精华内容
下载资源
问答
  • 多元线性回归模型统计推断结果的可靠性,建立在一些统计假设的基础上,只有在假设条件满足时,模型输出结果才成立,本文将展开讨论多元线性回归有哪些基本假设、如何检验假设是否成立、以及当基本假设不满足时的处理...

    前言

    多元线性回归模型统计推断结果的可靠性,建立在一些统计假设的基础上,只有在假设条件满足时,模型输出结果才成立,本文将展开讨论多元线性回归有哪些基本假设、如何检验假设是否成立、以及当基本假设不满足时的处理方案。同时需要说明的是,轻微违背假设并不会对主要的分析结果产生重大的影响,这是最小二乘法的一个特点,但是如果严重违背基本假设就会极大的破坏结果的合理性。

     

    一 基本假定

    (一)误差的假定

    1、服从正态分布

          标准化残差与每个预测变量都不应该相关、与拟合值也不应该相关,此时误差服从正态分布;否则,模型存在内生性问题,内生性会破坏参数估计的“一致性”。

          内生性产生的原因有:

              a.测量误差:指的是模型使用的解释变量的数值和真实数据有误差(被解释变量的测量误差不会导致内生性)

              b.遗漏解释变量:现实问题总是复杂的,一般情况下,谁也没办法找到所有能影响被解释变量的变量,遗漏解释变量几乎是不可避免的。但如果被遗漏的解释变量不光对被解释变量有影响,还对某个解释变量有影响,内生性问题就出现了。

             c.互为因果:被解释变量能够反过来影响解释变量的情况被称为互为因果,有时也被称为反向因果。

             d.动态面板偏差:动态面板是指面板数据模型中被解释变量的滞后项作为解释变量。由于被解释变量与误差项有关,被解释变量的滞后项当然也与误差项有关,也就是说该解释变量(被解释变量的滞后项与误差项相关)。

    2、均值为0

          (待补充

    3、等方差假定

          或方差齐性假定,误差有相同(但未知)的方差,如果这一假定不满足,即:随机误差项具有不同的方差,则称线性回归模型存在异方差性。产生的原因主要有:

          a.模型中遗漏了某些解释变量

          b.模型函数形式的设定误差

          c.样本数据的测量误差

         d.随机因素的影响

    4、相互独立

      (自相关问题)标准的关于模型误差的假设是这样的:第i个误差和第j个误差是不相关的;误差项的相关性暗示这样一种可能性:现在建立的模型还没有将数据中所包含的全部信息表达出来;当观察数据具有自然顺序时(如时间顺序),这种误差间的相关性就称为自相关。在进行时间序列的数据分析的时候,应特别关注误差的自相关和季节性效应,同时探索利用滞后的预测变量的可能性。产生自相关的原因是多方面的:

           a.在时间或空间上,相邻数据的残差趋于相似(又叫纯自相关)

           b.遗漏解释变量,通常,自相关性是由遗漏了与时间相关的变量引起的,即如果被忽略的变量的相继值之间是相关的,那么相应的观测误差之间也会出现相关性,

     

    tips:当模型存在异方差或自相关对模型的影响包括:

          a. 回归系数的最小二乘估计是无偏的,但是不再具有最小方差;

          b.方差和回归系数的标准差会被严重低估;即比实际值小很多,从而给出一个假想的精确估计;

          c.置信区间和通常采用的各种显著性检验的结论,严格来说不再是可信的。

    (二)预测变量的假定

    1、非随机性:预测变量的非随机性,即他们的取值是固定的,在生产环境中显然这种假定不满足。此时模型的理论结果仍然成立,但对结果的解释必须修改,当预测变量是随机变量时,所有推断都是关于观测数据的条件推断。

    2、取值没有随机误差:这个假定几乎是不能满足的,测量误差的存在会降低预测的精度,影响误差的方差,负相关系数以及单个回归系数的估计。

    非随机性假设与取值没有随机误差的假设无法验证其合理性,所在在实际分析中,对此类假设不予关注和讨论,但他们的确会影响对回归结果的解释。

    3、预测变量间假定线性无关:该假定是为了保证最小二乘解的唯一性,若该假定不成立,称为共线性问题

     

    二 验证方法

    (一)误差的假定的验证

    1、误差服从正态分布的检验方法 :

         a.Jarque-Bera统计量;

         b.Kolmogorov-Smirnov检验;

         c.QQ图;

         d.标准化残差关于拟合值的散点图;

    2、均值为0验证:无

    3、同方差验证(异方差问题)检验方法

          a.关于x的标准化残差图检验法,若包含残差的区域由两条平行于x轴的直线围成,则没有明显的异方差性;

          b.Goldfeld - Quandt 检验法;

          c.White检验法;

          d.Park检验法;

          e.Gleiser检验法

    4、相互独立(自相关性)检验方法

          a.标准化残差的顺序图配合游程检验;

          b.Ljung-Box检验;

          c.Durbin-Watson检验法;

          d.LM检验法;

          e.ADF检验法;

    (二)预测变量假定的检验

    1、非随机性检验:无

    2、取值没有随机误差的检验:无

    3、预测变量间假定线性无关(多重共线性问题)的检验

           a.计算模型中各对自变量之间的相关系数,如果存在一个或多个相关系数是显著的,就表示存在多重共线性非问题

           b.当模型的线性关系检验(F检验)显著时,几乎所有的回归系数的t检验却不显著

           b.回归系数的正负号与预期的相反

           d.容忍度(tolerance)与方差扩大因子(VIF)。某个自变量的容忍度等于1减去该自变量为因变量而其他自变量为预测变量时所得到的线性回归模型的判定系是。容忍度越小,多重共线性越严重。通常认为容忍度小于0.1时,存在严重的多重共线性。方差扩大因子等于容忍度的倒数。显然,VIF越大,多重共线性越严重。一般认为VIF大于10时,存在严重的多重共线性。

    三 处理方式

    (一)误差假定不满足的处理

    1、误差不服从正态分布的处理

          a.使用IV工具变量;

          b.两阶段最小二乘法2SLS 或 Heckman两步法;

          c.GMM或系统GMM(当模型存在异方差时可用);

          d.matching类;

          e.DID;

    2、误差不满足均值为0的处理:无

    3、异方差问题的处理(《例解回归分析》Samprit Chatterjee   Ali S.Hadi  p121)

          a.变换模型形式;

          b.加权最小二乘法(WLS);

          c.Y的对数变换;

          d.Y的幂次变换;

    4、自相关问题的处理

          a.Cochrane-Orcutt,当自相关属于纯自相关可采取此种措施;

          b.引进具有时序效应的新变量,当自相关是由于忽略了某个变量引起的,一旦加入该变量,这种自相关现象自然会消失;有时我们找不到这样的变量,只能试试将原始变量做差分运算。

          c.根据实际情况引入示性变量

          d.引入滞后预测变量上一期或多期的数据

          e.时间序列模型中也可以包含趋势项,数据中具有时间趋势也是常见现象,模型中加入t的函数作为预测变量,实践中,通常加入时间t或t方,即时间的线性项或2次项

          f.在数据处理中,使用目标变量的一阶差分(yt-yt-1)或滞后型变量(yt-a*yt-1)

