+o(\Delta y)}_{等价于o(\sqrt{(\Delta x)^2+(\Delta y)^2})}\\    \\    &=f(x_0,y_0)+\frac{\partial f}{\partial x}\Delta x+\frac{\partial f}{\partial y}\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2})\\\end{aligned}

    至此,得到了A 点可微的结论(上面的等价性没有证明,在一些《数学分析》书籍中,可微采用的是类似的定义)。

    如果仔细看上面的证明,会发现只用到了\frac{\partial f}{\partial y} 连续,因此条件可以减弱一些:

    如果函数z=f(x,y) 的偏导数\frac{\partial z}{\partial x} 、\frac{\partial z}{\partial y} 在点(x_0,y_0) 及其邻域存在,偏导数其中之一在邻域内连续,那么函数在该点可微。

    最新版本可以参见: 为什么偏导数连续,函数就可微?

    展开全文
  • 方向导数,可微,偏导存在的基本关

    千次阅读 2021-01-14 15:31:41
    那么(x,y)在任意点处偏导数存在和任意方向的方向导数存在是什么关系?那么偏导数不存在任意方向的方向导数存在是什么关系?那么方向导数和可的关系又是什么?2李的新东方2004考研flash29-2节说f(x,y)在某点可微===...
  • 人球动脉__________,出球动脉____________,因而使血管球内的压力____________。 授权就是把权力责任统统交给下属。 “地缘政治学”概念是()提出,并使之理论化、系统化的 设有2条路由21.1.193.0/2421.1....
  • 1) 函数连续无法推出函数导,同理函数导无法推出函数连续。 2)函数可微可以推迟函数连续,也可以推出函数导,...3)偏导数连续(偏导数存在且连续)可以推出函数可微,但是函数可微无法退出偏导数连续。 ...
  • 1、如果函数z=f(x, y) 在(x, y)...这类问题一般都是证明在某点处偏导数存在,注意这时切记不能使用求导公式,以一元函数为例,这是因为用求导公式计算出来的导函数f'(x)往往含有间断点,在间断点x0.对于z=f(x,y) 求...
  • 结论(一元函数范畴内) 导与连续的关系:导必连续,连续不一定导; 可微与连续的关系:可微导...很显然函数连续,导,可微和偏导数连续的关系可以从图中看出 函数连续不一定的函数可微(例子:y=|x|...
  • 3 2.3 二元函数可微偏导数存在之间的关系……………………………………………… 3 2.4 二元函数可微与偏导数连续之间的关系……………………………………………… 4 二元函数连续、 偏导数、 可微的关系图……...
  • 注:多元函数的偏导数在一点连续是指, 偏导数在该点的某个邻域内存在,于是偏导数在这个邻域内有定义,而且这个偏导函数在该点连续。理解这一点,才能理解后面的充分条件。
  • 3 2.3 二元函数可微偏导数存在之间的关系 ………………………………………………3 2.4 二元函数可微与偏导数连续之间的关系 ………………………………………………4 二元函数连续、偏导数、可微的关系 图 …………...
  • 讨论多元函数连续、偏导数存在可微之间的关系.doc
  • 结论(一元函数范畴内) 导与连续的关系:导必连续,连续不一定导;...很显然函数连续,导,可微和偏导数连续的关系可以从图中看出 函数连续不一定的函数可微(例子:y=|x|) 函数连续不一定函数导 ...
  • 多元函数中:连续在一元函数被欺负,变成了偏导连续,然后它深知可微的强大,直接认了可微做它的野爹,可微也没有辜负它的期望,不光帮它恢复成了函数连续,还帮它找到了它弟弟可偏导存在。 ...
  • 连续、偏导数可微

    千次阅读 2020-10-03 06:36:56
    1 连续的含义 通俗来说,用笔作画,不提笔画出来的曲线就是连续的: ...首先要对偏导数有所了解。多变量的函数f(x,y) 可以是三维空间中的曲面 https://blog.csdn.net/ccnt_2012/article/details/83310653 ...
  • 为了便于研究,人们提取了其中沿 x x x轴沿 y y y轴两个方向的统一变化率称为偏导数,但可微变成了表示全微分存在的概念,所谓全,即为所有方向的变化率的统一。即: { f ′ x + = f ′ x − f ′ y + = f ′ y − ...
  • 注:多元函数的偏导数在一点连续是指, 偏导数在该点的某个邻域内存在,于是偏导数在这个邻域内有定义,而且这个偏导函数在该点连续。理解这一点,才能理解后面的充分条件。 为什么函数 在原点导...
  • 二元函数的连续偏导数可微之间的关系 目 录 摘要……………………………………………………………………………………………1 关键词…………………………………………………………………………………………1 ...
  • 多元函数可微为什么推不出偏导数连续,不要用反例证明,我想从根本上知道为什么?
  • 对于二元函数而言:导是指的是两个偏导数存在,偏导数是把某一自变量看作一个常数时的导数。偏导数的存在只能保证与坐标轴平行的方向上函数的极限值等于函数值(仅仅是坐标轴平行的方向),但是连续是指函数以任何...
  •  即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。  如果一个函数在x0处可导,那么它一定在x0处是连续函数。 函数可导定义: (1)设f(x)在x0及其附近有定义,则当a趋向于0时...
  • 导数 导数(Derivative),也叫导函数值。又名商,是积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量...于是偏导数就出现了,它将多元函数中的一个元看作变量,其余
  • 可微与连续的关系:可微可导是一样的; 积与连续的关系:积不一定连续,连续必定积;(允许有限个第一类间断点,即可去间断点及跳跃间断点的存在可导积的关系:可导一般积,积推不出一定可导;...
  • 偏导数计算公式大全

    万次阅读 2021-01-17 16:25:31
    如果函数f(x)在(a,b)中每一点处都导,则称f(x)在(a,b)上可导,则建立f(x)的...导数公式大全-偏导数基本公式大全_营销/活动策划_计划/解决方案_实用文档。导数公式大全 1、原函数:y=c(c 为常数) 导数: y'=0 2、原...
  • 龙源期刊网http://www.qikan.com.cn二元函数连续、偏导数和全微分之间的关系作者:张...全微分DOI:10.16640/j.cnki.37-1222/t.2019.12.202對于一元函数来讲,连续、导数微分之间的关系比较简单:导与可微是等价...
  • 对于任给的正数 ,总存在相应的正数 ,只要 ,就有 则称 关于集合 在点 连续。简称 在点 处连续。注:二元函数连续性的定义与一元函数连续性的定义有所不同,在一元函数的连续性的定义中,要求函数 必须在 的某一...
  • 04 积分 - 偏导数

    2019-09-06 16:59:55
    对于二元函数z = f(x,y) 如果只有自变量x 变化,而自变量y固定 这时它就是x的一元函数,这函数对x的导数,就称为二元函数z = f(x,y)对于x的偏导数。 对于二元函数z = f(x,y) 如果只有自变量x 变化,而自变量y固定...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 6,254
精华内容 2,501
关键字:

可微和偏导数存在