精华内容
下载资源
问答
  • 回归分析

    千次阅读 2016-07-19 19:47:06
    回归分析是建模分析数据的重要工具。本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归、逻辑回归、多项式回归、逐步回归、岭回归、套索回归、ElasticNet回归等七种最常用的回归技术及其关键要素,...

    回归分析是建模和分析数据的重要工具。本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归、逻辑回归、多项式回归、逐步回归、岭回归、套索回归、ElasticNet回归等七种最常用的回归技术及其关键要素,最后介绍了选择正确的回归模型的关键因素。

    什么是回归分析?

    回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。

    回归分析是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。

    我们为什么使用回归分析?

    如上所述,回归分析估计了两个或多个变量之间的关系。下面,让我们举一个简单的例子来理解它:

    比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。

    使用回归分析的好处良多。具体如下:

    它表明自变量和因变量之间的显著关系;
    它表明多个自变量对一个因变量的影响强度。

    回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。

    我们有多少种回归技术?

    有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。我们将在下面的部分详细讨论它们。

    对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。但在你开始之前,先了解如下最常用的回归方法:

    1. Linear Regression线性回归

    它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。

    线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。

    用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

    一元线性回归和多元线性回归的区别在于,多元线性回归有(>1)个自变量,而一元线性回归通常只有1个自变量。现在的问题是“我们如何得到一个最佳的拟合线呢?”。

    如何获得最佳拟合线(a和b的值)?

    这个问题可以使用最小二乘法轻松地完成。最小二乘法也是用于拟合回归线最常用的方法。对于观测数据,它通过最小化每个数据点到线的垂直偏差平方和来计算最佳拟合线。因为在相加时,偏差先平方,所以正值和负值没有抵消。

    我们可以使用R-square指标来评估模型性能。想了解这些指标的详细信息,可以阅读:模型性能指标Part 1,Part 2 .

    要点:

    自变量与因变量之间必须有线性关系
    多元回归存在多重共线性,自相关性和异方差性。
    线性回归对异常值非常敏感。它会严重影响回归线,最终影响预测值。
    多重共线性会增加系数估计值的方差,使得在模型轻微变化下,估计非常敏感。结果就是系数估计值不稳定
    在多个自变量的情况下,我们可以使用向前选择法,向后剔除法和逐步筛选法来选择最重要的自变量。

    2.Logistic Regression逻辑回归

    逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,我们就应该使用逻辑回归。这里,Y的值从0到1,它可以用下方程表示。

    odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
    ln(odds) = ln(p/(1-p))
    logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3….+bkXk
    上述式子中,p表述具有某个特征的概率。你应该会问这样一个问题:“我们为什么要在公式中使用对数log呢?”。

    因为在这里我们使用的是的二项分布(因变量),我们需要选择一个对于这个分布最佳的连结函数。它就是Logit函数。在上述方程中,通过观测样本的极大似然估计值来选择参数,而不是最小化平方和误差(如在普通回归使用的)。

    要点:

    它广泛的用于分类问题。
    逻辑回归不要求自变量和因变量是线性关系。它可以处理各种类型的关系,因为它对预测的相对风险指数OR使用了一个非线性的log转换。
    为了避免过拟合和欠拟合,我们应该包括所有重要的变量。有一个很好的方法来确保这种情况,就是使用逐步筛选方法来估计逻辑回归。
    它需要大的样本量,因为在样本数量较少的情况下,极大似然估计的效果比普通的最小二乘法差。
    自变量不应该相互关联的,即不具有多重共线性。然而,在分析和建模中,我们可以选择包含分类变量相互作用的影响。
    如果因变量的值是定序变量,则称它为序逻辑回归。
    如果因变量是多类的话,则称它为多元逻辑回归。
    3. Polynomial Regression多项式回归

    对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。如下方程所示:

    y=a+b*x^2
    在这种回归技术中,最佳拟合线不是直线。而是一个用于拟合数据点的曲线。

    重点:

    虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。你需要经常画出关系图来查看拟合情况,并且专注于保证拟合合理,既没有过拟合又没有欠拟合。下面是一个图例,可以帮助理解:

    明显地向两端寻找曲线点,看看这些形状和趋势是否有意义。更高次的多项式最后可能产生怪异的推断结果。
    4. Stepwise Regression逐步回归

    在处理多个自变量时,我们可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。

    这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。下面列出了一些最常用的逐步回归方法:

    标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。
    向前选择法从模型中最显著的预测开始,然后为每一步添加变量。
    向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显着性的变量。

    这种建模技术的目的是使用最少的预测变量数来最大化预测能力。这也是处理高维数据集的方法之一。

    1. Ridge Regression岭回归

    岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。在多重共线性情况下,尽管最小二乘法(OLS)对每个变量很公平,但它们的差异很大,使得观测值偏移并远离真实值。岭回归通过给回归估计上增加一个偏差度,来降低标准误差。

    上面,我们看到了线性回归方程。还记得吗?它可以表示为:

    y=a+ b*x

    这个方程也有一个误差项。完整的方程是:

    y=a+b*x+e (error term), [error term is the value needed to correct for a prediction error between the observed and predicted value]
    => y=a+y= a+ b1x1+ b2x2+….+e, for multiple independent variables.
    在一个线性方程中,预测误差可以分解为2个子分量。一个是偏差,一个是方差。预测错误可能会由这两个分量或者这两个中的任何一个造成。在这里,我们将讨论由方差所造成的有关误差。

    岭回归通过收缩参数λ(lambda)解决多重共线性问题。看下面的公式

    在这个公式中,有两个组成部分。第一个是最小二乘项,另一个是β2(β-平方)的λ倍,其中β是相关系数。为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。

    要点:

    除常数项以外,这种回归的假设与最小二乘回归类似;
    它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能
    这是一个正则化方法,并且使用的是L2正则化。

    1. Lasso Regression套索回归

    它类似于岭回归,Lasso (Least Absolute Shrinkage and Selection Operator)也会惩罚回归系数的绝对值大小。此外,它能够减少变化程度并提高线性回归模型的精度。看看下面的公式:

    Lasso 回归与Ridge回归有一点不同,它使用的惩罚函数是绝对值,而不是平方。这导致惩罚(或等于约束估计的绝对值之和)值使一些参数估计结果等于零。使用惩罚值越大,进一步估计会使得缩小值趋近于零。这将导致我们要从给定的n个变量中选择变量。

    要点:

    除常数项以外,这种回归的假设与最小二乘回归类似;
    它收缩系数接近零(等于零),这确实有助于特征选择;
    这是一个正则化方法,使用的是L1正则化;
    · 如果预测的一组变量是高度相关的,Lasso 会选出其中一个变量并且将其它的收缩为零。

    7.ElasticNet回归

    ElasticNet是Lasso和Ridge回归技术的混合体。它使用L1来训练并且L2优先作为正则化矩阵。当有多个相关的特征时,ElasticNet是很有用的。Lasso 会随机挑选他们其中的一个,而ElasticNet则会选择两个。

    Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。

    要点:

    在高度相关变量的情况下,它会产生群体效应;
    选择变量的数目没有限制;
    它可以承受双重收缩。

    除了这7个最常用的回归技术,你也可以看看其他模型,如Bayesian、Ecological和Robust回归。

    如何正确选择回归模型?