     

    (二)预测变量假定不满足的处理

    1、非随机性不满足时的处理:无

    2、取值没有随机误差不满足时的处理:无

    3、预测变量间假定线性无关假定不满足时的处理

          a.施加约束条件(《多元线性回归》Samprit Chatterjee   Ali S.Hadi p194)

          b.利用主成分的计算(《多元线性回归》Samprit Chatterjee   Ali S.Hadi p192)

          c.搜索模型中回归系数的线性函数(《多元线性回归》Samprit Chatterjee   Ali S.Hadi p195)

          d.主成分回归或岭回归方法替代传统的最小二乘法,岭回归是通过最小二乘法的改进,允许回归系数的有篇估计量存在而补救多重共线性的方法。

          e.偏最小二乘法,偏最小二乘回归约等于多元线性回归分析+典型相关分析+主成分分析

          f.增加样本容量。多重共线性问题的实质是样本信息的不充分而导致的模型参数不能精确估计,因此追加样本信息是解决该问题的一条有效途径。

          g.将一个或多个相关的自变量从模型中剔除。逐步法作为自变量筛选方法

          h.若要保留所有自变量,则应避免根据t统计量对单个参数进行检验;对因变量y值的推断限定在自变量样本值的范围内。

     

    tips:本文内容总结如下表

    假设类型基本假设假设的检验方法不满足假设的处理办法
    误差的假设正态性假设Jarque-Bera统计量使用IV工具变量
    Kolmogorov-Smirnov检验两阶段最小二乘法2SLS或 Heckman两步法
    QQ图GMM或系统GMM(当模型存在异方差时可用)
    标准化残差关于拟合值的散点图matching类
     DID
    0均值假设不展开阐述不展开阐述
    等方差假设关于x的标准化残差图检验变换模型形式(《例解回归分析》p121)
    Goldfeld - Quandt检验法加权最小二乘法(WLS)(《例解回归分析》p121)
    White检验法Y的对数变换
    Park检验法Y的幂次变换
    Gleiser检验法 
    独立性假设标准化残差的顺序图配合游程检验Cochrane-Orcutt
    Ljung-Box检验引进具有时序效应的新变量
    Durbin-Watson检验法根据实际情况引入示性变量
    LM检验法引入滞后预测变量上一期或多期的数据
    ADF检验法引入趋势项-t或t方
     引入目标变量的差分或滞后数据
    预测变量的假设非随机性假设不展开阐述不展开阐述
    无随机误差假设不展开阐述不展开阐述
    互相线性无关假设计算x间相关系数施加约束条件(《例解回归分析》p194)
    模型线性关系检验(F检验)显著,大多数回归系数t检验不显著利用主成分的计算(《例解回归分析》p192)
    回归系数的正负号与预期的相反搜索模型中回归系数的线性函数(《例解回归分析》p195)
    容忍度(tolerance)与方差扩大因子(VIF)主成分回归或岭回归
     偏最小二乘法
     增加样本容量
     剔除一个或多个自变量

     

     

     

    参考文献

    1.多重共线性的判别与解决 http://www.360doc.com/content/20/1023/19/72085106_942042673.shtml

    2.内生性问题及其产生原因 https://zhuanlan.zhihu.com/p/110645711

    3.内生性问题:起因,类型和解决办法https://zhuanlan.zhihu.com/p/156905895

    4.《例解回归分析》(原书第五版)(美)Samprit Chatterjee   Ali S.Hadi 著

    展开全文
  • Python实现多元线性回归

    万次阅读 多人点赞 2018-04-12 21:39:25
    Python实现多元线性回归 线性回归介绍 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的...

    Python实现多元线性回归

     

     

    线性回归介绍

     

    线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
    线性回归属于回归问题。对于回归问题,解决流程为: 
    给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数。这里给定的数据集取名叫训练集(Training Set)。不能所有数据都拿来训练,要留一部分验证模型好不好使,这点以后说。先列举几个几个典型的模型:
    ● 最基本的单变量线性回归: 
    形如h(x)=theta0+theta1*x1
    ● 多变量线性回归: 
    形如h(x)=theta0+theta1*x1+theta2*x2+theta3*x3
    ● 多项式回归(Polynomial Regression): 
    形如h(x)=theta0+theta1*x1+theta2*(x2^2)+theta3*(x3^3) 
    或者h(x)=ttheta0+theta1*x1+theta2*sqr(x2) 
    但是可以令x2=x2^2,x3=x3^3,于是又将其转化为了线性回归模型。虽然不能说多项式回归问题属于线性回归问题,但是一般我们就是这么做的。
    ● 所以最终通用表达式就是: 
    这里写图片描述

     

     

    数据导入与清洗

     

    对于数据导入来说,可以利用pandas内的read_csv的函数来对数据进行导入操作,在进行多元线性回归之间通过简单线性回归来展现线性回归的特性和结果之后再延伸至多元线性回归。

     

    在进行数据导入之间需要导入进行线性回归的包:

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from pandas import DataFrame,Series
    from sklearn.cross_validation import train_test_split
    from sklearn.linear_model import LinearRegression

    我们利用pandas和numpy对数据进行操作,使用matplotlib进行图像化,使用sklearn进行数据集训练与模型导入。

     

    简单线性回归

     

    对于学生来说,所学习的时间和考试的成绩挂钩,所学习的时间与考试的成绩也是呈线性相关。创建一个数据集来描述学生学习时间与成绩的关系并且做简单的线性回归。

     

    in:

    #创建数据集
    examDict  = {'学习时间':[0.50,0.75,1.00,1.25,1.50,1.75,1.75,
                         2.00,2.25,2.50,2.75,3.00,3.25,3.50,4.00,4.25,4.50,4.75,5.00,5.50],
                 '分数':[10,22,13,43,20,22,33,50,62,
                       48,55,75,62,73,81,76,64,82,90,93]}
    
    #转换为DataFrame的数据格式
    examDf = DataFrame(examDict)

     

    通过DataFrame的函数将字典转化为所需要的数据集,也就是学生成绩与考试成绩的数据集。且关于pandas的数据内容Series与DataFrame可以查看关于pandas的博客了解点击打开链接

     

    out:

      分数  学习时间
    0   10  0.50
    1   22  0.75
    2   13  1.00
    3   43  1.25
    4   20  1.50
    5   22  1.75
    6   33  1.75
    7   50  2.00
    8   62  2.25
    9   48  2.50
    10  55  2.75
    11  75  3.00
    12  62  3.25
    13  73  3.50
    14  81  4.00
    15  76  4.25
    16  64  4.50
    17  82  4.75
    18  90  5.00
    19  93  5.50

