精华内容
下载资源
问答
  • 网络协议详解

    2021-06-06 22:44:51
    网络协议详解1、计算机协议1.1 什么是协议1.2 协议的标准化2、TCP/IP 协议群 1、计算机协议 1.1 什么是协议 1.2 协议的标准化 2、TCP/IP 协议群

    网络协议详解

    1、计算机协议

    1.1 什么是协议

    在这里插入图片描述

    1.2 协议的标准化

    在这里插入图片描述
    在这里插入图片描述

    2、TCP/IP 协议群

    在这里插入图片描述
    在这里插入图片描述

    2.1 应用协议

    在这里插入图片描述

    2.1.1 TELNET协议

    在这里插入图片描述

    2.1.2 FTP协议

    在这里插入图片描述

    2.1.3 HTTP协议

    在这里插入图片描述

    2.1.4 SNMP协议

    在这里插入图片描述

    2.1.5 SMTP协议

    在这里插入图片描述

    2.1.6 DNS协议

    在这里插入图片描述

    2.2 传输协议

    在这里插入图片描述

    2.2.1 TCP协议

    在这里插入图片描述

    2.2.2 UDP协议

    在这里插入图片描述

    2.2.3 TCP与UDP比较

    在这里插入图片描述

    2.3 网际协议

    在这里插入图片描述

    2.3.1 IP协议

    在这里插入图片描述

    2.3.2 ICMP协议

    在这里插入图片描述

    2.3.3 ARP协议

    在这里插入图片描述

    2.4 路由控制协议

    在这里插入图片描述

    2.4.1 RIP协议

    在这里插入图片描述

    2.4.2 OSPF协议

    在这里插入图片描述

    2.4.3 BGP协议

    在这里插入图片描述

    3、TCP协议传输特点

    在这里插入图片描述

    3.1 建立连接的三次握手

    在这里插入图片描述
    在这里插入图片描述

    3.2 断开连接的四次挥手

    在这里插入图片描述
    在这里插入图片描述

    4、服务端口

    4.1 端口作用

    在这里插入图片描述
    在这里插入图片描述

    4.2 端口分配

    在这里插入图片描述

    4.3 常见的应用层协议与端口分配

    在这里插入图片描述

    5、数据包与处理流程

    5.1 数据包

    在这里插入图片描述

    在这里插入图片描述

    5.2 数据包处理流程

    在这里插入图片描述

    6、HTTP协议

    6.1 HTTP协议介绍

    6.1.1 超文本

    在这里插入图片描述

    6.1.2 Http协议

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    6.2 HTTP协议特点

    6.2.1 支持客户/服务器模式

    在这里插入图片描述

    6.2.2 简单快速

    在这里插入图片描述

    6.2.3 灵活

    在这里插入图片描述

    6.2.4 无连接

    在这里插入图片描述

    6.2.5 单向性

    在这里插入图片描述

    6.2.6 无状态

    在这里插入图片描述

    6.3 HTTP协议发展和版本

    6.3.1 http1.0

    在这里插入图片描述

    6.3.2 http1.1

    在这里插入图片描述

    6.3.3 http2.0

    6.3.3.1 长连接

    在这里插入图片描述

    6.3.3.2 多路复用

    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述

    6.3.3.3 首部压缩(Header Compression)

    在这里插入图片描述

    6.3.3.4 服务端推送(Server Push)

