精华内容
下载资源
问答
  • 进制转换二进制、八进制、十六进制、十进制之间的转换 不同进制之间的转换在编程中经常会用到,尤其是C语言。 将二进制、八进制、十六进制转换十进制 二进制、八进制和十六进制向十进制转换都非常容易,就是...

    进制转换:二进制、八进制、十六进制、十进制之间的转换

    不同进制之间的转换在编程中经常会用到,尤其是C语言。

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。

    假设当前数字是N进制,那么:

    对于整数部分,从右往左看,第i位的位权等于Ni-1

    对于小数部分,恰好相反,要从左往右看,第j位的位权为N-j

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字53627转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字9FA8C转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… n位的位权就为16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为20=1,第2位的位权为21=2,第3位的位权为22=4,第4位的位权为23=8,第5位的位权为24=16 …… n位的位权就为2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字423.5176转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… m位的位权就为 8-m

    再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… m位的位权就为 2-m

    更多转换成十进制的例子:

    二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    二进制:101.1001 = 1×22 + 0×21 + 1×20 + 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为N进制整数采用“N取余,逆序排列”法。具体做法是:

    N作为除数,用十进制整数除以N,可以得到一个商和余数;

    保留余数,用商继续除以N,又得到一个新的商和余数;

    仍然保留余数,用商继续除以N,还会得到一个新的商和余数;

    ……

    如此反复进行,每次都保留余数,用商接着除以N,直到商为0时为止。

    把先得到的余数作为N进制数的低位数字,后得到的余数作为N进制数的高位数字,依次排列起来,就得到了N进制数字。

    下图演示了将十进制数字36926转换成八进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151J30K46.png

    从图中得知,十进制数字36926转换成八进制的结果为110076

    下图演示了将十进制数字42转换成二进制的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170915/1-1F9151K641Z0.png

    从图中得知,十进制数字42转换成二进制的结果为101010

    2) 小数部分

    十进制小数转换成N进制小数采用“N取整,顺序排列”法。具体做法是:

    N乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    将积的整数部分取出,再用N乘以余下的小数部分,又得到一个新的积;

    再将积的整数部分取出,继续用N乘以余下的小数部分;

    ……

    如此反复进行,每次都取出整数部分,用N接着乘以小数部分,直到积中的小数部分为0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为N进制小数的高位数字,后取出的整数作为低位数字,这样就得到了N进制小数。

    下图演示了将十进制小数0.930908203125转换成八进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91Q20520335.png

    从图中得知,十进制小数0.930908203125转换成八进制小数的结果为0.7345

    下图演示了将十进制小数0.6875 转换成二进制小数的过程:

    http://c.biancheng.net/cpp/uploads/allimg/170918/1-1F91QHI2I2.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011

    如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345

    十进制数字 42.6875 转换成二进制的结果为 101010.1011

    下表列出了前17个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    二进制

    0

    1

    10

    11

    100

    101

    110

    111

    1000

    1001

    1010

    1011

    1100

    1101

    1110

    1111

    10000

    八进制

    0

    1

    2

    3

    4

    5

    6

    7

    10

    11

    12

    13

    14

    15

    16

    17

    20

    十六进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    B

    C

    D

    E

    F

    10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    十进制0.51对应的二进制为0.100000101000111101011100001010001111010111...,是一个循环小数;

    十进制0.72对应的二进制为0.1011100001010001111010111000010100011110...,是一个循环小数;

    十进制0.625对应的二进制为0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919102I0949.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674

    八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919103A2R7.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F919104H9539.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C

    十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    http://c.biancheng.net/cpp/uploads/allimg/170919/1-1F91910553H50.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110

    C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    展开全文
  • 编程常用工具:进制转换工具,支持二进制十进制、十六进制之间相互转换,小巧方便免安装。 编程常用工具:进制转换工具,支持二进制十进制、十六进制之间相互转换,小巧方便免安装。
  • 二进制、八进制、十六进制转换十进制二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。假设当前数字是N进制,那么:对于整数部分,从右往左看,第 i 位的位权等于...