     

    从上面的数据可以看到数据的特征值与其标签,学生所学习的时间就是所需要的特征值,而成绩就是通过特征值所反应的标签。在这个案例中要对数据进行观测来反应学习时间与成绩的情况,将利用散点图来实现简单的观测。

     

    in:

    #绘制散点图
    plt.scatter(examDf.分数,examDf.学习时间,color = 'b',label = "Exam Data")
    
    #添加图的标签(x轴,y轴)
    plt.xlabel("Hours")
    plt.ylabel("Score")
    #显示图像
    plt.show()

    out:

     

    从上图可以看到对于分数和时间来说存在相应的线性关系,且俩数据间相关性较强。

    在此可以通过相关性来衡量两个变量因素的相关密切程度。

    相关系数是用以反映变量之间相关关系密切程度的统计指标。

    r(相关系数) = x和y的协方差/(x的标准差*y的标准差) == cov(x,y)/σx*σy(即person系数)

    对于相关性强度来说的化有以下的关系:

    0~0.3 弱相关

    0.3~0.6  中等程度相关

    0.6~1  强相关

     

    in:

    rDf = examDf.corr()
    print(rDf)

    out:

    分数      学习时间
    分数    1.000000  0.923985
    学习时间  0.923985  1.000000

     

    pandas中的数学统计函数D.corr()可以反应数据间的相关性关系,可从表值中反应出学习时间与分数之间的相关性为强相关(0.6~1)。对于简单线性回归来来说,简单回归方程为: y = a + b*x (模型建立最佳拟合线)最佳拟合线也是需要通过最小二乘法来实现其作用。对于OLS即最小二乘法我们需要知道的一个关系为点误差,点误差 = 实际值 - 预测值,而误差平方和(Sum of square error) SSE = Σ(实际值-预测值)^2,最小二乘法就是基于SSE实现,最小二乘法 : 使得误差平方和最小(最佳拟合)。解释完简单线性回归后进行对训练集和测试集的创建,将会使用train_test_split函数来创建(train_test_split是存在与sklearn中的函数)

     

    in:

    #将原数据集拆分训练集和测试集
    X_train,X_test,Y_train,Y_test = train_test_split(exam_X,exam_Y,train_size=.8)
    #X_train为训练数据标签,X_test为测试数据标签,exam_X为样本特征,exam_y为样本标签,train_size 训练数据占比
    
    print("原始数据特征:",exam_X.shape,
          ",训练数据特征:",X_train.shape,
          ",测试数据特征:",X_test.shape)
    
    print("原始数据标签:",exam_Y.shape,
          ",训练数据标签:",Y_train.shape,
          ",测试数据标签:",Y_test.shape)
    
    #散点图
    plt.scatter(X_train, Y_train, color="blue", label="train data")
    plt.scatter(X_test, Y_test, color="red", label="test data")
    
    #添加图标标签
    plt.legend(loc=2)
    plt.xlabel("Hours")
    plt.ylabel("Pass")
    #显示图像
    plt.savefig("tests.jpg")
    plt.show()

    out:

    原始数据特征: (20,) ,训练数据特征: (16,) ,测试数据特征: (4,)
    原始数据标签: (20,) ,训练数据标签: (16,) ,测试数据标签: (4,)

     

    tips:由于训练集随机分配的原因每一次运行的结果(点的分布情况,训练集内的情况,测试集内的情况)不都相同在创建数据集之后我们需要将训练集放入skleran中的线性回归模型(LinearRegression())进行训练,使用函数种的.fit函数进行模型的训练操作。

     

    in:

    model = LinearRegression()
    
    #对于模型错误我们需要把我们的训练集进行reshape操作来达到函数所需要的要求
    # model.fit(X_train,Y_train)
    
    #reshape如果行数=-1的话可以使我们的数组所改的列数自动按照数组的大小形成新的数组
    #因为model需要二维的数组来进行拟合但是这里只有一个特征所以需要reshape来转换为二维数组
    X_train = X_train.values.reshape(-1,1)
    X_test = X_test.values.reshape(-1,1)
    
    model.fit(X_train,Y_train)

     

    在模型训练完成之后会得到所对应的方程式(线性回归方程式)需要利用函数中的intercept_与coef_来得到

     

    a  = model.intercept_#截距
    
    b = model.coef_#回归系数
    
    print("最佳拟合线:截距",a,",回归系数:",b)

     

    out:

     

    最佳拟合线:截距 7.5580754557 ,回归系数: [ 16.28401865]

     

    由上述的最佳拟合线的截距和回归系数可以算出其线性回归线方程:y = 7.56 + 16.28*x

    接下来需要对模型进行预测和对模型进行评价,在进行评价之间将会引入一个决定系数r平方的概念。

    对于决定系数R平方常用于评估模型的精确度。

    下列为R平方的计算公式:

    ● y误差平方和 = Σ(y实际值 - y预测值)^2

    ● y的总波动 = Σ(y实际值 - y平均值)^2

    ● 有多少百分比的y波动没有被回归拟合线所描述 = SSE/总波动

    ● 有多少百分比的y波动被回归线描述 = 1 - SSE/总波动 = 决定系数R平方

    对于决定系数R平方来说

    (1) 回归线拟合程度:有多少百分比的y波动刻印有回归线来描述(x的波动变化)

    (2)值大小:R平方越高,回归模型越精确(取值范围0~1),1无误差,0无法完成拟合对于预测来说我们需要运用函数中的model.predict()来得到预测值

     

    in:

    #训练数据的预测值
    y_train_pred = model.predict(X_train)
    #绘制最佳拟合线:标签用的是训练数据的预测值y_train_pred
    plt.plot(X_train, y_train_pred, color='black', linewidth=3, label="best line")
    
    #测试数据散点图
    plt.scatter(X_test, Y_test, color='red', label="test data")
    
    #添加图标标签
    plt.legend(loc=2)
    plt.xlabel("Hours")
    plt.ylabel("Score")
    #显示图像
    plt.savefig("lines.jpg")
    plt.show()
    
    
    score = model.score(X_test,Y_test)
    
    print(score)

     

    out:

    score : 0.834706696876

     

    多元线性回归

     

    在间单线性回归的例子中可以得到与线性回归相关的分析流程,接下来对多元线性回归进行分析对于多元线性回归前面已经提到,形如h(x)=theta0+theta1*x1+theta2*x2+theta3*x3http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv(已经失效)来下载数据集 Advertising.csv,其数据描述了一个产品的销量与广告媒体的投入之间影响。将会利用pandas的pd.read()来读取数据。

     

     

    in:

    #通过read_csv来读取我们的目的数据集
    adv_data = pd.read_csv("C:/Users/Administrator/Desktop/Advertising.csv")
    #清洗不需要的数据
    new_adv_data = adv_data.ix[:,1:]
    #得到我们所需要的数据集且查看其前几列以及数据形状
    print('head:',new_adv_data.head(),'\nShape:',new_adv_data.shape)

    out:

    head:       TV  radio  newspaper  sales
           0  230.1   37.8       69.2   22.1
           1   44.5   39.3       45.1   10.4
           2   17.2   45.9       69.3    9.3
           3  151.5   41.3       58.5   18.5
           4  180.8   10.8       58.4   12.9 
    Shape:  (200, 4)

     

    对于上述的数据可以得到数据中

    标签值(sales):

    • Sales:对应产品的销量

    特征值(TV,Radio,Newspaper):

    • TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)
    • Radio:在广播媒体上投资的广告费用
    • Newspaper:用于报纸媒体的广告费用

    在这个案例中,通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。接下里对数据进行描述性统计,以及寻找缺失值(缺失值对模型的影响较大,如发现缺失值应替换或删除),且利用箱图来从可视化方面来查看数据集,在描述统计之后对数据进行相关性分析,以此来查找数据中特征值与标签值之间的关系。

     

    in:

    #数据描述
    print(new_adv_data.describe())
    #缺失值检验
    print(new_adv_data[new_adv_data.isnull()==True].count())
    
    new_adv_data.boxplot()
    plt.savefig("boxplot.jpg")
    plt.show()
    ##相关系数矩阵 r(相关系数) = x和y的协方差/(x的标准差*y的标准差) == cov(x,y)/σx*σy
    #相关系数0~0.3弱相关0.3~0.6中等程度相关0.6~1强相关
    print(new_adv_data.corr())

     

    out:

                   TV       radio   newspaper       sales
    count  200.000000  200.000000  200.000000  200.000000
    mean   147.042500   23.264000   30.554000   14.022500
    std     85.854236   14.846809   21.778621    5.217457
    min      0.700000    0.000000    0.300000    1.600000
    25%     74.375000    9.975000   12.750000   10.375000
    50%    149.750000   22.900000   25.750000   12.900000
    75%    218.825000   36.525000   45.100000   17.400000
    max    296.400000   49.600000  114.000000   27.000000
    TV           0
    radio        0
    newspaper    0
    sales        0
    dtype: int64
                     TV     radio  newspaper     sales
    TV         1.000000  0.054809   0.056648  0.782224
    radio      0.054809  1.000000   0.354104  0.576223
    newspaper  0.056648  0.354104   1.000000  0.228299
    sales      0.782224  0.576223   0.228299  1.000000

     

     

     

     

    可以从corr表中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些但是也是属于强相关的,Newspaper和Sales线性关系更弱。接下来建立散点图来查看数据里的数据分析情况以及对相对应的线性情况,将使用seaborn的pairplot来绘画3种不同的因素对标签值的影响

     

    in:

    # 通过加入一个参数kind='reg',seaborn可以添加一条最佳拟合直线和95%的置信带。
    sns.pairplot(new_adv_data, x_vars=['TV','radio','newspaper'], y_vars='sales', size=7, aspect=0.8,kind = 'reg')
    plt.savefig("pairplot.jpg")
    plt.show()

    out:

     

    上如图种所示,可以了解到不同的因素对销量的预测线(置信度= 95 %),也可可以大致看出不同特征对于标签值的影响与相关关系在了解了数据的各种情况后需要对数据集建立模型,在建立模型的第一步我们将建立训练集与测试集同样的将会使用train_test_split函数来创建(train_test_split是存在与sklearn中的函数)

     

    in:

    X_train,X_test,Y_train,Y_test = train_test_split(new_adv_data.ix[:,:3],new_adv_data.sales,train_size=.80)
    
    print("原始数据特征:",new_adv_data.ix[:,:3].shape,
          ",训练数据特征:",X_train.shape,
          ",测试数据特征:",X_test.shape)
    
    print("原始数据标签:",new_adv_data.sales.shape,
          ",训练数据标签:",Y_train.shape,
          ",测试数据标签:",Y_test.shape)

    out:

    原始数据特征: (200, 3) ,训练数据特征: (160, 3) ,测试数据特征: (40, 3)
    原始数据标签: (200,) ,训练数据标签: (160,) ,测试数据标签: (40,)

     

    建立初步的数据集模型之后将训练集中的特征值与标签值放入LinearRegression()模型中且使用fit函数进行训练,在模型训练完成之后会得到所对应的方程式(线性回归方程式)需要利用函数中的intercept_与coef_。

     

    in:

    model = LinearRegression()
    
    model.fit(X_train,Y_train)
    
    a  = model.intercept_#截距
    
    b = model.coef_#回归系数
    
    print("最佳拟合线:截距",a,",回归系数:",b)

     

    out:

    最佳拟合线:截距 2.79361553401 ,回归系数: [ 0.04711495  0.18719875 -0.00185999]

     

    即所得的多元线性回归模型的函数为 : y = 2.79 + 0.04 * TV + 0.187 * Radio - 0.002 * Newspaper,对于给定了Radio和Newspaper的广告投入,如果在TV广告上每多投入1个单位,对应销量将增加0.04711个单位。就是加入其它两个媒体投入固定,在TV广告上每增加1000美元(因为单位是1000美元),销量将增加47.11(因为单位是1000)。但是大家注意这里的newspaper的系数居然是负数,所以我们可以考虑不使用newspaper这个特征。接下来对数据集进行预测与模型测评。同样使用predict与score函数来获取所需要的预测值与得分。

     

    in:

    #R方检测
    #决定系数r平方
    #对于评估模型的精确度
    #y误差平方和 = Σ(y实际值 - y预测值)^2
    #y的总波动 = Σ(y实际值 - y平均值)^2
    #有多少百分比的y波动没有被回归拟合线所描述 = SSE/总波动
    #有多少百分比的y波动被回归线描述 = 1 - SSE/总波动 = 决定系数R平方
    #对于决定系数R平方来说1) 回归线拟合程度:有多少百分比的y波动刻印有回归线来描述(x的波动变化)
    #2)值大小:R平方越高,回归模型越精确(取值范围0~1),1无误差,0无法完成拟合
    score = model.score(X_test,Y_test)
    
    print(score)
    
    #对线性回归进行预测
    
    Y_pred = model.predict(X_test)
    
    print(Y_pred)
    
    plt.plot(range(len(Y_pred)),Y_pred,'b',label="predict")
    #显示图像
    plt.savefig("predict.jpg")
    plt.show()