    在这里插入图片描述

    6.3.3.5 更安全

    在这里插入图片描述

    6.4 HTTP协议中URI、URL、URN

    6.4.1 URI

    在这里插入图片描述
    在这里插入图片描述

    6.4.2 URL

    在这里插入图片描述

    6.4.3 URN

    在这里插入图片描述

    6.5 HTTP协议的请求与响应

    6.5.1 HTTP协议中的请求信息

    6.5.1.1 打开一个网页需要浏览器发送很多次Request

    在这里插入图片描述

    6.5.1.2 请求状态分析

    在这里插入图片描述

    6.5.1.3 请求行

    在这里插入图片描述

    6.5.1.4 请求头

    在这里插入图片描述

    6.5.1.4.1 Host

    在这里插入图片描述

    6.5.1.4.2 Connection

    在这里插入图片描述

    6.5.1.4.3 Upgrade-Insecure-Requests

    在这里插入图片描述

    6.5.1.4.4 Cache-Control

    在这里插入图片描述

    6.5.1.4.5 User-Agent

    在这里插入图片描述

    6.5.1.4.6 Accept

    在这里插入图片描述

    6.5.1.4.7 Accept-Encoding

    在这里插入图片描述

    6.5.1.4.8 Accept-Language

    在这里插入图片描述

    6.5.1.4.9 Accept-Charset

    在这里插入图片描述

    6.5.1.4.10 Referer

    在这里插入图片描述

    6.5.1.4.11 Refresh

    在这里插入图片描述

    6.5.1.4.12 Cookie

    在这里插入图片描述

    6.5.1.5 请求体

    在这里插入图片描述

    6.5.1.6 请求方式

    6.5.1.6.1 GET

    在这里插入图片描述

    6.5.1.6.2 POST

    在这里插入图片描述

    6.5.1.6.3 HEAD

    在这里插入图片描述

    6.5.1.6.4 PUT

    在这里插入图片描述

    6.5.1.6.5 DELETE

    在这里插入图片描述

    6.5.1.6.6 TRACE

    在这里插入图片描述

    6.5.1.6.7 OPTIONS

    在这里插入图片描述

    6.5.1.6.8 CONNECT

    在这里插入图片描述

    6.5.1.7 GET 和 POST 的区别

    • GET 在浏览器回退时是无害的,而 POST 会再次提交请求。
    • GET 产生的 URL 地址可以被 Bookmark,而 POST 不可以。
    • GET 请求会被浏览器主动 cache,而 POST 不会,除非手动设置。
    • GET 请求只能进行 url 编码,而 POST 支持多种编码方式。
    • GET 请求参数会被完整保留在浏览器历史记录里,而 POST 中的参数不会被保留。
    • GET 请求在 URL 中传送的参数是有长度限制的,而 POST 则没有。对参数的数据类型GET只接受 ASCII 字符,而 POST 即可是字符也可是字节。
    • GET 比 POST 更不安全,因为参数直接暴露在 URL 上,所以不能用来传递敏感信息。
    • GET 参数通过 URL 传递,POST 放在 Request body 中。

    6.5.2 HTTP协议中的响应信息

    6.5.2.1 响应状态分析(response)

    在这里插入图片描述

    6.5.2.1.1 响应行

    在这里插入图片描述

    6.5.2.1.2 响应行中的状态码

    在这里插入图片描述

    6.5.2.1.2.1 http状态码分类

    在这里插入图片描述

    6.5.2.1.2.2 http状态码列表

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    6.5.2.1.2.3 常见状态码及含义

    在这里插入图片描述

    6.5.2.1.3 响应头

    在这里插入图片描述

    6.5.2.1.3.1 Date

    在这里插入图片描述

    6.5.2.1.3.2 Server

    在这里插入图片描述

    6.5.2.1.3.3 Vary

    在这里插入图片描述

    6.5.2.1.3.4 Content-Encoding

    在这里插入图片描述

    6.5.2.1.3.5 Content-Length

    在这里插入图片描述

    6.5.2.1.3.6 Content-Type

    在这里插入图片描述

    6.5.2.1.4 MIME类型

    在这里插入图片描述

    6.5.2.1.4.1 MIME类型的作用

    在这里插入图片描述

    6.5.2.1.4.2 MIME类型的使用

    在这里插入图片描述

    6.5.2.1.4.3 MIME类型对应列表

    在这里插入图片描述
    在这里插入图片描述

    6.5.2.1.5 响应体

    在这里插入图片描述

    展开全文
  • TCP/IP网络协议详解

    千次阅读 2021-03-30 18:54:59
    一、 计算机网络体系结构分层 一图看完本文 计算机网络体系结构分层 计算机网络体系结构分层 不难看出,TCP/IP 与 OSI 在分层模块上稍有区别。OSI 参考模型注重“通信协议必要的功能是什么”,而 TCP/IP...

    一、 计算机网络体系结构分层

    一图看完本文

    计算机网络体系结构分层

    计算机网络体系结构分层

    Frame:   物理层的数据帧概况
    Ethernet II: 数据链路层以太网帧头部信息
    Internet Protocol Version 4: 互联网层IP包头部信息
    Transmission ControlProtocol:  传输层T的数据段头部信息,此处是TCP
    Hypertext Transfer Protocol:  应用层的信息,

    不难看出,TCP/IP 与 OSI 在分层模块上稍有区别。OSI 参考模型注重“通信协议必要的功能是什么”,而 TCP/IP 则更强调“在计算机上实现协议应该开发哪种程序”。

    二、 TCP/IP 基础

    2.1 TCP/IP 的具体含义

    从字面意义上讲,有人可能会认为 TCP/IP 是指 TCP 和 IP 两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下,它只是利用 IP 进行通信时所必须用到的协议群的统称。具体来说,IP 或 ICMP、TCP 或 UDP、TELNET 或 FTP、以及 HTTP 等都属于 TCP/IP 协议。他们与 TCP 或 IP 的关系紧密,是互联网必不可少的组成部分。TCP/IP 一词泛指这些协议,因此,有时也称 TCP/IP 为网际协议群。互联网进行通信时,需要相应的网络协议,TCP/IP 原本就是为使用互联网而开发制定的协议族。因此,互联网的协议就是 TCP/IP,TCP/IP 就是互联网的协议。

    网际协议群

    2.2 数据包包、帧、数据包、段、消息以上五个术语都用来表述数据的单位,大致区分如下:

    • 包可以说是全能性术语;
    • 帧用于表示数据链路层中包的单位;
    • 数据包是 IP 和 UDP 等网络层以上的分层中包的单位;
    • 段则表示 TCP 数据流中的信息;
    • 消息是指应用协议中数据的单位。

    每个分层中,都会对所发送的数据附加一个首部,在这个首部中包含了该层必要的信息,如发送的目标地址以及协议相关信息。通常,为协议提供的信息为包首部,所要发送的内容为数据。在下一层的角度看,从上一层收到的包全部都被认为是本层的数据。

    数据包首部

    网络中传输的数据包由两部分组成:一部分是协议所要用到的首部,另一部分是上一层传过来的数据。首部的结构由协议的具体规范详细定义。在数据包的首部,明确标明了协议应该如何读取数据。反过来说,看到首部,也就能够了解该协议必要的信息以及所要处理的数据。包首部就像协议的脸。