    上节我们对二进制、八进制和十六进制进行了说明,本节重点讲解不同进制之间的转换,这在编程中经常会用到,尤其是C语言

    将二进制、八进制、十六进制转换为十进制

    二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。假设当前数字是 N 进制,那么:

    • 对于整数部分,从右往左看,第 i 位的位权等于Ni-1

    • 对于小数部分,恰好相反,要从左往右看,第 j 位的位权为N-j

    更加通俗的理解是,假设一个多位数(由多个数字组成的数)某位上的数字是 1,那么它所表示的数值大小就是该位的位权。

    1) 整数部分

    例如,将八进制数字 53627 转换成十进制:

    53627 = 5×84 + 3×83 + 6×82 + 2×81 + 7×80 = 22423(十进制)

    从右往左看,第1位的位权为 80=1,第2位的位权为 81=8,第3位的位权为 82=64,第4位的位权为 83=512,第5位的位权为 84=4096 …… 第n位的位权就为 8n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    注意,这里我们需要以十进制形式来表示位权。

    再如,将十六进制数字 9FA8C 转换成十进制:

    9FA8C = 9×164 + 15×163 + 10×162 + 8×161 + 12×160 = 653964(十进制)

    从右往左看,第1位的位权为 160=1,第2位的位权为 161=16,第3位的位权为 162=256,第4位的位权为 163=4096,第5位的位权为 164=65536 …… 第n位的位权就为 16n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。将二进制数字转换成十进制也是类似的道理:

    11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 26(十进制)

    从右往左看,第1位的位权为 20=1,第2位的位权为 21=2,第3位的位权为 22=4,第4位的位权为 23=8,第5位的位权为 24=16 …… 第n位的位权就为 2n-1。将各个位的数字乘以位权,然后再相加,就得到了十进制形式。

    2) 小数部分

    例如,将八进制数字 423.5176 转换成十进制:

    423.5176 = 4×82 + 2×81 + 3×80 + 5×8-1 + 1×8-2 + 7×8-3 + 6×8-4 = 275.65576171875(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 8-1=1/8,第2位的位权为 8-2=1/64,第3位的位权为 8-3=1/512,第4位的位权为 8-4=1/4096 …… 第m位的位权就为 8-m再如,将二进制数字 1010.1101 转换成十进制:

    1010.1101 = 1×23 + 0×22 + 1×21 + 0×20 + 1×2-1 + 1×2-2 + 0×2-3 + 1×2-4 = 10.8125(十进制)

    小数部分和整数部分相反,要从左往右看,第1位的位权为 2-1=1/2,第2位的位权为 2-2=1/4,第3位的位权为 2-3=1/8,第4位的位权为 2-4=1/16 …… 第m位的位权就为 2-m更多转换成十进制的例子:

    • 二进制:1001 = 1×23 + 0×22 + 0×21 + 1×20 = 8 + 0 + 0 + 1 = 9(十进制)

    • 二进制:101.1001 = 1×22 + 0×21 + 1×2+ 1×2-1 + 0×2-2 + 0×2-3 + 1×2-4 = 4 + 0 + 1 + 0.5 + 0 + 0 + 0.0625 = 5.5625(十进制)

    • 八进制:302 = 3×82 + 0×81 + 2×80 = 192 + 0 + 2 = 194(十进制)

    • 八进制:302.46 = 3×82 + 0×81 + 2×80 + 4×8-1 + 6×8-2 = 192 + 0 + 2 + 0.5 + 0.09375= 194.59375(十进制)

    • 十六进制:EA7 = 14×162 + 10×161 + 7×160 = 3751(十进制)

    将十进制转换为二进制、八进制、十六进制

    将十进制转换为其它进制时比较复杂,整数部分和小数部分的算法不一样,下面我们分别讲解。

    1) 整数部分

    十进制整数转换为 N 进制整数采用“除 N 取余,逆序排列”法。具体做法是:

    • 将 N 作为除数,用十进制整数除以 N,可以得到一个商和余数;

    • 保留余数,用商继续除以 N,又得到一个新的商和余数;

    • 仍然保留余数,用商继续除以 N,还会得到一个新的商和余数;

    • ……

    • 如此反复进行,每次都保留余数,用商接着除以 N,直到商为 0 时为止。

    把先得到的余数作为 N 进制数的低位数字,后得到的余数作为 N 进制数的高位数字,依次排列起来,就得到了 N 进制数字。下图演示了将十进制数字 36926 转换成八进制的过程:

    b079342a40cf224049346aa9eff6cf70.png

    从图中得知,十进制数字 36926 转换成八进制的结果为 110076。下图演示了将十进制数字 42 转换成二进制的过程:

    38a0f97179ddc42a8b2fed539e52420c.png

    从图中得知,十进制数字 42 转换成二进制的结果为 101010。

    2) 小数部分

    十进制小数转换成 N 进制小数采用“乘 N 取整,顺序排列”法。具体做法是:

    • 用 N 乘以十进制小数,可以得到一个积,这个积包含了整数部分和小数部分;

    • 将积的整数部分取出,再用 N 乘以余下的小数部分,又得到一个新的积;

    • 再将积的整数部分取出,继续用 N 乘以余下的小数部分;

    • ……

    • 如此反复进行,每次都取出整数部分,用 N 接着乘以小数部分,直到积中的小数部分为 0,或者达到所要求的精度为止。

    把取出的整数部分按顺序排列起来,先取出的整数作为 N 进制小数的高位数字,后取出的整数作为低位数字,这样就得到了 N 进制小数。下图演示了将十进制小数 0.930908203125 转换成八进制小数的过程:

    d7e9cdcdd3bdbe8716ee59f7c8b03c11.png

    从图中得知,十进制小数 0.930908203125 转换成八进制小数的结果为 0.7345。下图演示了将十进制小数 0.6875 转换成二进制小数的过程:

    d7b03d3138ce82fb2ac89859aa16e44f.png

    从图中得知,十进制小数 0.6875 转换成二进制小数的结果为 0.1011。如果一个数字既包含了整数部分又包含了小数部分,那么将整数部分和小数部分开,分别按照上面的方法完成转换,然后再合并在一起即可。例如:

    • 十进制数字 36926.930908203125 转换成八进制的结果为 110076.7345;

    • 十进制数字 42.6875 转换成二进制的结果为 101010.1011。

    下表列出了前 17 个十进制整数与二进制、八进制、十六进制的对应关系:

    十进制012345678910111213141516
    二进制0110111001011101111000100110101011110011011110111110000
    八进制01234567101112131415161720
    十六进制0123456789ABCDEF10

    注意,十进制小数转换成其他进制小数时,结果有可能是一个无限位的小数。请看下面的例子:

    • 十进制 0.51 对应的二进制为 0.100000101000111101011100001010001111010111...,是一个循环小数;

    • 十进制 0.72 对应的二进制为 0.1011100001010001111010111000010100011110...,是一个循环小数;

    • 十进制 0.625 对应的二进制为 0.101,是一个有限小数。

    二进制和八进制、十六进制的转换

    其实,任何进制之间的转换都可以使用上面讲到的方法,只不过有时比较麻烦,所以一般针对不同的进制采取不同的方法。将二进制转换为八进制和十六进制时就有非常简洁的方法,反之亦然。

    1) 二进制整数和八进制整数之间的转换

    二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。下图演示了如何将二进制整数 1110111100 转换为八进制:

    ee48ec201aec425eed2fbb3583b0add0.png

    从图中可以看出,二进制整数 1110111100 转换为八进制的结果为 1674。八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将八进制整数 2743 转换为二进制:

    3928baa538522979b565c3b5e5112a32.png

    从图中可以看出,八进制整数 2743 转换为二进制的结果为 10111100011。

    2) 二进制整数和十六进制整数之间的转换

    二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。下图演示了如何将二进制整数 10 1101 0101 1100 转换为十六进制:

    7ceaefb4a7ff99e0b1670460e4fe52a0.png

    从图中可以看出,二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C。十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。下图演示了如何将十六进制整数 A5D6 转换为二进制:

    4a006a9d5f1da2db04014492b1de290f.png

    从图中可以看出,十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110。在C语言编程中,二进制、八进制、十六进制之间几乎不会涉及小数的转换,所以这里我们只讲整数的转换,大家学以致用足以。另外,八进制和十六进制之间也极少直接转换,这里我们也不再讲解了。

    总结

    本节前面两部分讲到的转换方法是通用的,任何进制之间的转换都可以采用,只是有时比较麻烦而已。二进制和八进制、十六进制之间的转换有非常简洁的方法,所以没有采用前面的方法。

    展开全文
  • 对python进制转换二进制十进制和十六进制)及注意事项感兴趣的小伙伴,下面一起跟随编程之家 jb51.cc的小编两巴掌来看看吧!使用内置函数实现进制转换实现比较简单,主要用到以下函数:bin()、oct()、int()、hex...

    对python进制转换(二进制、十进制和十六进制)及注意事项感兴趣的小伙伴,下面一起跟随编程之家 jb51.cc的小编两巴掌来看看吧!

    使用内置函数实现进制转换实现比较简单,主要用到以下函数:

    bin()、oct()、int()、hex()

    下面分别详解一下各个函数的使用(附实例)

    第一部分:其他进制转十进制

    1.二进制转十进制

    使用函数:int()

    实例:

    #结果是4

    int("100",2)

    # End www.jb51.cc

    注意:上述一定不要忘记加引号,因为二进制是一个字符串

    如果不加引号会出现如下错误:

    Traceback (most recent call last):

    File "",line 1,in

    int(100,2)

    TypeError: int() can"t convert non-string with explicit base

    2.八进制转十进制

    使用函数:int()

    实例:

    #结果是4

    int("04",8)

    # End www.jb51.cc

    注意:上述一定不要忘记加引号,因为八进制是一个字符串

    3.十六进制转十进制

    使用函数:int()

    实例:

    #结果是4

    int("0x4",16)

    # End www.jb51.cc

    注意:上述一定不要忘记加引号,因为十六进制是一个字符串

    第二部分:十进制转其他进制

    1.十进制转二进制

    使用函数:bin()

    bin()函数是讲整数转换成二进制字符串

    实例:

    #十进制转二进制,其中int(4,10)表示4是一个十进制整数

    bin(int("4",10))

    #或者,直接输入一个十进制

    bin(4)

    #结果是:0b100

    # End www.jb51.cc

    注意:这里的0b100,其实就是100,0b的b是binary的意思

    2.十进制转八进制

    使用函数: oct()

    #这里也要注意,4要加引号表示是一个字符串

    oct(int("4",不转换直接输入十进制数

    oct(4)

    #结果为:04

    # End www.jb51.cc

    3.十进制转十六进制

    使用函数:hex()

    实例:

    #十进制转十六进制

    hex(int("4",10))

    #或者

    hex(4)

    #结果为:0x4

    # End www.jb51.cc

    展开全文
  • 下面我们开讲原理,举个十进制整数转换二进制整数的例子,假设十进制整数A化得的二进制数为edcba 的形式,那么用上面的方法按权展开, 得 A=a(2^0)+b(2^1)+c(2^2)+d(2^3)+e(2^4) (后面的和不正是化十进制的过程...