     

    out:

    score : 0.871755480886
    predict :[ 14.17217173  17.42866884  16.81933374  18.16079802   7.64784604
      17.8670496   16.66488531  14.98782916   9.41023763  16.21679696
      19.32696651   7.76788593  23.34231219   3.59006148  13.15777984
      24.26609169  15.47571902  15.39542342  13.98430709  12.65446708
       7.59818691  13.85179898  12.16325619  10.34902817  11.9813427
      11.05726513   8.13405159  21.94038306  16.4388483   14.06506403
       4.36052153   6.45326681   7.55083036  24.25987365  17.13603444
      14.04814117   7.28664465  17.24163581  20.42745536   6.55512244]

    预测集与源数据集的对比如下:

     

    模型的检测方法-ROC曲线:

     ROC曲线是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线。传统的诊断试验评价方法有一个共同的特点,必须将试验结果分为两类,再进行统计分析。ROC曲线的评价方法与传统的评价方法不同,无须此限制,而是根据实际情况,允许有中间状态,可以把试验结果划分为多个有序分类,如正常、大致正常、可疑、大致异常和异常五个等级再进行统计分析。因此,ROC曲线评价方法适用的范围更为广泛。

    1.ROC曲线能很容易地查出任意界限值时的对疾病的识别能力。

    2.选择最佳的诊断界限值。ROC曲线越靠近左上角,试验的准确性就越高。最靠近左上角的ROC曲线的点是错误最少的最好阈值,其假阳性和假阴性的总数最少。

    3.两种或两种以上不同诊断试验对疾病识别能力的比较。在对同一种疾病的两种或两种以上诊断方法进行比较时,可将各试验的ROC曲线绘制到同一坐标中,以直观地鉴别优劣,靠近左上角的ROC曲线所代表的受试者工作最准确。亦可通过分别计算各个试验的ROC曲线下的面积(AUC)进行比较,哪一种试验的 AUC最大,则哪一种试验的诊断价值最佳(百度百科)

    模型提升:

    对于提升模型准确度的方法很多,在这个模型下,可以利用异常值替换,将Newspaper中的异常值进行拉格朗日法插补,朗格朗日插补法(from scipy.interpolate import lagrange即scipy中的函数)可以间接提高模型的准确度,如果不需要插补异常值或缺失值的话可以将Newspaper不列为特征值考虑,在不考虑Newspaper为特征值的情况下,新的模型的准确率将超过旧模型,也可以从模型的准确度来反证Newspaper不适合作为特征值。

     

    整体代码如下,数据集再上面链接中可直接下载。

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from pandas import DataFrame,Series
    from sklearn.cross_validation import train_test_split
    from sklearn.linear_model import LinearRegression
    #创建数据集
    examDict  = {'学习时间':[0.50,0.75,1.00,1.25,1.50,1.75,1.75,
                         2.00,2.25,2.50,2.75,3.00,3.25,3.50,4.00,4.25,4.50,4.75,5.00,5.50],
                 '分数':[10,22,13,43,20,22,33,50,62,
                       48,55,75,62,73,81,76,64,82,90,93]}
    
    #转换为DataFrame的数据格式
    examDf = DataFrame(examDict)
    
    #绘制散点图
    plt.scatter(examDf.分数,examDf.学习时间,color = 'b',label = "Exam Data")
    
    #添加图的标签(x轴,y轴)
    plt.xlabel("Hours")
    plt.ylabel("Score")
    #显示图像
    plt.savefig("examDf.jpg")
    plt.show()
    
    
    #相关系数矩阵 r(相关系数) = x和y的协方差/(x的标准差*y的标准差) == cov(x,y)/σx*σy
    #相关系数0~0.3弱相关0.3~0.6中等程度相关0.6~1强相关
    rDf = examDf.corr()
    print(rDf)
    
    #回归方程 y = a + b*x (模型建立最佳拟合线)
    #点误差 = 实际值 - 拟合值
    #误差平方和(Sum of square error) SSE = Σ(实际值-预测值)^2
    #最小二乘法 : 使得误差平方和最小(最佳拟合)
    exam_X  =  examDf.loc[:,'学习时间']
    exam_Y  =  examDf.loc[:,'分数']
    
    #将原数据集拆分训练集和测试集
    X_train,X_test,Y_train,Y_test = train_test_split(exam_X,exam_Y,train_size=.8)
    #X_train为训练数据标签,X_test为测试数据标签,exam_X为样本特征,exam_y为样本标签,train_size 训练数据占比
    
    print("原始数据特征:",exam_X.shape,
          ",训练数据特征:",X_train.shape,
          ",测试数据特征:",X_test.shape)
    
    print("原始数据标签:",exam_Y.shape,
          ",训练数据标签:",Y_train.shape,
          ",测试数据标签:",Y_test.shape)
    
    #散点图
    plt.scatter(X_train, Y_train, color="blue", label="train data")
    plt.scatter(X_test, Y_test, color="red", label="test data")
    
    #添加图标标签
    plt.legend(loc=2)
    plt.xlabel("Hours")
    plt.ylabel("Pass")
    #显示图像
    plt.savefig("tests.jpg")
    plt.show()
    
    
    
    model = LinearRegression()
    
    #对于下面的模型错误我们需要把我们的训练集进行reshape操作来达到函数所需要的要求
    # model.fit(X_train,Y_train)
    
    #reshape如果行数=-1的话可以使我们的数组所改的列数自动按照数组的大小形成新的数组
    #因为model需要二维的数组来进行拟合但是这里只有一个特征所以需要reshape来转换为二维数组
    X_train = X_train.values.reshape(-1,1)
    X_test = X_test.values.reshape(-1,1)
    
    model.fit(X_train,Y_train)
    
    a  = model.intercept_#截距
    
    b = model.coef_#回归系数
    
    print("最佳拟合线:截距",a,",回归系数:",b)
    
    #决定系数r平方
    #对于评估模型的精确度
    #y误差平方和 = Σ(y实际值 - y预测值)^2
    #y的总波动 = Σ(y实际值 - y平均值)^2
    #有多少百分比的y波动没有被回归拟合线所描述 = SSE/总波动
    #有多少百分比的y波动被回归线描述 = 1 - SSE/总波动 = 决定系数R平方
    #对于决定系数R平方来说1) 回归线拟合程度:有多少百分比的y波动刻印有回归线来描述(x的波动变化)
    #2)值大小:R平方越高,回归模型越精确(取值范围0~1),1无误差,0无法完成拟合
    
    plt.scatter(X_train, Y_train, color='blue', label="train data")
    
    #训练数据的预测值
    y_train_pred = model.predict(X_train)
    #绘制最佳拟合线:标签用的是训练数据的预测值y_train_pred
    plt.plot(X_train, y_train_pred, color='black', linewidth=3, label="best line")
    
    #测试数据散点图
    plt.scatter(X_test, Y_test, color='red', label="test data")
    
    #添加图标标签
    plt.legend(loc=2)
    plt.xlabel("Hours")
    plt.ylabel("Score")
    #显示图像
    plt.savefig("lines.jpg")
    plt.show()
    
    
    score = model.score(X_test,Y_test)
    
    print(score)
    import pandas as pd
    import seaborn as sns
    from sklearn.linear_model import LinearRegression
    import matplotlib.pyplot as plt
    from sklearn.cross_validation import train_test_split
    