    当你只知道一个或两个技术时,生活往往很简单。我知道的一个培训机构告诉他们的学生,如果结果是连续的,就使用线性回归。如果是二元的,就使用逻辑回归!然而,在我们的处理中,可选择的越多,选择正确的一个就越难。类似的情况下也发生在回归模型中。

    在多类回归模型中,基于自变量和因变量的类型,数据的维数以及数据的其它基本特征的情况下,选择最合适的技术非常重要。以下是你要选择正确的回归模型的关键因素:

    数据探索是构建预测模型的必然组成部分。在选择合适的模型时,比如识别变量的关系和影响时,它应该首选的一步。
    比较适合于不同模型的优点,我们可以分析不同的指标参数,如统计意义的参数,R-square,Adjusted R-square,AIC,BIC以及误差项,另一个是Mallows’ Cp准则。这个主要是通过将模型与所有可能的子模型进行对比(或谨慎选择他们),检查在你的模型中可能出现的偏差。
    交叉验证是评估预测模型最好额方法。在这里,将你的数据集分成两份(一份做训练和一份做验证)。使用观测值和预测值之间的一个简单均方差来衡量你的预测精度。
    如果你的数据集是多个混合变量,那么你就不应该选择自动模型选择方法,因为你应该不想在同一时间把所有变量放在同一个模型中。
    它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现。
    回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好。

    展开全文
  • 相关分析是回归分析的基础前提,回归分析是相关分析的深入继续。回归分析就是对拟合问题作的统计分析

    一、相关分析和回归分析:

    相关分析是根据统计数据,通过计算分析变量之间关系的方向和紧密程度,而不能说明变量之间相互关系的具体形式,无法从一个变量的变化来推测另一个变量的变化情况。回归分析能够确切说明变量之间相互关系的具体形式,可以通过一个相关的数学表达式,从一个变量的变化来推测另一个变量的变化情况,使估计和预测成为可能。相关分析是回归分析的基础和前提,回归分析是相关分析的深入和继续。

    相关分析相当于先检验一下众多的自变量和因变量之间是否存在相关性,当然通过相关分析求得相关系数没有回归分析的准确。
    如果相关分析时各自变量跟因变量之间没有相关性就没有必要再做回归分析;
    如果有一定的相关性了,然后再通过回归分析进一步验证他们之间的准确关系。
    同时相关分析还有一个目的,可以查看一下自变量之间的共线性程度如何,如果自变量间的相关性非常大,可能表示存在共线性
    参考自: 在做回归分析之前为什么要做相关性检验。明明作了相关性检验之后不管结果如何都要全做回归分析的啊。_百度知道

    二、回归分析与拟合问题

    曲线拟合问题的特点是,根据得到的若干有关变量的一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数据拟合得最好。通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要作的工作是由数据用最小二乘法计算函数中的待定系数。从计算的角度看,问题似乎已经完全解决了,还有进一步研究的必要吗?
    从数理统计的观点看,这里涉及的都是随机变量,我们根据一个样本计算出的那些系数,只是它们的一个(点)估计,应该对它们作区间估计或假设检验,如果置信区间太大,甚至包含了零点,那么系数的估计值是没有多大意义的。另外也可以用方差分析方法对模型的误差进行分析,对拟合的优劣给出评价。简单地说,回归分析就是对拟合问题作的统计分析。


    Reference

    1. 《Matlab数学建模算法全收录》
    展开全文
  • SPSS篇—回归分析

    万次阅读 多人点赞 2019-08-20 09:29:06
    今天给大家分享一下如何用SPSS Statistics来进行回归分析,我们通过一个实例来具体了解一下整个分析的过程以及结果的解读。 上图中就是本次需要进行回归分析的数据,之前有跟大家说过,SPSS Statistics的界面跟...

    之前跟大家介绍了一款做数据分析的利器—SPSS,不知道大家对这个软件的熟悉程度有没有提高一些呢?