    如:255=(11111111)B255/2=127=====余1127/2=63======余163/2=31=======余131/2=15=======余115/2=7========余17/2=3=========余13/2=1=========余11/2=0=========余1789=1100010101(B)789/2=394余1 第10位394/2=197余0 第9位197/2=98余1 第8位98/2=49余0 第7位49/2=24余1 第6位24/2=12余0 第5位12/2=6余0 第4位6/2=3余0 第3位3/2=1余1 第2位1/2=0余1 第1位

    原理:

    众所周知,二进制的基数为2,我们十进制化二进制时所除的2就是它的基数。谈到它的原理,就不得不说说关于位权的概念。某进制计数制中各位数字符号所表示的数值表示该数字符号值乘以一个与数字符号有关的常数,该常数称为 “位权 ” 。位权的大小是以基数为底,数字符号所处的位置的序号为指数的整数次幂。十进制数的百位、十位、个位、十分位的权分别是10的2次方、10的1次方、10的0次方,10的-1次方。二进制数就是2的n次幂。

    按权展开求和正是非十进制化十进制的方法。

    下面我们开讲原理,举个十进制整数转换为二进制整数的例子,假设十进制整数A化得的二进制数为edcba 的形式,那么用上面的方法按权展开, 得

    A=a(2^0)+b(2^1)+c(2^2)+d(2^3)+e(2^4) (后面的和不正是化十进制的过程吗)

    假设该数未转化为二进制,除以基数2得

    A/2=a(2^0)/2+b(2^1)/2+c(2^2)/2+d(2^3)/2+e(2^4)/2注意:a除不开二,余下了!其他的绝对能除开,因为他们都包含2,而a乘的是1,他本身绝对不包含因数2,只能余下。

    商得:

    b(2^0)+c(2^1)+d(2^2)+e(2^3),再除以基数2余下了b,以此类推。

    当这个数不能再被2除时,先余掉的a位数在原数低,而后来的余数数位高,所以要把所有的余数反过来写。正好是edcba

    展开全文
  • 对python进制转换二进制十进制和十六进制)及注意事项感兴趣的小伙伴,下面一起跟随编程之家 jb51.cc的小编两巴掌来看看吧!使用内置函数实现进制转换实现比较简单,主要用到以下函数:bin()、oct()、int()、hex...
  • 1、十进制二进制之间的转换(1)、十进制转换二进制,分为整数部分和小数部分整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数。这个步骤一直...
  • 十六进制-二进制十进制转换,希望对大家有帮助!采用C语言编程。可以用DEV C++ 运行!
  • 在我们接触编程知识时,总会接触有关进制转换的知识,最常见的就是10进制与二进制或十六进制之间的转换,很多时候我们总会遗忘,虽然现在也出现了很多可以直接使用的网络在线的进制转换工具,但考试中,我们就要靠...
  • 编程软件开发 必须要掌握的一个知识点就是各不同进制之间的转换,特此记录下,加深印象。 二进制:由0和1组成的 ...二进制转换十进制: 10010110-》 从最后以为开始向前叠加–》从2的0次方到2的8次方 ,如果为...
  • 我们生活中最习惯的进制...其实计算机编程语言中已经开发好了可以进行进制转化的api,可以进行十进制转化成其他进制,或者其他进制转换十进制下面就给出这些api。 十进制转成二进制Integer.toBinaryString(int i); 十
  • 进制转换是人们利用符号...进制也就是进制位,对于接触过电脑的人来说应该都不陌生,我们常用的进制包括:二进制、八进制、十进制与十六进制,它们之间区别在于数运算时是逢几进一位。比如二进制是逢2进一位,十进制...
  • 编程十进制整数转换二进制

