精华内容
下载资源
问答
  • 多元线性回归模型中的常数项

    万次阅读 2018-03-19 17:15:21
    作者:flyerye链接:https://www.zhihu.com/question/22450977/answer/250476871来源:...从定义来看,多元线性回归方程定义如下:这里的 a 为常数项, 为随机误差项,且服从标准正态分布( ),或者我们把它称作白...
    作者:flyerye
    
    链接:https://www.zhihu.com/question/22450977/answer/250476871
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

    回答这个问题,我们先从定义出发,然后再结合个实际例子去理解。从定义来看,多元线性回归方程定义如下:

    Y=a+b_{1}x_{1}+b_{2}x_{2}+...+b_{n}x_{n}+\varepsilon

    这里的 a 为常数项, \varepsilon 为随机误差项,且服从标准正态分布( \sim N(0,1) ),或者我们把它称作白噪声(white noise)。通过图像,我们可以很好理解常数项和随机误差的含义:

    <img src="https://pic4.zhimg.com/50/v2-b3543732f4855d372e37c747e332362e_hd.jpg" data-rawwidth="419" data-rawheight="240" class="content_image" width="419"> 图一,一元线性回归示例

    上图是多元线性回归回归的一个特例,即一元线性回归。多元就是在一元的基础上,用更多的自变量对因变量进行解释。我们以一元为例,来看常数项和随机误差的含义。从图中可以看出,常数项是拟合的一元回归直线在因变量(Y)轴上的截距;误差是实际的点和回归直线之间的差,而随机则表示的是这个误差不是固定的,有大有小,没有特定的规律,服从标准正态分布。具体来说,常数项表示的是未被自变量解释的且长期存在(非随机)的部分,即信息残留。而随机误差是在自变量解释空间内,预测值和去掉常数项的实际值的误差。下图是从一个多元线性回归模型的视角去看问题:因变量(Y)代表需要解释的全体信息,模型里的Xi构成的空间是自变量解释空间,随机误差存在于自变量解释空间中。在自变量解释空间外,如果还有恒定的信息残留,那么这部分信息构成常数项。

    <img src="https://pic1.zhimg.com/50/v2-68beb4a4bd82ac547341ae0d5f123009_hd.jpg" data-rawwidth="283" data-rawheight="285" class="content_image" width="283"> 图二,多元线性回归模型解释因变量示意图

    作者:徐惟能
    链接:https://www.zhihu.com/question/22450977/answer/21409955
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

    一言以蔽之,在计量经济学的线性回归模型中,常数项在很多情况下并无实际的解释意义。

    要论含义,常数项的数学含义是,平均来讲,当所有解释变量的值为0的时候,被解释变量的值是几?但是在计量经济学的实证模型中,这通常是无意义的,原因很简单,因为在很多时候,解释变量的定义域并不一定包括0,比如人的身高、体重等等。可是,即便所有的解释变量都可以同时取0,常数项依然是基本无意义的。我们回到线性回归的本质上来讲的话,所有参数的确定都为了一个目的:让残差项的均值为0,而且残差项的平方和最小。所以,想象一下,当其他的参数都确定了以后,常数项的变化在图像上表现出来的就是拟合曲线的上下整体浮动,当曲线浮动到某一位置,使得在该位置上,残差项的均值为0,曲线与y轴所确定的截距即为常数项。因此,可以理解为常数项是对其他各个解释变量所留下的偏误(bias)的线性修正。但是要说常数项具体的值所代表的解释意义,在通常情况下是无意义的。

    写到这里,有人可能会问,既然无意义,我们何不去掉常数项?答案是否定的,原因是,如果去除了常数项,就等于强制认定当所有解释变量为0时,被解释变量为0。如果这个断定不符合实际意义,而你执意去除常数项的话,你的线性估计将是有偏的。

    随机误差项的理解相对简单,在线性回归模型中,每一个观测值都有一个残差项,也叫随机误差项,它刻画的是模型的估计值和真实观测值之间的偏差。

    说实在的,区别不太大,而且有的时候去掉常数项各变量t值会有上升。
    平狄克的「econometrics」书中提到过「可以将常数项看作是值恒为1的一个虚拟变量的系数」(上述原话为英文,但是是这个意思)也就是说,它可能包含了一些你忽视掉的虚拟变量。
    而且带常数项的模型其实是对随机误差项的优化,我们在做OLS时总是假定随机误差项是标准正态分布的,但这很难满足。假设随机误差项的均值不是0,而是一个常数,那么加入常数项的模型就会使得随机误差项又变成了标准正态分布,它的期望就被含在常数项里了。总而言之,这样的模型更为靠谱。