    #通过read_csv来读取我们的目的数据集
    adv_data = pd.read_csv("C:/Users/Administrator/Desktop/Advertising.csv")
    #清洗不需要的数据
    new_adv_data = adv_data.ix[:,1:]
    #得到我们所需要的数据集且查看其前几列以及数据形状
    print('head:',new_adv_data.head(),'\nShape:',new_adv_data.shape)
    
    #数据描述
    print(new_adv_data.describe())
    #缺失值检验
    print(new_adv_data[new_adv_data.isnull()==True].count())
    
    new_adv_data.boxplot()
    plt.savefig("boxplot.jpg")
    plt.show()
    ##相关系数矩阵 r(相关系数) = x和y的协方差/(x的标准差*y的标准差) == cov(x,y)/σx*σy
    #相关系数0~0.3弱相关0.3~0.6中等程度相关0.6~1强相关
    print(new_adv_data.corr())
    
    #建立散点图来查看数据集里的数据分布
    #seaborn的pairplot函数绘制X的每一维度和对应Y的散点图。通过设置size和aspect参数来调节显示的大小和比例。
    # 可以从图中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些,Newspaper和Sales线性关系更弱。
    # 通过加入一个参数kind='reg',seaborn可以添加一条最佳拟合直线和95%的置信带。
    sns.pairplot(new_adv_data, x_vars=['TV','radio','newspaper'], y_vars='sales', size=7, aspect=0.8,kind = 'reg')
    plt.savefig("pairplot.jpg")
    plt.show()
    
    #利用sklearn里面的包来对数据集进行划分,以此来创建训练集和测试集
    #train_size表示训练集所占总数据集的比例
    X_train,X_test,Y_train,Y_test = train_test_split(new_adv_data.ix[:,:3],new_adv_data.sales,train_size=.80)
    
    print("原始数据特征:",new_adv_data.ix[:,:3].shape,
          ",训练数据特征:",X_train.shape,
          ",测试数据特征:",X_test.shape)
    
    print("原始数据标签:",new_adv_data.sales.shape,
          ",训练数据标签:",Y_train.shape,
          ",测试数据标签:",Y_test.shape)
    
    model = LinearRegression()
    
    model.fit(X_train,Y_train)
    
    a  = model.intercept_#截距
    
    b = model.coef_#回归系数
    
    print("最佳拟合线:截距",a,",回归系数:",b)
    #y=2.668+0.0448∗TV+0.187∗Radio-0.00242∗Newspaper
    
    #R方检测
    #决定系数r平方
    #对于评估模型的精确度
    #y误差平方和 = Σ(y实际值 - y预测值)^2
    #y的总波动 = Σ(y实际值 - y平均值)^2
    #有多少百分比的y波动没有被回归拟合线所描述 = SSE/总波动
    #有多少百分比的y波动被回归线描述 = 1 - SSE/总波动 = 决定系数R平方
    #对于决定系数R平方来说1) 回归线拟合程度:有多少百分比的y波动刻印有回归线来描述(x的波动变化)
    #2)值大小:R平方越高,回归模型越精确(取值范围0~1),1无误差,0无法完成拟合
    score = model.score(X_test,Y_test)
    
    print(score)
    
    #对线性回归进行预测
    
    Y_pred = model.predict(X_test)
    
    print(Y_pred)
    
    
    plt.plot(range(len(Y_pred)),Y_pred,'b',label="predict")
    #显示图像
    # plt.savefig("predict.jpg")
    plt.show()
    
    plt.figure()
    plt.plot(range(len(Y_pred)),Y_pred,'b',label="predict")
    plt.plot(range(len(Y_pred)),Y_test,'r',label="test")
    plt.legend(loc="upper right") #显示图中的标签
    plt.xlabel("the number of sales")
    plt.ylabel('value of sales')
    plt.savefig("ROC.jpg")
    plt.show()
    
    
    
    
    