    2.3 数据处理流程

    下图以用户 a 向用户 b 发送邮件为例子:

    数据处理流程

      • ① 应用程序处理
        首先应用程序会进行编码处理,这些编码相当于 OSI 的表示层功能;编码转化后,邮件不一定马上被发送出去,这种何时建立通信连接何时发送数据的管理功能,相当于 OSI 的会话层功能。
      • ② TCP 模块的处理
        TCP 根据应用的指示,负责建立连接、发送数据以及断开连接。TCP 提供将应用层发来的数据顺利发送至对端的可靠传输。为了实现这一功能,需要在应用层数据的前端附加一个 TCP 首部。
      • ③ IP 模块的处理
        IP 将 TCP 传过来的 TCP 首部和 TCP 数据合起来当做自己的数据,并在 TCP 首部的前端加上自己的 IP 首部。IP 包生成后,参考路由控制表决定接受此 IP 包的路由或主机。
      • ④ 网络接口(以太网驱动)的处理
        从 IP 传过来的 IP 包对于以太网来说就是数据。给这些数据附加上以太网首部并进行发送处理,生成的以太网数据包将通过物理层传输给接收端。
      • ⑤ 网络接口(以太网驱动)的处理
        主机收到以太网包后,首先从以太网包首部找到 MAC 地址判断是否为发送给自己的包,若不是则丢弃数据。如果是发送给自己的包,则从以太网包首部中的类型确定数据类型,再传给相应的模块,如 IP、ARP 等。这里的例子则是 IP 。
      • ⑥ IP 模块的处理
        IP 模块接收到数据后也做类似的处理。从包首部中判断此IP地址是否与自己的IP地址匹配,如果匹配则根据首部的协议类型将数据发送给对应的模块,如TCP、UDP。这里的例子则是TCP。另外,对于有路由器的情况,接收端地址往往不是自己的地址,此时,需要借助路由控制表,在调查应该送往的主机或路由器之后再进行转发数据。
      • ⑦ TCP 模块的处理
        在 TCP 模块中,首先会计算一下校验和,判断数据是否被破坏。然后检查是否在按照序号接收数据。最后检查端口号,确定具体的应用程序。数据被完整地接收以后,会传给由端口号识别的应用程序。
      • ⑧ 应用程序的处理
        接收端应用程序会直接接收发送端发送的数据。通过解析数据,展示相应的内容。

    三、传输层中的 TCP 和 UDP

    • TCP/IP 中有两个具有代表性的传输层协议,分别是TCP 和UDP。
    • TCP 是面向连接的、可靠的流协议。流就是指不间断的数据结构,当应用程序采用 TCP 发送消息时,虽然可以保证发送的顺序,但还是犹如没有任何间隔的数据流发送给接收端。TCP 为提供可靠性传输,实行“顺序控制”或“重发控制”机制。此外还具备“流控制(流量控制)”、“拥塞控制”、提高网络利用率等众多功能。
    • UDP 是不具有可靠性的数据报协议。细微的处理它会交给上层的应用去完成。在 UDP 的情况下,虽然可以确保发送消息的大小,却不能保证消息一定会到达。因此,应用有时会根据自己的需要进行重发处理。
    • TCP 和 UDP 的优缺点无法简单地、绝对地去做比较:TCP 用于在传输层有必要实现可靠传输的情况;而在一方面,UDP 主要用于那些对高速传输和实时性有较高要求的通信或广播通信。TCP 和 UDP 应该根据应用的目的按需使用。

    3.1 端口号

    数据链路和 IP 中的地址,分别指的是 MAC 地址和 IP 地址。前者用来识别同一链路中不同的计算机,后者用来识别 TCP/IP 网络中互连的主机和路由器。在传输层也有这种类似于地址的概念,那就是端口号。端口号用来识别同一台计算机中进行通信的不同应用程序。因此,它也被称为程序地址。

    3.1.1 根据端口号识别应用

    一台计算机上同时可以运行多个程序。传输层协议正是利用这些端口号识别本机中正在进行通信的应用程序,并准确地将数据传输。

    图片描述

    3.1.1.1 通过 IP 地址、端口号、协议号进行通信识别

    仅凭目标端口号识别某一个通信是远远不够的。

    根据端口号识别应用

    3.1.1.2 通过端口号、IP地址、协议号进行通信识别

    • ① 和② 的通信是在两台计算机上进行的。它们的目标端口号相同,都是80。这里可以根据源端口号加以区分。
    • ③ 和 ① 的目标端口号和源端口号完全相同,但它们各自的源 IP 地址不同。
    • 此外,当 IP 地址和端口号全都一样时,我们还可以通过协议号来区分(TCP 和 UDP)。

    3.1.2 端口号的确定

    • 标准既定的端口号:这种方法也叫静态方法。它是指每个应用程序都有其指定的端口号。但并不是说可以随意使用任何一个端口号。例如 HTTP、FTP、TELNET 等广为使用的应用协议中所使用的端口号就是固定的。这些端口号被称为知名端口号,分布在 0~1023 之间;除知名端口号之外,还有一些端口号被正式注册,它们分布在 1024~49151 之间,不过这些端口号可用于任何通信用途。
    • 时序分配法:服务器有必要确定监听端口号,但是接受服务的客户端没必要确定端口号。在这种方法下,客户端应用程序完全可以不用自己设置端口号,而全权交给操作系统进行分配。动态分配的端口号范围在 49152~65535 之间。