    作者:邹日佳
    链接:https://www.zhihu.com/question/19664505/answer/12629408
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

    展开全文
  • 多元线性回归推导过程

    万次阅读 多人点赞 2018-08-06 20:26:23
    常用算法一 多元线性回归详解1 此次我们来学习人工智能的第一个算法:多元线性回归.文章会包含必要的数学知识回顾,大部分比较简单,数学功底好的朋友只需要浏览标题,简单了解需要哪些数学知识即可. 本章主要包括...

    接上篇:人工智能开篇

    常用算法一   多元线性回归详解1

          此次我们来学习人工智能的第一个算法:多元线性回归.文章会包含必要的数学知识回顾,大部分比较简单,数学功底好的朋友只需要浏览标题,简单了解需要哪些数学知识即可.

    本章主要包括以下内容

            数学基础知识回顾

            什么是多元线性回归

            多元线性回归的推导过程详解

            如何求得最优解详解

     

    数学基础知识回顾

    1-截距

          我们知道,y=ax+b这个一元一次函数的图像是一条直线.当x=0时,y=b,所以直线经过点(0,b),我们把当x=0时直线与y轴交点到x轴的距离称为直线y=ax+b图像在x轴上的截距,其实截距就是这个常数b.(有点拗口,多读两遍)

    截距在数学中的定义是:直线的截距分为横截距和纵截距,横截距是直线与X轴交点的横坐标,纵截距是直线与Y轴交点的纵坐标。根据上边的例子可以看出,我们一般讨论的截距默认指纵截距.

    2-斜率

         既然已知y=ax+b中b是截距,为了不考虑常数b的影响,我们让b=0,则函数变为y=ax.

          注意变换后表达式的图像.当a=1时,y=ax的图像是经过原点,与x轴呈45°夹角的直线(第一,三象限的角平分线),当a的值发生变化时,y=ax的图像与x轴和y轴的夹角也都会相应变化,我们称为这条直线y=ax的倾斜程度在发生变化,又因为a是决定直线倾斜程度的唯一的量(即便b不等于0也不影响倾斜程度),那么我们就称a为直线y=ax+b的斜率.

          斜率在数学中的解释是 表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量.

    3-导数

         还是y=ax+b,我们知道这个函数的图像是一条直线,每个不同的x对应着直线上一点y.那么当自变量x的值变化的时候,y值也会随之变化.数学中我们把x的变化量成为Δx,把对应的y的变化量成为Δy,自变量的变化量Δx与因变量的变化量Δy的比值称为导数.记作y'.

         y'=Δy/Δx

    常用的求导公式在这部分不涉及,我们用到一个记住一个即可.

    4-矩阵和向量

    什么是向量:

             向量就是一个数组.比如[1,2,3]是一个有三个元素的向量.                                           

             有行向量和列向量之分,行向量就是数字横向排列:X=[1,2,3],列向量是数字竖向排列,如下图

                                                               列向量

    什么是矩阵:

              矩阵就是元素是数组的数组,也就是多维数组,比如[[1,2,3],[4,5,6]]是一个两行三列的矩阵,也叫2*3的矩阵. 行代表内层数组的个数,列代表内层数组的元素数.一个矩阵中的所有数组元素相同.

     

    5-向量的运算:

         一个数乘以一个向量等于这个数同向量中的每个元素相乘,结果还是一个向量.

         2 * [1,2,3] = [2,4,6]

        一个行向量乘以一个列向量,是两个向量对位相乘再相加,结果是一个实数.

                   

    \begin{bmatrix} 1& 2 & 3 \end{bmatrix}* \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}= 1*1 + 2*2 + 3*3 = 14

     

    附加:转置

           转置用数学符号T来表示,比如W向量的转置表示为W^{T}.转置就是将向量或者矩阵旋转九十度.一个行向量的转置是列向量,列向量的转置是行向量.一个m*n的矩阵转置是n*m的矩阵.

     

    注:以上概念完全是为了读者能容易理解,并不严谨,若想知道上述名词的严谨解释,请自行百度.