    Advertising.csv的连接已经失效,以下是补充的数据,可复制粘贴到CSV进行保存

    TVradionewspapersales
    230.137.869.222.1
    44.539.345.110.4
    17.245.969.39.3
    151.541.358.518.5
    180.810.858.412.9
    8.748.9757.2
    57.532.823.511.8
    120.219.611.613.2
    8.62.114.8
    199.82.621.210.6
    66.15.824.28.6
    214.724417.4
    23.835.165.99.2
    97.57.67.29.7
    204.132.94619
    195.447.752.922.4
    67.836.611412.5
    281.439.655.824.4
    69.220.518.311.3
    147.323.919.114.6
    218.427.753.418
    237.45.123.512.5
    13.215.949.65.6
    228.316.926.215.5
    62.312.618.39.7
    262.93.519.512
    142.929.312.615
    240.116.722.915.9
    248.827.122.918.9
    70.61640.810.5
    292.928.343.221.4
    112.917.438.611.9
    97.21.5309.6
    265.6200.317.4
    95.71.47.49.5
    290.74.18.512.8
    266.943.8525.4
    74.749.445.714.7
    43.126.735.110.1
    22837.73221.5
    202.522.331.616.6
    17733.438.717.1
    293.627.71.820.7
    206.98.426.412.9
    25.125.743.38.5
    175.122.531.514.9
    89.79.935.710.6
    239.941.518.523.2
    227.215.849.914.8
    66.911.736.89.7
    199.83.134.611.4
    100.49.63.610.7
    216.441.739.622.6
    182.646.258.721.2
    262.728.815.920.2
    198.949.46023.7
    7.328.141.45.5
    136.219.216.613.2
    210.849.637.723.8
    210.729.59.318.4
    53.5221.48.1
    261.342.754.724.2
    239.315.527.315.7
    102.729.68.414
    131.142.828.918
    699.30.99.3
    31.524.62.29.5
    139.314.510.213.4
    237.427.51118.9
    216.843.927.222.3
    199.130.638.718.3
    109.814.331.712.4
    26.83319.38.8
    129.45.731.311
    213.424.613.117
    16.943.789.48.7
    27.51.620.76.9
    120.528.514.214.2
    5.429.99.45.3
    1167.723.111
    76.426.722.311.8
    239.84.136.912.3
    75.320.332.511.3
    68.444.535.613.6
    213.54333.821.7
    193.218.465.715.2
    76.327.51612
    110.740.663.216
    88.325.573.412.9
    109.847.851.416.7
    134.34.99.311.2
    28.61.5337.3
    217.733.55919.4
    250.936.572.322.2
    107.41410.911.5
    163.331.652.916.9
    197.63.55.911.7
    184.9212215.5
    289.742.351.225.4
    135.241.745.917.2
    222.44.349.811.7
    296.436.3100.923.8
    280.210.121.414.8
    187.917.217.914.7
    238.234.35.320.7
    137.946.45919.2
    251129.77.2
    90.40.323.28.7
    13.10.425.65.3
    255.426.95.519.8
    225.88.256.513.4
    241.73823.221.8
    175.715.42.414.1
    209.620.610.715.9
    78.246.834.514.6
    75.13552.712.6
    139.214.325.612.2
    76.40.814.89.4
    125.736.979.215.9
    19.41622.36.6
    141.326.846.215.5
    18.821.750.47
    2242.415.611.6
    123.134.612.415.2
    229.532.374.219.7
    87.211.825.910.6
    7.838.950.66.6
    80.209.28.8
    220.3493.224.7
    59.61243.19.7
    0.739.68.71.6
    265.22.94312.7
    8.427.22.15.7
    219.833.545.119.6
    36.938.665.610.8
    48.3478.511.6
    25.6399.39.5
    273.728.959.720.8
    4325.920.59.6
    184.943.91.720.7
    73.41712.910.9
    193.735.475.619.2
    220.533.237.920.1
    104.65.734.410.4
    96.214.838.911.4
    140.31.9910.3
    240.17.38.713.2
    243.24944.325.4
    3840.311.910.9
    44.725.820.610.1
    280.713.93716.1
    1218.448.711.6
    197.623.314.216.6
    171.339.737.719
    187.821.19.515.6
    4.111.65.73.2
    93.943.550.515.3
    149.81.324.310.1
    11.736.945.27.3
    131.718.434.612.9
    172.518.130.714.4
    85.735.849.313.3
    188.418.125.614.9
    163.536.87.418
    117.214.75.411.9
    234.53.484.811.9
    17.937.621.68
    206.85.219.412.2
    215.423.657.617.1
    284.310.66.415
    5011.618.48.4
    164.520.947.414.5
    19.620.1177.6
    168.47.112.811.7
    222.43.413.111.5
    276.948.941.827
    248.430.220.320.2
    170.27.835.211.7
    276.72.323.711.8
    165.61017.612.6
    156.62.68.310.5
    218.55.427.412.2
    56.25.729.78.7
    287.64371.826.2
    253.821.33017.6
    20545.119.622.6
    139.52.126.610.3
    191.128.718.217.3
    28613.93.715.9
    18.712.123.46.7
    39.541.15.810.8
    75.510.869.9
    17.24.131.65.9
    166.8423.619.6
    149.735.6617.3
    38.23.713.87.6
    94.24.98.19.7
    1779.36.412.8
    283.64266.225.5
    232.18.68.713.4
    展开全文
  • 大家好,我是天空之城,今天给大家带来小福利,带你快速了解一元线性回归方程...多元线性回归模型的系数推导 线性回归模型的假设检验 假设前提 p小于0.3可能不符合线性相关 =============================

    大家好,我是天空之城,今天给大家带来小福利,带你快速了解一元线性回归方程模拟和多元线性回归方程模拟
    主要用来进行数据的相关性分析
    之前在研究生阶段用过一个叫origin的数据处理软件,只要是科研数据都可以用这个软件进行快速的分析处理,绘图和模拟等操作,那么咱们的Python同样也是具有这个模拟功能的哦

    1. 一元线性回归模型的介绍与应用
    2. 多元线性回归模型的系数推导
    3. 线性回归模型的假设检验
    4. 假设前提

    在这里插入图片描述
    在这里插入图片描述
    p小于0.3可能不符合线性相关

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    =========================================
    多元线性回归模型

    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述

    展开全文
  • 多元线性回归模型是一种简单而且有效的数学模型,一直在各领域广泛使用。一个多元回归模型建好后,如何评价模型的优劣呢?1. F值检验因变量的总变异(数据与均值之差的平方和,记为SStotal)由回归平方和(因变量的变异...

    多元线性回归模型是一种简单而且有效的数学模型,一直在各领域广泛使用。一个多元回归模型建好后,如何评价模型的优劣呢?

    1. F值检验

    因变量的总变异(数据与均值之差的平方和,记为SStotal)由回归平方和(因变量的变异中可以由自变量解释的部分,记为SSR)与误差平方和(记为SSE)构成,如果自变量引起的变异大于随机误差引起的变异,则说明因变量与至少一个自变量存在线性关系。回归平方和与误差平方和的比值记为F,F值服从F分布,通过查F分布概率表可得F值对应的概率,从而判断是否存在统计学意义。F值越大越好。

    2. 偏回归系数检验

    通过了F检验只说明因变量至少和一个自变量存在线性关系,但不是所有x都跟y存在线性关系。对每个变量的回归系数分别作t检验,假设回归系数为0,得到的概率值越小越好,一般取0.05作为临界值。

    3. 标准化偏回归系数

    y和x均经过标准化,均值为0,标准差为1,此时的回归结果常数项为0.消除了量纲的影响,更能直观表示自变量对因变量的影响。如果某项回归系数接近0,则说明该自变量与因变量的不具有线性关系,应当剔除。

    4. 复相关系数R

    指的是因变量与因变量的估计值(回归后得出的值)之间的简单线性相关系数,范围在0-1之间,一般来说,R值应大于0.9,但在某些社会科学研究中只要求R大于0.4,这是因为在社会科学研究中存在大量对因变量有影响却无法进行量化的因数,无法纳入模型研究。值得注意的是,即使向模型增加的变量没有统计学意义,R值也会增加,所以R值只作为参考。

    5. 决定系数R2

    因变量总变异中由模型中自变量解释部分的比例。也是越大越好,但是存在与R同样的问题。

    R2=SSR/SStotal=1-SSE/SStotal

    6.校正的决定系数R2adj

    将自变量的个数纳入了考量范围,解决了R2 的局限性,不会随着自变量的增加而增加。当模型中增加的自变量缺乏统计学意义时,校正的决定系数会减小。该项系数越大越好。

    R2adj=1-(n-1)(1- R2)/(n-p-1) n表示样本量,p表示模型中自变量个数

    7.剩余标准差

    误差均方的算术平方根,该值应明显小于因变量的标准差,越小越好。说明在引入模型自变量后,因变量的变异明显减小。

    8. 赤池信息准则AIC

    包含两部分,一部分反映拟合精度,一部分反映模型繁简程度(自变量个数越少模型越简洁),该值越小越好。值得注意的是,用最小二乘法拟合模型与用最大似然估计拟合的模型,其AIC计算方法是不一样的,所以用AIC进行模型比较时应注意拟合的方法是相同的才行。