    3.1.3 端口号与协议

    • 端口号由其使用的传输层协议决定。因此,不同的传输层协议可以使用相同的端口号。
    • 此外,那些知名端口号与传输层协议并无关系。只要端口一致都将分配同一种应用程序进行处理。

    3.2 UDP

    • UDP 不提供复杂的控制机制,利用 IP 提供面向无连接的通信服务。
    • 并且它是将应用程序发来的数据在收到的那一刻,立即按照原样发送到网络上的一种机制。即使是出现网络拥堵的情况,UDP 也无法进行流量控制等避免网络拥塞行为。
    • 此外,传输途中出现丢包,UDP 也不负责重发。
    • 甚至当包的到达顺序出现乱序时也没有纠正的功能。
    • 如果需要以上的细节控制,不得不交由采用 UDP 的应用程序去处理。
    • UDP 常用于一下几个方面:1.包总量较少的通信(DNS、SNMP等);2.视频、音频等多媒体通信(即时通信);3.限定于 LAN 等特定网络中的应用通信;4.广播通信(广播、多播)。

    3.3 TCP

    • TCP 与 UDP 的区别相当大。它充分地实现了数据传输时各种控制功能,可以进行丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。而这些在 UDP 中都没有。
    • 此外,TCP 作为一种面向有连接的协议,只有在确认通信对端存在时才会发送数据,从而可以控制通信流量的浪费。
    • 根据 TCP 的这些机制,在 IP 这种无连接的网络上也能够实现高可靠性的通信( 主要通过检验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现)。

    3.3.1 TCP header

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
     | |          源端口            |       目的端口                     | |
     | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
     | |                            序号                                 | |
     | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
    TCP|                           确认号                                | 20字节的
    首部+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 固定首部
     | |  数据  |           |U|A|P|R|S|F|                               | |
     | |  偏移  |  保留      |R|C|S|S|Y|I|            窗口              | |
     | |       |           |G|K|H|T|N|N|                                | |
     | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---
     | |           检验和           |         紧急指针                    |
     | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | |               选项(长度可变)                    |    填充        |
    ---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       \                                                                /
        \                                                              /
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
         |     TCP首部          |            TCP数据部分                |---TCP 报文段
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
                 ⬇                          ⬇
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
         |     IP首部           |   IP数据部分                          |--- 发送在前
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
     

    ● 源、目标端口号字段:占16比特。TCP协议通过使用"端口"来标识源端和目标端的应用进程。端口号可以使用0到65535之间的任何数字。在收到服务请求时,操作系统动态地为客户端的应用程序分配端口号。在服务器端,每种服务在"众所周知的端口"(Well-Know Port)为用户提供服务。

    ● 序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。

    ● 确认号ack:占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。

    ● 确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效

    ● 同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。

    ● 终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接

             PS:ACK、SYN和FIN这些大写的单词表示标志位,其值要么是1,要么是0;ack、seq小写的单词表示序号。

    ●头部长度字段:占4比特。给出头部占32比特的数目。没有任何选项字段的TCP头部长度为20字节(5x32=160比特);最多可以有60字节的TCP头部。
    ●标志位字段(U、A、P、R、S、F):占6比特。各比特的含义如下:
        ◆URG:紧急指针(urgent pointer)有效。
        ◆ACK:确认序号有效。
        ◆PSH:接收方应该尽快将这个报文段交给应用层。
        ◆RST:重建连接。
        ◆SYN:发起一个连接。
        ◆FIN:释放一个连接。
    ●窗口大小字段:占16比特。此字段用来进行流量控制。单位为字节数,这个值是本机期望一次接收的字节数。
    ●TCP校验和字段:占16比特。对整个TCP报文段,即TCP头部和TCP数据进行校验和计算,并由目标端进行验证。
    ●紧急指针字段:占16比特。它是一个偏移量,和序号字段中的值相加表示紧急数据最后一个字节的序号。
    ●选项字段:占32比特。可能包括"窗口扩大因子"、"时间戳"等选项。

    3.3.2 三次握手(重点)

    • TCP 提供面向有连接的通信传输。面向有连接是指在数据通信开始之前先做好两端之间的准备工作。
    • 所谓三次握手是指建立一个 TCP 连接时需要客户端和服务器端总共发送三个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发。

    下面来看看三次握手的流程图:

    第一次握手:建立连接时,客户端发送syn包(syn=x)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。
    第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(syn=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;
    第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手

    3.3.3 四次挥手(重点)

    • 四次挥手即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发。
    • 由于TCP连接是全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭。

    下面来看看四次挥手的流程图:

    1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。
    2)服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。
    3)客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。
    4)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
    5)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。
    6)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

    3.3.4 常见面试题

    【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?
    答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

    【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?
    答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

    【问题3】为什么不能用两次握手进行连接?
    答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。
    现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

    【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?
    TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

    3.3.5 上面是一方主动关闭,另一方被动关闭的情况,实际中还会出现同时发起主动关闭的情况

    具体流程如下图:

    3.4 通过序列号与确认应答提高可靠性

    • 在 TCP 中,当发送端的数据到达接收主机时,接收端主机会返回一个已收到消息的通知。这个消息叫做确认应答(ACK)。当发送端将数据发出之后会等待对端的确认应答。如果有确认应答,说明数据已经成功到达对端。反之,则数据丢失的可能性很大。
    • 在一定时间内没有等待到确认应答,发送端就可以认为数据已经丢失,并进行重发。由此,即使产生了丢包,仍然能够保证数据能够到达对端,实现可靠传输。
    • 未收到确认应答并不意味着数据一定丢失。也有可能是数据对方已经收到,只是返回的确认应答在途中丢失。这种情况也会导致发送端误以为数据没有到达目的地而重发数据。
    • 此外,也有可能因为一些其他原因导致确认应答延迟到达,在源主机重发数据以后才到达的情况也屡见不鲜。此时,源主机只要按照机制重发数据即可。
    • 对于目标主机来说,反复收到相同的数据是不可取的。为了对上层应用提供可靠的传输,目标主机必须放弃重复的数据包。为此我们引入了序列号。
    • 序列号是按照顺序给发送数据的每一个字节(8位字节)都标上号码的编号。接收端查询接收数据 TCP 首部中的序列号和数据的长度,将自己下一步应该接收的序列号作为确认应答返送回去。通过序列号和确认应答号,TCP 能够识别是否已经接收数据,又能够判断是否需要接收,从而实现可靠传输。

    3.5 重发超时的确定

    • 重发超时是指在重发数据之前,等待确认应答到来的那个特定时间间隔。如果超过这个时间仍未收到确认应答,发送端将进行数据重发。最理想的是,找到一个最小时间,它能保证“确认应答一定能在这个时间内返回”。
    • TCP 要求不论处在何种网络环境下都要提供高性能通信,并且无论网络拥堵情况发生何种变化,都必须保持这一特性。为此,它在每次发包时都会计算往返时间及其偏差。将这个往返时间和偏差时间相加,重发超时的时间就是比这个总和要稍大一点的值。
    • 在 BSD 的 Unix 以及 Windows 系统中,超时都以0.5秒为单位进行控制,因此重发超时都是0.5秒的整数倍。不过,最初其重发超时的默认值一般设置为6秒左右。
    • 数据被重发之后若还是收不到确认应答,则进行再次发送。此时,等待确认应答的时间将会以2倍、4倍的指数函数延长。

    此外,数据也不会被无限、反复地重发。达到一定重发次数之后,如果仍没有任何确认应答返回,就会判断为网络或对端主机发生了异常,强制关闭连接。并且通知应用通信异常强行终止。

    3.6 以段为单位发送数据

    • 在建立 TCP 连接的同时,也可以确定发送数据包的单位,我们也可以称其为“最大消息长度”(MSS)。最理想的情况是,最大消息长度正好是 IP 中不会被分片处理的最大数据长度。
    • TCP 在传送大量数据时,是以 MSS 的大小将数据进行分割发送。进行重发时也是以 MSS 为单位。
    • MSS 在三次握手的时候,在两端主机之间被计算得出。两端的主机在发出建立连接的请求时,会在 TCP 首部中写入 MSS 选项,告诉对方自己的接口能够适应的 MSS 的大小。然后会在两者之间选择一个较小的值投入使用。

    3.7 利用窗口控制提高速度

    • TCP 以1个段为单位,每发送一个段进行一次确认应答的处理。这样的传输方式有一个缺点,就是包的往返时间越长通信性能就越低。
    • 为解决这个问题,TCP 引入了窗口这个概念。确认应答不再是以每个分段,而是以更大的单位进行确认,转发时间将会被大幅地缩短。也就是说,发送端主机,在发送了一个段以后不必要一直等待确认应答,而是继续发送。
    • 如下图所示:

    • 窗口大小就是指无需等待确认应答而可以继续发送数据的最大值。上图中窗口大小为4个段。这个机制实现了使用大量的缓冲区,通过对多个段同时进行确认应答的功能。

    3.8 滑动窗口控制

    • 上图中的窗口内的数据即便没有收到确认应答也可以被发送出去。不过,在整个窗口的确认应答没有到达之前,如果其中部分数据出现丢包,那么发送端仍然要负责重传。为此,发送端主机需要设置缓存保留这些待被重传的数据,直到收到他们的确认应答。
    • 在滑动窗口以外的部分包括未发送的数据以及已经确认对端已收到的数据。当数据发出后若如期收到确认应答就可以不用再进行重发,此时数据就可以从缓存区清除。
    • 收到确认应答的情况下,将窗口滑动到确认应答中的序列号的位置。这样可以顺序地将多个段同时发送提高通信性能。这种机制也别称为滑动窗口控制。

    3.9 窗口控制中的重发控制在使用窗口控制中, 出现丢包一般分为两种情况:

    • ① 确认应答未能返回的情况。在这种情况下,数据已经到达对端,是不需要再进行重发的,如下图:

    • ② 某个报文段丢失的情况。接收主机如果收到一个自己应该接收的序列号以外的数据时,会针对当前为止收到数据返回确认应答。如下图所示,当某一报文段丢失后,发送端会一直收到序号为1001的确认应答,因此,在窗口比较大,又出现报文段丢失的情况下,同一个序列号的确认应答将会被重复不断地返回。而发送端主机如果连续3次收到同一个确认应答,就会将其对应的数据进行重发。这种机制比之前提到的超时管理更加高效,因此也被称为高速重发控制。

    四、网络层中的 IP 协议

    • IP(IPv4、IPv6)相当于 OSI 参考模型中的第3层——网络层。网络层的主要作用是“实现终端节点之间的通信”。这种终端节点之间的通信也叫“点对点通信”。
    • 网络的下一层——数据链路层的主要作用是在互连同一种数据链路的节点之间进行包传递。而一旦跨越多种数据链路,就需要借助网络层。网络层可以跨越不同的数据链路,即使是在不同的数据链路上也能实现两端节点之间的数据包传输。
    • IP 大致分为三大作用模块,它们是 IP 寻址、路由(最终节点为止的转发)以及 IP 分包与组包。

    4.1 IP 地址

    4.1.1 IP 地址概述

    • 在计算机通信中,为了识别通信对端,必须要有一个类似于地址的识别码进行标识。在数据链路中的 MAC 地址正是用来标识同一个链路中不同计算机的一种识别码。
    • 作为网络层的 IP ,也有这种地址信息,一般叫做 IP 地址。IP 地址用于在“连接到网络中的所有主机中识别出进行通信的目标地址”。因此,在 TCP/IP 通信中所有主机或路由器必须设定自己的 IP 地址。
    • 不论一台主机与哪种数据链路连接,其 IP 地址的形式都保持不变。
    • IP 地址(IPv4 地址)由32位正整数来表示。IP 地址在计算机内部以二进制方式被处理。然而,由于我们并不习惯于采用二进制方式,我们将32位的 IP 地址以每8位为一组,分成4组,每组以 “.” 隔开,再将每组数转换成十进制数。
    • 如下:

    4.1.2 IP 地址由网络和主机两部分标识组成

    • 如下图,网络标识在数据链路的每个段配置不同的值。网络标识必须保证相互连接的每个段的地址不相重复。而相同段内相连的主机必须有相同的网络地址。IP 地址的“主机标识”则不允许在同一个网段内重复出现。由此,可以通过设置网络地址和主机地址,在相互连接的整个网络中保证每台主机的 IP 地址都不会相互重叠。即 IP 地址具有了唯一性。

    • 如下图,IP 包被转发到途中某个路由器时,正是利用目标 IP 地址的网络标识进行路由。因为即使不看主机标识,只要一见到网络标识就能判断出是否为该网段内的主机。

    4.1.3 IP 地址的分类

    • IP 地址分为四个级别,分别为A类、B类、C类、D类。它根据 IP 地址中从第 1 位到第 4 位的比特列对其网络标识和主机标识进行区分。

    A 类 IP 地址是首位以 “0” 开头的地址。从第 1 位到第 8 位是它的网络标识。用十进制表示的话,0.0.0.0~127.0.0.0 是 A 类的网络地址。A 类地址的后 24 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为16,777,214个。

    • B 类 IP 地址是前两位 “10” 的地址。从第 1 位到第 16 位是它的网络标识。用十进制表示的话,128.0.0.0~191.255.0.0 是 B 类的网络地址。B 类地址的后 16 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为65,534个。
    • C 类 IP 地址是前三位为 “110” 的地址。从第 1 位到第 24 位是它的网络标识。用十进制表示的话,192.0.0.0~223.255.255.0 是 C 类的网络地址。C 类地址的后 8 位相当于主机标识。因此,一个网段内可容纳的主机地址上限为254个。
    • D 类 IP 地址是前四位为 “1110” 的地址。从第 1 位到第 32 位是它的网络标识。用十进制表示的话,224.0.0.0~239.255.255.255 是 D 类的网络地址。D 类地址没有主机标识,常用于多播。
    • 在分配 IP 地址时关于主机标识有一点需要注意。即要用比特位表示主机地址时,不可以全部为 0 或全部为 1。因为全部为 0 只有在表示对应的网络地址或 IP 地址不可以获知的情况下才使用。而全部为 1 的主机通常作为广播地址。因此,在分配过程中,应该去掉这两种情况。这也是为什么 C 类地址每个网段最多只能有 254( 28 - 2 = 254)个主机地址的原因。

    4.1.4 广播地址

    • 广播地址用于在同一个链路中相互连接的主机之间发送数据包。将 IP 地址中的主机地址部分全部设置为 1,就成了广播地址。
    • 广播分为本地广播和直接广播两种。在本网络内的广播叫做本地广播;在不同网络之间的广播叫做直接广播。

    4.1.5 IP 多播

    • 多播用于将包发送给特定组内的所有主机。由于其直接使用 IP 地址,因此也不存在可靠传输。
    • 相比于广播,多播既可以穿透路由器,又可以实现只给那些必要的组发送数据包。请看下图:

    • 多播使用 D 类地址。因此,如果从首位开始到第 4 位是 “1110”,就可以认为是多播地址。而剩下的 28 位可以成为多播的组编号。

    此外, 对于多播,所有的主机(路由器以外的主机和终端主机)必须属于 224.0.0.1 的组,所有的路由器必须属于 224.0.0.2 的组。

    4.1.6 子网掩码

    • 现在一个 IP 地址的网络标识和主机标识已不再受限于该地址的类别,而是由一个叫做“子网掩码”的识别码通过子网网络地址细分出比 A 类、B 类、C 类更小粒度的网络。这种方式实际上就是将原来 A 类、B 类、C 类等分类中的主机地址部分用作子网地址,可以将原网络分为多个物理网络的一种机制。
    • 子网掩码用二进制方式表示的话,也是一个 32 位的数字。它对应 IP 地址网络标识部分的位全部为 “1”,对应 IP 地址主机标识的部分则全部为 “0”。由此,一个 IP 地址可以不再受限于自己的类别,而是可以用这样的子网掩码自由地定位自己的网络标识长度。当然,子网掩码必须是 IP 地址的首位开始连续的 “1”。
    • 对于子网掩码,目前有两种表示方式。第一种是,将 IP 地址与子网掩码的地址分别用两行来表示。以 172.20.100.52 的前 26 位是网络地址的情况为例
    • 如下:

    • 第二种表示方式是,在每个 IP 地址后面追加网络地址的位数用 “/ ” 隔开,如下:

    另外,在第二种方式下记述网络地址时可以省略后面的 “0” 。例如:172.20.0.0/26 跟 172.20/26 其实是一个意思。

    4.2. 路由

    • 发送数据包时所使用的地址是网络层的地址,即 IP 地址。然而仅仅有 IP 地址还不足以实现将数据包发送到对端目标地址,在数据发送过程中还需要类似于“指明路由器或主机”的信息,以便真正发往目标地址。保存这种信息的就是路由控制表。
    • 该路由控制表的形成方式有两种:一种是管理员手动设置,另一种是路由器与其他路由器相互交换信息时自动刷新。前者也叫做静态路由控制,而后者叫做动态路由控制。
    • IP 协议始终认为路由表是正确的。然后,IP 本身并没有定义制作路由控制表的协议。即 IP 没有制作路由控制表的机制。该表示由一个叫做“路由协议”的协议制作而成。

    4.2.1 IP 地址与路由控制

    • IP 地址的网络地址部分用于进行路由控制。
    • 路由控制表中记录着网络地址与下一步应该发送至路由器的地址。
    • 在发送 IP 包时,首先要确定 IP 包首部中的目标地址,再从路由控制表中找到与该地址具有相同网络地址的记录,根据该记录将 IP 包转发给相应的下一个路由器。如果路由控制表中存在多条相同网络地址的记录,就选择一个最为吻合的网络地址。

    4.3. IP 分包与组包

    • 每种数据链路的最大传输单元(MTU)都不尽相同,因为每个不同类型的数据链路的使用目的不同。使用目的不同,可承载的 MTU 也就不同。
    • 任何一台主机都有必要对 IP 分片进行相应的处理。分片往往在网络上遇到比较大的报文无法一下子发送出去时才会进行处理。
    • 经过分片之后的 IP 数据报在被重组的时候,只能由目标主机进行。路由器虽然做分片但不会进行重组。

    4.3.1 路径 MTU 发现

    • 分片机制也有它的不足。如路由器的处理负荷加重之类。因此,只要允许,是不希望由路由器进行 IP 数据包的分片处理的。
    • 为了应对分片机制的不足,“路径 MTU 发现” 技术应运而生。路径 MTU 指的是,从发送端主机到接收端主机之间不需要分片是最大 MTU 的大小。即路径中存在的所有数据链路中最小的 MTU 。
    • 进行路径 MTU 发现,就可以避免在中途的路由器上进行分片处理,也可以在 TCP 中发送更大的包。

    4.4. IPv6

    • IPv6(IP version 6)是为了根本解决 IPv4 地址耗尽的问题而被标准化的网际协议。IPv4 的地址长度为 4 个 8 位字节,即 32 比特。而 IPv6 的地址长度则是原来的 4 倍,即 128 比特,一般写成 8 个 16 位字节。

    4.4.1 IPv6 的特点

    • IP 得知的扩大与路由控制表的聚合。
    • 性能提升。包首部长度采用固定的值(40字节),不再采用首部检验码。简化首部结构,减轻路由器负担。路由器不再做分片处理。
    • 支持即插即用功能。即使没有DHCP服务器也可以实现自动分配 IP 地址。
    • 采用认证与加密功能。应对伪造 IP 地址的网络安全功能以及防止线路窃听的功能。
    • 多播、Mobile IP 成为扩展功能。

    4.4.2 IPv6 中 IP 地址的标记方法

    • 一般人们将 128 比特 IP 地址以每 16 比特为一组,每组用冒号(“:”)隔开进行标记。
    • 而且如果出现连续的 0 时还可以将这些 0 省略,并用两个冒号(“::”)隔开。但是,一个 IP 地址中只允许出现一次两个连续的冒号。

    4.4.3 IPv6 地址的结构

    • IPv6 类似 IPv4,也是通过 IP 地址的前几位标识 IP 地址的种类。
    • 在互联网通信中,使用一种全局的单播地址。它是互联网中唯一的一个地址,不需要正式分配 IP 地址。