     

    什么是多元线性回归

          我们知道y=ax+b是一元一次方程,y=ax1+bx2+c(1和2是角标,原谅我的懒)是二元一次方程.其中,"次"指的是未知数的最大幂数,"元"指的是表达式中未知数的个数(这里就是x的个数).那么"多元"的意思可想而知,就是表达式中x(或者叫自变量,也叫属性)有很多个.

           当b=0时,我们说y=ax,y和x的大小始终符合y/x=a,图像上任意一点的坐标,y值都是x值的a倍.我们把这种横纵坐标始终呈固定倍数的关系叫做"线性".线性函数的图像是一条直线.所以我们知道了多元线性回归函数的图像一定也是一条直线.

            现在我们知道了多元线性回归的多元和线性,而回归的概念我们在人工智能开篇(很简短,请点搜索"回归"查看概念)中有讲述,所以多元线性回归就是:用多个x(变量或属性)与结果y的关系式 来描述一些散列点之间的共同特性.

    这些x和一个y关系的图像并不完全满足任意两点之间的关系(两点一线),但这条直线是综合所有的点,最适合描述他们共同特性的,因为他到所有点的距离之和最小也就是总体误差最小.

    所以多元线性回归的表达式可以写成:

                  y= w0x0 + w1x1 + w2x2 + ... + wnxn    (0到n都是下标哦)

           我们知道y=ax+b这个线性函数中,b表示截距.我们又不能确定多元线性回归函数中预测出的回归函数图像经过原点,所以在多元线性回归函数中,需要保留一项常数为截距.所以我们规定   y= w0x0 + w1x1 + w2x2 + ... + wnxn中,x0=1,这样多元线性回归函数就变成了:   y= w0 + w1x1 + w2x2 + ... + wnxn,w0项为截距.

          如果没有w0项,我们   y= w0x0 + w1x1 + w2x2 + ... + wnxn就是一个由n+1个自变量所构成的图像经过原点的直线函数.那么就会导致我们一直在用一条经过原点的直线来概括描述一些散列点的分布规律.这样显然增大了局限性,造成的结果就是预测出的结果函数准确率大幅度下降.

             有的朋友还会纠结为什么是x0=1而不是x2,其实不管是哪个自变量等于1,我们的目的是让函数   y= w0x0 + w1x1 + w2x2 + ... + wnxn编程一个包含常数项的线性函数.选取任何一个x都可以.选x0是因为他位置刚好且容易理解.

     

    多元线性回归的推导过程详解

     

    1-向量表达形式

            我们前边回顾了向量的概念,向量就是一个数组,就是一堆数.那么表达式y= w0x0 + w1x1 + w2x2 + ... + wnxn是否可以写成两个向量相乘的形式呢?让我们来尝试一下.

            假设向量W= [w1,w2...wn]是行向量,向量X= [x1,x2...xn],行向量和列向量相乘的法则是对位相乘再相加, 结果是一个实数.符合我们的逾期结果等于y,所以可以将表达式写成y=W * X.

             但是设定两个向量一个是行向量一个是列向量又容易混淆,所以我们不如规定W和X都为列向量.所以表达式可以写成W^{T} (还是行向量)与向量X相乘.所以最终的表达式为:

             y=W^{T} * X,其中W^{T} 也经常用 θ_{T}(theta的转置,t是上标)表示.

             此处,如果将两个表达式都设为行向量,y=W * X^{T}也是一样的,只是大家为了统一表达形式,选择第一种形式而已.

     

    2-最大似然估计

           最大似然估计的意思就是最大可能性估计,其内容为:如果两件事A,B相互独立,那么A和B同时发生的概率满足公式

                  P(A , B) = P(A) * P(B)

            P(x)表示事件x发生的概率.

            如何来理解独立呢?两件事独立是说这两件事不想关,比如我们随机抽取两个人A和B,这两个人有一个共同特性就是在同一个公司,那么抽取这两个人A和B的件事就不独立,如果A和B没有任何关系,那么这两件事就是独立的.

            我们使用多元线性回归的目的是总结一些不想关元素的规律,比如以前提到的散列点的表达式,这些点是随机的,所以我们认为这些点没有相关性,也就是独立的.总结不相关事件发生的规律也可以认为是总结所有事件同时发生的概率,所有事情发生的概率越大,那么我们预测到的规律就越准确.