    今天给大家分享一下如何用SPSS Statistics来进行回归分析,我们通过一个实例来具体了解一下整个分析的过程以及结果的解读。

    上图中就是本次需要进行回归分析的数据,之前有跟大家说过,SPSS Statistics的界面跟EXCEL是相似的,如果数据量比较小的时候我们可以直接输入到数据视图当中(也可以从EXCEL将数据粘贴过来)。图中的数据表达的是某公司1-11月份的商品销售情况,第一列是月份,第二列是当月销售商品种类数,第三列是当月的商品销售量。我们现在需要通过回归分析来了解商品上架种类和商品销售量之间是否有关系,如果有的话又是怎么样的一种关系,并且是否可以通过目前的数据来预测一下12月份的商品销售量情况。

    上图是当我们输入完目标数据以后在变量视图中就会出现三行数据,每一行数据从上到下是同我们三列数据一一对应的,我们进行稍微的调整以后就可以开始我们的分析了。

    如上图所示,我们需要从分析的工具栏当中选择回归,然后选择线性(回归的模型选择有很多种,本题中我们选择线性回归)。选择完了以后我们就能够进入到下面这个界面:

    我们把商品销售量设为因变量,自变量为商品上架种类数,然后点击右侧的统计量选项:

    在统计量里面我们需要选择D-W检验,这个检验就是之前文章跟大家说的残差检验,查看回归模型是否有问题。

    在绘制项中我们选择输出残差直方图与正态概率图,我们可以通过这个图来大致确定数据是否存在自相关等情况。

    其他的选项我们暂时以系统默认进行确定,不作更改。当我们点击确定以后我们就能够从输出界面看到我们本次分析的结果:

    从上面结果图中我们可以看出,不管是R方还是调整后的R方都是在90%以上,说明本次回归模型的拟合效果是很好的。

    从第二个方差分析结果图,我们可以看出方差分析的显著性为0.00<0.05,说明在本次分析中上架商品种类数和商品销量之间存在显著的线性关系。

    从第三个系数图中,我们能看到整个回归分析的结果是很好的,t检验里的显著性水平0.00<0.05,说明本次回归方程的系数是显著的,具有统计学意义。本次回归分析的回归方程为:

    Y=399.954+7.503X

    到这里不知道大家是不是也认为整个回归分析就做完了。其实我们还有重要的一步没有验证,就是D-W检验,在第一个模型汇总图里我们能看到本次分析D-W的值是1.475,我们可以选择通过查询Durbin Watson table,也可以选择看我们输出的图来判断是否数据存在自相关等问题。

    上面两个图就是我们输出的残差图,我们其实从图中也可以看出残差的分布没有呈现出明显的规律性,说明此题的数据不存在自相关等情况,本次的回归模型不用进行其他操作,可以直接使用。

    最后,我们既然得出了我们的回归方程,我们也就可以对12月份的商品销售情况作出相应的预测,这个就只需要往回归方程里面代数就可以计算出来了。

    到这里,我们本次SPSS Statistics的回归分析就全部做完了,今天也是给大家举了一个比较简单的例子,主要是让大家看看如果使用SPSS Statistics。在工作中我们需要的回归模型可能会比这个复杂,但是其实原理都是一样的,以后小白也会分享更多的回归分析方法来让大家学习。

    **文章来自公众号【小白数据营】**

    展开全文
  • 回归分析是评估结果变量与一个或多个风险因素或混杂变量之间关系的相关技术。结果变量也被称为应答或因变量,风险因素混杂因素被称为预测因子或解释性或独立变量。在回归分析中,因变量表示为“y”,自变量表示为...

    原文链接:http://tecdat.cn/?p=8508

    原文出处:拓端数据部落公众号

    在本节中,我们将首先讨论相关性分析,它用于量化两个连续变量之间的关联(例如,独立变量与因变量之间或两个独立变量之间)。回归分析是评估结果变量与一个或多个风险因素或变量之间关系的相关技术。结果变量也被称为因变量,风险因素被称为预测因子或解释性或自变量。在回归分析中,因变量表示为“ y”,自变量表示为“ x””。

    相关分析

    在相关分析中,我们估计了样本相关系数,更具体地说是Pearson乘积矩相关系数。样本相关系数,表示为r,

    介于-1和+1之间,并量化两个变量之间的线性关联的方向和强度。两个变量之间的相关性可能是正的(即一个变量的较高水平与另一个变量的较高水平相关)或负的(即一个变量的较高水平与另一个变量的较低水平相关)。