    最小二乘法拟合时:AIC=nln(SSE/n)+2p

    最大似然估计拟合时:AIC=-2ln(L)+2p L为模型的最大似然函数

    以上8种数据很多统计软件都能方便地输出。

    9.预测效果

    在数据量较大时,可留一部分数据用作预测,根据预测结果判断模型优劣。

    fba26983993d4c1cd47f9f05fa031dc7.png
    展开全文
  • 多元线性回归分析

    2018-06-27 20:55:33
    1、掌握一元线性回归的经典假设; 2、掌握一元线性回归的最小二乘法参数估计的计算公式、性质和应用; 3、理解拟合优度指标:决定系数R2的含义和作用; 4、掌握解释变量 和被解释变量 之间线性关系检验,回归参数 和...
  • 多元线性回归多元线性回归模型实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示。为了方便计算,我们将上式写成矩阵形式:Y = XW假设自变量维度为NW为自变量的系数,下标0...
  • 多元线性回归模型假设函数,损失函数,梯度下降及其可视化实现
  • 多元线性回归模型评估You’ve got a sample dataset and just finished working on a machine learning algorithm using the linear regression model. But now, you are wondering whether or not your analysis ...
  • 多元统计分析多元线性回归的R语言实现多元统计分析--multivariate statistical analysis研究客观事物中多个变量之间相互依赖的统计规律性。或从数学上说, 如果个体的观测数据能表为 P维欧几里得空间的点,那么...
  • 多元线性回归分析(R语言)

    万次阅读 多人点赞 2018-12-07 13:35:10
    一、多元线性回归模型 设变量Y与X1,X2,……,Xp之间有线性关系   其中 , 和 是未知参数,p≥2,称上公式为多元线性回归模型。 二、参数估计 我们根据多元线性回归模型,认为误差 应是比较小的,然后对 ...
  • 多元线性回归模型检验-续上篇

    千次阅读 2020-04-04 20:42:46
    其实上一篇讨论的多元线性回归还不是很全面,而且训练和测试集都没有分,在这里继续讨论多元线性回归模型检验的相关问题。 多元线性回归的输出变量是连续变量,输入变量中如果包含离散变量需要做哑变量或One-hot编码...
  • 多元线性回归模型

    2020-03-14 11:56:51
    线性回归模型就属于监督学习里的回归模型。线性回归是通过属性的线性组合进行预测的函数,一元线性回归较为简单。这里我们主要介绍多元。 可以表示为 且可求出,若要满足误差项最小: 再得到模型后,我们还要进...
  • R语言构建多元线性回归模型 对比一元线性回归,多元线性回归是用来确定2个或2个以上变量间关系的统计分析方法。多元线性回归的基本分析方法与一元线性回归方法是类似的,我们首先需要对选取多元数据集并定义...
  • 用R进行多元线性回归分析建模

    万次阅读 多人点赞 2016-05-31 22:20:37
    概念:多元回归分析预测法,是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析
  • 多元线性回归模型检验方法

    万次阅读 2019-08-10 22:07:21
    终于找到一篇全面而又简洁的讲多元线性回归模型检验方法的文章 PDF下载地址 链接:https://pan.baidu.com/s/1UbyZcMC1VRTmlCEaX4Vybg 提取码:g481 具体内容 一、经济意义检验 经济意义检验主要检验模型参数估计量在...
  • 多元线性回归基本表达式在多元线性回归中会有多个解释变量:预测解释变量的估计方程如下:注:额外的假设条件①解释变量之间不能存在太强的线性相关关系(一般ρ<0.7)②其他条件与一元线性回归类似。2.回归方程...
  • 线性回归模型属于经典的统计学模型,该模型的应用场景是根据已知的变量(自变量)来预测某个连续的数值变量(因变量)。例如,餐厅根据每天的营业数据(包括菜谱价格、就餐人数、预定人数、特价菜折扣等)预测就餐...
  • 导语:现在大多数人入门机器学习的第一个案例是多元线性回归模型,其中多元共线性这个问题将贯穿所有的机器学习模型。这里选用的经典房价预测用到的精度优化方法效果拔群,能提供比较好的参考价值,将会带大家讲解...
  • 多元线性回归分析理论详解及SPSS结果分析

    万次阅读 多人点赞 2017-05-17 16:23:23
    当影响因变量的因素是多个时候,这种一个变量同时与多个变量的回归问题就是多元回归,分为:多元线性回归和多元非线性回归。这里直说多元线性回归。对比一元线性回归: 1.1多元回归模型: y=β0+β1x1+β2x2+…+β...
  • 本文使用 R 语言,对各个影响因素的相关性进行了筛选分析,并采用逐步回归法得到了最优的多元线性回归模型。在讨论中,对线性回归模型的回归显著性以及拟合优度进行了检验,最后使用最优的多元线性回归模型对波士顿...
  • 多元线性回归:这是一种线性回归的形式,当有两个或多个预测因子时使用。 我们将看到多个输入变量如何共同影响输出变量,同时还将了解计算与简单LR模型的不同之处。我们还将使用Python构建一个回归模型。 最后,我们...
  • 多元线性回归基本原理 线性回归是机器学习中最简单的回归算法,多元线性回归指的就是一个样本有多个特征的线性回归问题,所以多元其实指的是多个特征。对于一个有个特征的样本而言,它的回归结果可以写作一个几乎...
  • [t] F R^2 置信区间的值做出相应解释 因变量是新生儿体重birth weight 主题是产前护理及父母恶习对新生儿健康的影响 此外hypothesis假设应该怎么写.首先说觉得你这个方程回归的不好,R系数太小,显著性不好。F值应该...
  • 机器学习算法(8)之多元线性回归分析理论详解

    万次阅读 多人点赞 2018-08-29 16:28:27
    前言:当影响因变量的因素是多个时候,这种一个变量同时与多个变量的回归问题就是多元回归,分为:多元线性回归和多元非线性回归。线性回归(Linear regressions)和逻辑回归(Logistic regressions)是人们学习算法的第...
  • 多元线性回归.ppt

    2009-05-22 11:00:44
    内容如下: 1.多元线性回归模型 2.多元线性回归模型的参数估计 3.多元线性回归模型假设检验 4.实例
  • 多元线性回归模型的几何意义

    千次阅读 2017-06-19 09:01:45
    传统的多元线性回归模型可以用矩阵来描述。 按照OLS估计方法得出的多元线性回归的参数结果为 对于该式而言Y的估计值 其实正是n维向量Y 在n*k维矩阵(不存在向量自相关)所张成的k维空间上的正交投影。  ...
  • 多元线性回归 pythonLinear regression is a standard statistical data analysis technique. We use linear regression to determine the direct relationship between a dependent variable and one or more ...
  • 线性回归——简单线性回归、多元线性回归

    千次阅读 多人点赞 2020-04-30 22:13:37
    当只有一个自变量时,称为简单线性回归,当具有多个自变量时,称为多元线性回归。 线性关系的理解: 画出来的图像是直的。 每个自变量的最高次项为1。 拟合是指构建一种算法,使得该算法能够符合真实的数据。从...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 11,752
精华内容 4,700
关键字:

多元线性回归模型的基本假设