             这里重复下以前我们提到的观点.回归的意思是用一条直线来概括所有点的分布规律,并不是来描述所有点的函数,因为不可能存在一条直线连接所有的散列点.所以我们计算出的值是有误差的,或者说我们回归出的这条直线是有误差的.我们回归出的这条线的目的是用来预测下一个点的位置.

            考虑一下,一件事情我们规律总结的不准,原因是什么?是不是因为我们观察的不够细或者说观察的维度不够多呢?当我们掷一个骰子,我们清楚的知道他掷出的高度,落地的角度,反弹的力度等等信息,那上帝视角的我们是一定可以知道他每次得到的点数的.我们观测不到所有的信息,所以我们认为每次投骰子得到的点数是不确定的,是符合一定概率的,未观测到的信息我们称为误差.

            一个事件已经观察到的维度发生的概率越大,那么对应的未观测到的维度发生的概率就会越小.可以说我们总结的规律就越准确.根据最大似然估计

            P(y) = P(x1,x2 ... xn)= P(x1) * P(x2) ... P(xn)

           当所有事情发生的概率为最大时,我们认为总结出的函数最符合这些事件的实际规律.所以我们把总结这些点的分布规律问题转变为了 求得P(x1,x2 ... xn)= P(x1) * P(x2) ... P(xn)的发生概率最大.

     

    3-概率密度函数

           数学中并没有一种方法来直接求得什么情况下几个事件同时发生的概率最大.所以引用概率密度函数.

           首先引入一点概念:

                   一个随机变量发生的概率符合高斯分布(也叫正太分布).此处为单纯的数学概念,记住即可.

                   高斯分布的概率密度函数还是高斯分布.公式如下:

               

                    公式中x为实际值,u为预测值.在多元线性回归中,x就是实际的y,u就是θ_{T} * X.

           既然说我们要总结的事件是相互独立的,那么这里的每个事件肯定都是一个随机事件,也叫随机变量.所以我们要归纳的每个事件的发生概率都符合高斯分布.

           什么是概率密度函数呢?它指的就是一个事件发生的概率有多大,当事件x带入上面公式得到的值越大,证明其发生的概率也越大.需要注意,得到的并不是事件x发生的概率,而只是知道公式的值同发生的概率呈正比而已.

           如果将y= θ_{T} * X中的每个x带入这个公式,得到如下函数

           

           求得所有的时间发生概率最大就是求得所有的事件概率密度函数结果的乘积最大,则得到:

            

             求得最大时W的值,则总结出了所有事件符合的规律.求解过程如下(这里记住,我们求得的是什么情况下函数的值最大,并不是求得函数的解):

               

               公式中,m为样本的个数,π和σ为常数,不影响表达式的大小.所以去掉所有的常数项得到公式:

               

               因为得到的公式是一个常数减去这个公式,所以求得概率密度函数的最大值就是求得这个公式的最小值.这个公式是一个数的平方,在我国数学资料中把他叫做最小二乘公式.所以多元线性回归的本质就是最小二乘.

     

    到这里,多元线性回归的推导过程就结束了,后边会继续写如何求解多元线性回归.有哪里写的不清楚请大家留言.看到一定会回复的.

     

    下一篇:多元线性回归求解

    展开全文
  • 多元线性回归模型是一种简单而且有效的数学模型,一直在各领域广泛使用。一个多元回归模型建好后,如何评价模型的优劣呢?1. F值检验因变量的总变异(数据与均值之差的平方和,记为SStotal)由回归平方和(因变量的变异...

    多元线性回归模型是一种简单而且有效的数学模型,一直在各领域广泛使用。一个多元回归模型建好后,如何评价模型的优劣呢?

    1. F值检验

    因变量的总变异(数据与均值之差的平方和,记为SStotal)由回归平方和(因变量的变异中可以由自变量解释的部分,记为SSR)与误差平方和(记为SSE)构成,如果自变量引起的变异大于随机误差引起的变异,则说明因变量与至少一个自变量存在线性关系。回归平方和与误差平方和的比值记为F,F值服从F分布,通过查F分布概率表可得F值对应的概率,从而判断是否存在统计学意义。F值越大越好。

    2. 偏回归系数检验

    通过了F检验只说明因变量至少和一个自变量存在线性关系,但不是所有x都跟y存在线性关系。对每个变量的回归系数分别作t检验,假设回归系数为0,得到的概率值越小越好,一般取0.05作为临界值。