    相关系数的符号表示关联的方向。相关系数的大小表示关联的强度。

    例如,r = 0.9的相关性表明两个变量之间强烈的正相关,而r = -0.2的相关性表明弱相关性。接近于零的相关性表明两个连续变量之间没有线性关联。

    需要注意的是,两个连续变量之间可能存在非线性关联,但相关系数的计算不会检测到这一点。因此,在计算相关系数之前仔细评估数据总是很重要的。图形显示对探索变量之间的关联特别有用。

    下图显示了四个假设情景,其中一个连续变量沿着X轴绘制,另一个沿着Y轴绘制。

    情景1描述了强烈的正相关(r = 0.9),类似于我们可以看到的婴儿出生体重与出生体重之间的相关性。

    情景2描述了我们可能期望看到的年龄与体重指数(其随着年龄增加而增加)之间的较弱关联(r = 0,2)。

    情景3可能表明青少年媒体暴露的程度与青少年发起性行为的年龄之间缺乏联系(r大约为0)。

    情景4可能描述了每周有氧运动小时数与体脂百分比之间通常观察到的强烈负相关(r = -0.9)。

    示例 - 妊娠期和出生体重的相关性

    一项小型研究涉及17名婴儿,以调查出生时的胎龄(以周为单位)和出生体重(以克为单位)之间的关联。

    我们希望估计胎龄与婴儿出生体重之间的关系。在这个例子中,出生体重是因变量,孕龄是自变量。因此y =出生体重和x =胎龄。数据显示在下图中的散点图中。

    每个点代表一个(x,y)对(在这种情况下,孕周,以周为单位,出生体重以克为单位)。请注意,独立变量位于水平轴(或X轴)上,因变量位于垂直轴(或Y轴)上。散点图显示胎龄与出生体重之间存在正向或直接关联。胎龄越短的婴儿出生体重越低,胎龄越长的婴儿出生体重越高的可能性越大。

    x和y的方差测量其各自样本均值附近的x分数和y分数的变化性(

    正如我们对孕龄所做的那样计算出生体重的方差,如下表所示。

    计算总结如下。请注意,我们只是简单地将平均孕龄和出生体重的偏差从上表中的两张表中复制到下表中并进行相乘。

    毫不奇怪,样本相关系数表明强正相关。

    正如我们所指出的,样本相关系数范围从-1到+1。在实践中,对于正(或负)关联而言,有意义的相关性(即临床上或实际上重要的相关性)可小至0.4(或-0.4)。还有统计测试来确定观察到的相关性是否具有统计显着性(即统计显着性不同于零)。 

    展开全文
  • 用Excel做回归分析

    万次阅读 多人点赞 2019-02-27 22:17:37
    Excel数据分析工具库是个很强大的工具,可以满足基本的统计分析,这里介绍用Excel数据分析工具库中的回归做回归分析。本文仅作为学习笔记之用,欢迎各位交流指正。 本节知识点: Excel数据分析工具库—回归 ...
  • 回归分析算法

    万次阅读 2016-05-07 13:39:20
    回归分析是一种预测性的建模技术,它研究的是因变量(目标)自变量(预测器)之间的关系,这种因变量与自变量的不确定性的关系(相关性关系)。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系...
  • Clementine回归分析和判别分析

    千次阅读 2016-12-23 14:53:40
    Clementine回归分析和判别分析 二项Logistic回归 熟悉统计的同学对回归肯定不陌生。前面我们介绍正态分布(NormalDistribution)的时候也多少提到过回归。事实上,回归这一概念最早是在19世纪7、80年华由著名的...
  • 多元相关分析与多元回归分析