    千次阅读 2013-04-01 13:39:17
    在32位处理器上,将任一整数转换二进制形式...输入:iDec 需要转换十进制整数 输出:pBin 转换二进制后的字符串,高位在左边,不足32位补0 示例 输入:123 输出:{“00000000000000000000000001111011”}
  • 在我们接触编程知识时,总会接触有关进制转换的知识,最常见的就是10进制与二进制或十六进制之间的转换,很多时候我们总会遗忘,虽然现在也出现了很多可以直接使用的网络在线的进制转换工具,但考试中,我们就要靠...
  • 进制转换的函数 bin() 10进制转2进制 oct() 10进制转8进制 hex()10进制转16进制 int() *进制转10进制 各进制之间转换 ↓ 2进制 8进制 10进制 16进制 2进制 - bin(int(x, 8)) bin(int(x, 10)) bin(int(x, ...
  • 本篇博文主要讲解在编程之中,用到的进制转换的方法和逻辑,毕竟在计算机语言中,最原始的底层进制都是二进制,所以在开发中,在所难免会遇到项目功能需要去相应的转换。 分析具体如下: 2进制 只有0和1组成 如:...
  • 十进制:由 0~9 十个数字组成二进制:由 0和1 两个数字组成1、整数转换十进制二进制的原理:十进制的数除以2,直到商为0,最后反向取余数。比如下图中的例子,十进制的13转为二进制表示,则为1101。十进制转二进制...
  • 二进制、八进制、十六进制转换十进制二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。假设当前数字是N进制,那么:对于整数部分,从右往左看,第 i 位的位权等于...
  • 二进制、八进制、十进制、十六进制关系及转换

    万次阅读 多人点赞 2019-02-21 21:20:22
    二进制,八进制,十进制,十六进制之间的关系是什么?浮点数是什么回事? 本文内容参考自王达老师的《深入理解计算机网络》一书<中国水利水电出版社&amp...
  • 进制的概念: 因为不可能为每个数值都创造一个符号,所以需要用基本数字组合出复合的 数值,这样就有了进制的... 计算机编程中常用的进制有二进制、八进制、十进制和十六进制,十进制还 是最主要的表达形式。 ...
  • 要求说明:编程实现任意输入一个数并输入其进制,即可将该数转换十进制输出。//以IP地址形式输出//此题意在分位转换,每八位为一段#include <stdio.h>int bin_to_dec(int i) //将位置二进制字符转换...
  • 十进制二进制 十进制二进制的方法 toString()方法 toSrting()方法可把一个 Number 对象转换为一个字符串 NumberObject.toString(radix); radix为可选参数,表示数字的基数,把radix设为2,即可得到二进制的...
  • 十进制相互转换完整代码
  • 二进制转换十进制 C++实现二进制转换十进制 十进制与二进制之间的转换 十进制转换二进制 十进制对2整除,得到的余数的倒序即为转换而成的二进制 十进制转换二进制 C++实现十进制转换二进制 主函数main.cpp为...
  • C语言编程进制转换

    千次阅读 2016-01-25 11:53:42
    众所周知,人常用的是十进制,计算机常用的是二进制,为了观察方便,也常使用16进制表示二进制数。WINDOWS 中计算器,可以进行常用进制的转换,但是它缺乏其它进制的转换功能。为了学习进制,有时还要使用一些不常用...
  • C语言算法之将十进制转换二进制

    万次阅读 多人点赞 2018-06-20 14:35:29
    导语:在C语言中没有将...下面给大家讲述一下如何编程实现将十进制数转换成二进制数。 先将源代码展示给大家: #include <stdio.h> void main() { //进制转换函数的声明 int transfer(int x)...
  • SANFUC:进制学习(1):二进制、八进制和十六进制​zhuanlan.zhihu.com将二进制、八进制、十六进制转换十进制二进制、八进制和十六进制向十进制转换都非常容易,就是“按权相加”。所谓“权”,也即“位权”。...
  • 进制转换二进制、八进制、十六进制、十进制之间的转换 不同进制之间的转换在编程中经常会用到,尤其是C语言。 将二进制、八进制、十六进制转换十进制 二进制、八进制和十六进制向十进制转换都非常容易,就是“按...
  • 在我们接触编程知识时,总会接触有关进制转换的知识,最常见的就是10进制与二进制或十六进制之间的转换,很多时候我们总会遗忘,虽然现在也出现了很多可以直接使用的网络在线的进制转换工具,但考试中,我们就要靠...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,051
精华内容 420
关键字:

编程二进制转换十进制