    3. 标准化偏回归系数

    y和x均经过标准化,均值为0,标准差为1,此时的回归结果常数项为0.消除了量纲的影响,更能直观表示自变量对因变量的影响。如果某项回归系数接近0,则说明该自变量与因变量的不具有线性关系,应当剔除。

    4. 复相关系数R

    指的是因变量与因变量的估计值(回归后得出的值)之间的简单线性相关系数,范围在0-1之间,一般来说,R值应大于0.9,但在某些社会科学研究中只要求R大于0.4,这是因为在社会科学研究中存在大量对因变量有影响却无法进行量化的因数,无法纳入模型研究。值得注意的是,即使向模型增加的变量没有统计学意义,R值也会增加,所以R值只作为参考。

    5. 决定系数R2

    因变量总变异中由模型中自变量解释部分的比例。也是越大越好,但是存在与R同样的问题。

    R2=SSR/SStotal=1-SSE/SStotal

    6.校正的决定系数R2adj

    将自变量的个数纳入了考量范围,解决了R2 的局限性,不会随着自变量的增加而增加。当模型中增加的自变量缺乏统计学意义时,校正的决定系数会减小。该项系数越大越好。

    R2adj=1-(n-1)(1- R2)/(n-p-1) n表示样本量,p表示模型中自变量个数

    7.剩余标准差

    误差均方的算术平方根,该值应明显小于因变量的标准差,越小越好。说明在引入模型自变量后,因变量的变异明显减小。

    8. 赤池信息准则AIC

    包含两部分,一部分反映拟合精度,一部分反映模型繁简程度(自变量个数越少模型越简洁),该值越小越好。值得注意的是,用最小二乘法拟合模型与用最大似然估计拟合的模型,其AIC计算方法是不一样的,所以用AIC进行模型比较时应注意拟合的方法是相同的才行。

    最小二乘法拟合时:AIC=nln(SSE/n)+2p

    最大似然估计拟合时:AIC=-2ln(L)+2p L为模型的最大似然函数

    以上8种数据很多统计软件都能方便地输出。

    9.预测效果

    在数据量较大时,可留一部分数据用作预测,根据预测结果判断模型优劣。

    fba26983993d4c1cd47f9f05fa031dc7.png
    展开全文
  • matlab实现一元线性回归和多元线性回归

    万次阅读 多人点赞 2018-01-30 10:58:46
    回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 ...

    在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。

      在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。

       多元线性回归模型的一般表现形式为

    Yi=β0+β1X1i+β2X2i+…+βkXki+μi i=1,2,…,n
    其中 k为解释变量的数目,βj(j=1,2,…,k)称为 回归系数(regression coefficient)。上式也被称为 总体回归函数的随机表达式。它的非随机表达式为
    E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki
    βj也被称为 偏回归系数

    1.Matlab多元线性回归模型实现

    (1) b=regress( Y,    X ) 确定回归系数的点估计值
    其中, Y n*1 的矩阵; X 为( ones(n,1),x1,…,xm )的矩阵;

    (2)[b, bint,r,rint,stats]=regress(Y,X,alpha) 求回归系数的点估计和区间估计,并检验回归模型

    • 回归系数
    • bint 回归系数的区间估计
    • 残差
    • rint 残差置信区间
    • stats 用于检验回归模型的统计量,有四个数值:相关系数R2F值、与F对应的概率p,误差方差。相关系数R2越接近1,说明回归方程越显著;F > F1-α(kn-k-1)时拒绝H0F越大,说明回归方程越显著;与F对应的概率时拒绝H0,回归模型成立。p值在0.01-0.05之间,越小越好。
    (3) 出残差以及其置信区间 rcoplot(r,rint);

    实例1:(一元线性回归)

    测得16名女子的身高和腿长如下表所示(单位:cm)

    试研究这些数据之间的关系。

    Matlab程序为:(输入如下命令)

    结果显示:

    因此我们可得y=-16.0730+0.7194x 成立

    (残差分析)

    接着输入

    结果显示

    (预测及作图)

    接着输入

    结果显示

    实例2:(多元线性回归)

    水泥凝固时放出的热量y与水泥中的四种化学成分x1,x2,x3,x4有关,今测得一组数据如下,试确定多元线性模型。


    Matlab程序:(输入命令)


    结果显示

    因此,我们得到y=-62.4045+1.55x1+0.5102x2+0.1019x3-0.1441x4成立

    (残差分析)

    接着输入

    结果显示

    接着输入

    预测结果

    4.错误:Warning: R-square and the F statistic are not well-defined unless X has a column of ones.