    万次阅读 多人点赞 2018-10-27 17:13:02
    什么是回归分析 分析步骤 回归分析与相关分析的主要区别 一元线性相关分析 一元线性回归分析 建模 方差分析检验  t检验 多元回归分析模型建立 线性回归模型基本假设 多元回归分析用途 多元线性相关分析 ...
  • 前几天的文章,我们聚焦在回归分析,今天来看看在回归分析中常常要研究的一类难点问题——交互作用的探究。 交互(interaction),字面上不太好理解,但是从数学表达上却很简单。 如果想要研究两个自变量如X1X2...
  • 多元线性回归分析

    2013-07-04 10:37:46
    回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。...
  • 相关分析和回归分析

    万次阅读 2010-04-05 22:50:00
    相关分析 相关分析定义 相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。...
  • 回归分析之线性回归

    万次阅读 2014-10-14 16:00:06
    运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量一个因变量,且...
  • 多元相关分析与回归分析(转)

    千次阅读 2018-11-29 09:44:14
    什么是回归分析 分析步骤 回归分析与相关分析的主要区别 一元线性相关分析 一元线性回归分析 建模 方差分析检验 t检验 多元回归分析模型建立 线性回归模型基本假设 多元回归分析用途 多元线性相关分析...
  • 回归分析”是解析“注目变量”“因于变量”并明确两者关系的统计方法。此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。清楚了回归分析的目的后,下面我们以回归分析预测法的...
  • 回归分析 线性回归中的平方误差
  • 针对变量关系研究方法,包括了相关关系研究以及影响关系研究,大致将常用分析方法归纳为:相关分析,线性回归分析,Logistic回归分析,SEM结构方程 1.相关性检验 为何要进行相关性检验 1.目的主要是观察各自...
  • 回归分析评估指标均方对数误差(MSLE)详解及其意义:Mean Squared Log Error.pdf
  • 七种常见的回归分析

    万次阅读 多人点赞 2020-09-26 10:09:32
    回归分析是一种预测性的建模技术,它研究的是因变量(目标)自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通 事 故数量之间的...
  • 7.1 单因素方差分析 7.1.1 方差分析概念 7.1.2 单因素方差分析的数据结构 例7.1.1三种治疗方案对降血糖的疗效比较 7.1.3 单因素方差分析模型 7.2 双因素方差分析 7.2.2 双因素方差分析的数据结构 ...多元线性回归分析
  • 数据分析之回归分析

    千次阅读 2019-08-08 08:17:03
    回归,最初是遗传学中的一个名词,是由生物学家兼统计学家高尔顿首先提...回归分析是研究自变量因变量之间数量变化关系的一种分析方法,它主要是通过建立因变量Y与影响它的自变量X之间的回归模型,衡量自变量X对...
  • 回归分析——简单线性回归实例讲解(SPSS)

    万次阅读 多人点赞 2020-09-06 22:07:58
    什么是回归分析回归分析是研究自变量与因变量之间数量变化关系的一种分析方法,它主要是通过因变量Y与影响它的自变量Xi(i1,2,3…)之间的回归模型,衡量自变量Xi对因变量Y的影响能力的,进而可以用来预测因变量Y...
  • 多元回归分析(线性回归)

    千次阅读 2020-08-13 18:14:30
    多元线性回归分析一、回归的基本理解(1)回归的基本任务(2)回归里的关键词(3)回归里的数据类型(4)回归方程中的系数解释(5)核心解释变量控制变量(6)特殊的自变量:虚拟变量X二、例题:电商平台的奶粉...
  • 7种回归分析方法

    千次阅读 2017-07-29 18:44:02
    回归分析是一种预测性的建模技术,它研究的是因变量(目标)自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系...
  • 让我们看看亿信华辰如何看待数据分析的目的和意义。仅仅谈论数据分析作用实际上并不重要,因此在谈论该作用之前,我们首先要考虑受众,打个比方:对于个人而言,由于身体感应设备的原因,让我们每天锻炼身体健身...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 54,042
精华内容 21,616
关键字:

回归分析的作用和意义