    Type "help regress" for more information.

    没有常数项的意思!
    展开全文
  • 理解线性回归中的常数项

    千次阅读 2020-03-14 19:57:02
    如何理解线性回归中的常数项 线性模型 线性模型(linear model)试图学得一个通过属性的线性组合来进行预测的函数,即: f(x)=w1x1+w2x2+…+wdxd+b+e 很容易理解,b是常数项,代表的是截距,而e是误差。 以上图像...
  • 多元线性回归

    2018-01-24 20:23:39
    所有就有多元线性回归。 概念 与一元线性回归一样,多元线性回归自然是一个回归问题。只不过一元线性回归的方程可以写成。 y=ax+b 多元线性回归是 y=a1x1+a2X2+a3X3+…+anXn+b 相当于我们高中学的一元一次...
  • 一、多元线性回归1.多元线性回归的基本表达式在多元线性回归中会有多个解释变量:预测解释变量的估计方程如下:注:额外的假设条件①解释变量之间不能存在太强的线性相关关系(一般ρ<0.7)②其他条件与一元线性...
  • 线性回归系列(3)-多元线性回归

    千次阅读 2014-06-18 15:39:46
    多元回归分析,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。
  • 多元线性回归是回归分析的基础。
  • 我将介绍线性回归的概念,但主要讨论Python的实现。线性回归是一种统计模型,用于检查两个(简单线性回归)或更多(多线性回归)变量(一个因变量和一个或多个自变量)之间的线性关系。线性关系基本上意味着当一个...
  • 多元线性回归分析

    2021-08-07 20:34:33
    多元线性回归分析 回归分析是数据分析中最基础也是最重要的分析工具,绝大多数的数据分析问题,都可以使用回归的思想来解决。回归分析的任务就是,通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而...
  • 多元线性回归方程原理及其推导

    万次阅读 多人点赞 2018-10-21 14:19:22
    多元线性方程原理及推导 概念 1.在统计学中,线性回归方程是利用最小二乘函数对一个或多个自变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况...
  • 线性回归 解决回归问题 思想简单,实现容易 许多强大的非线性模型的基础 结果具由很好的可解释性 蕴含机器学习中的很多重要思想 例如 房屋价格(输出标记)和面积(样本特征)之间的关系 简单线性回归 样本特征...
  • 多元线性回归模型,假设函数,损失函数,梯度下降及其可视化实现
  • 机器学习入门之多元线性回归及其 Python 实现
  • 四、多元线性回归

    2020-12-29 10:27:36
    吴恩达机器学习笔记——二、多元线性回归符号定义多元线性回归的定义梯度下降法确定参数θ特征缩放学习率特征合并和多项式回归特征合并多项式回归 符号定义 m:训练集的样本个数 n:特征的数量 x(i):第i个训练样本...
  • 机器学习算法(8)之多元线性回归分析理论详解

    万次阅读 多人点赞 2018-08-29 16:28:27
    前言:当影响因变量的因素是多个时候,这种一个变量同时与多个变量的回归问题就是多元回归,分为:多元线性回归和多元非线性回归。线性回归(Linear regressions)和逻辑回归(Logistic regressions)是人们学习算法的第...
  • 多元线性回归 能用office07发布简直是太好了,这下子省了很多事。 1、多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型。即  (1.1) 其中...
  • ML之多元线性回归

    2019-09-22 16:37:32
    1、多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型。即 (1.1) 其中为被解释变量,为个解释变量,为个未知参数,为随机误差。 被解释变量的...
  • 多元线性回归的计算

    千次阅读 2018-02-15 12:02:00
    多元线性回归的计算模型 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的...
  • matlab一元线性回归及多元线性回归方程

    万次阅读 多人点赞 2019-08-07 16:15:15
    %%1、bint表示回归系数区间估计 %2、r表示残差 %3、rint代表置信区间 %4、stas表示用于检验回归模型的统计量,有三个数值 r^2 F 与F对应的概率P 例如p<0.05 残差95% % r^2越接近于1,回归方程越显著 %alpha表示...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 3,350
精华内容 1,340
关键字:

多元线性回归常数项