    4.4.4 全局单播地址

    • 全局单播地址是指世界上唯一的一个地址。它是互联网通信以及各个域内部通信中最为常用的一个 IPv6 地址。
    • 格式如下图所示,现在 IPv6 的网络中所使用的格式为,n = 48,m = 16 以及 128 - n - m = 64。即前 64 比特为网络标识,后 64 比特为主机标识。

    4.4.5 链路本地单播地址

    • 链路本地单播地址是指在同一个数据链路内唯一的地址。它用于不经过路由器,在同一个链路中的通信。通常接口 ID 保存 64 比特版的 MAC 地址。

    4.4.6 唯一本地地址

    • 唯一本地地址是不进行互联网通信时所用的地址。
    • 唯一本地地址虽然不会与互联网连接,但是也会尽可能地随机生成一个唯一的全局 ID。
    • L 通常被置为 1
    • 全局 ID 的值随机决定
    • 子网 ID 是指该域子网地址
    • 接口 ID 即为接口的 ID

    4.4.7 IPv6 分段处理

    • IPv6 的分片处理只在作为起点的发送端主机上进行,路由器不参与分片。
    • IPv6 中最小 MTU 为 1280 字节,因此,在嵌入式系统中对于那些有一定系统资源限制的设备来说,不需要进行“路径 MTU 发现”,而是在发送 IP 包时直接以 1280 字节为单位分片送出。

    4.4.8 IP 首部(暂略)

    IPv6为了减轻路由器的负担,省略了首部校验和字段。因此路由器不再需要计算校验和,从而提高了包的转发效率。

    此外,分片处理所用的识别码成为可选项。为了让64位CPU的计算机处理起来更方便,IPv6的首部及可选项都由8字节构成。

    ●  版本:和IPv4 一样,由4比特构成。IPv6其版本号为6,因此在这个字段上的值为“6”。

    ●  通信量类:相当于IPv4的TOS(Type Of Service)字段,也由8比特构成。有TOS在IPv4中几乎没有什么建树,未能成为卓有成效的技术,本来计划在IPv6中删掉这个字段,不过出于今后研究的考虑还是保留了该字段。

    ●  流标号:由20比特构成,准备用于服务质量(Qos:Quality Of Service)控制。使用这个字段提供怎样的服务已经成为未来研究的课题。不适用Qos时每一位可以全部设置为0。   在进行服务质量控制的时,将流标号设置为一个随机数,然后利用一种可以设置流的协议RSVP(Resource Reservation Protocol )在路由器上进行Qos设置。当某个包在发送途中需要Qos时,需要附上RSVP预想的流标号。路由器接收到这样的IP包后现先将流标号作为查找关键字,迅速从服务质量控制信息中查找并做相应处理。此外,只有流标号、源地址以及目标地址三项完全一致时,才被认为是一个流。

    ●  有效荷载长度:有效荷载长度是指包的数据部分。IPv4的TL(Total Length)是指包含首部在内的所有长度。然而IPv6中的这个Playload Length不包括首部,只表示数据部分的长度。由于IPv6的可选项是指连接IPv6首部的数据,只有当有可选项时,此处包含可选项数据的所有长度就是Playload Length。

    ●  下一个首部:相当于IPv4中的协议字段。由8比特构成。通常表示IP的上一层协议是TCP或UDP。不过在有IPv6扩展首部的情况下,该字段表示后面第一个扩展首部的协议类。

    ●  跳数限制:由8比特构成。与IPv4中的TTL意思相同。为了强调“可通过路由器个数”这个概念,才将名字改为“Hop Limit”。数据每经过一次路由器就减1,减到0则丢弃数据。

    ●  源地址:由128比特构成,表示发送端IP地址。

    ●  目标地址:由128比特构成,表示接收端IP地址。

    ●  IPv6扩展首部:IPv6的首部长度对固定,无法将可选项将入其中,取而代之的是通过扩展首部对功能进行了有效扩展。 扩展首部通常介于IPv6首部与TCP/UDP首部中间。在IPv4中可选项长度固定为40字节,但是在IPv6中没有这样的限制。也就是说,IPv6的扩展首部可以是任意长度。扩展首部当中还可以包含扩展首部协议以及下一个扩展首部字段。

    5. IP 协议相关技术

          IP 旨在让最终目标主机收到数据包,但是在这一过程中仅仅有 IP 是无法实现通信的。必须还有能够解析主机名称和 MAC 地址的功能,以及数据包在发送过程中异常情况处理的功能。

    5.1 DNS

    • 我们平常在访问某个网站时不适用 IP 地址,而是用一串由罗马字和点号组成的字符串。而一般用户在使用 TCP/IP 进行通信时也不使用 IP 地址。能够这样做是因为有了 DNS (Domain Name System)功能的支持。DNS 可以将那串字符串自动转换为具体的 IP 地址。
    • 这种 DNS 不仅适用于 IPv4,还适用于 IPv6。

    5.2 ARP

    • 只要确定了 IP 地址,就可以向这个目标地址发送 IP 数据报。然而,在底层数据链路层,进行实际通信时却有必要了解每个 IP 地址所对应的 MAC 地址。
    • ARP 是一种解决地址问题的协议。以目标 IP 地址为线索,用来定位下一个应该接收数据分包的网络设备对应的 MAC 地址。不过 ARP 只适用于 IPv4,不能用于 IPv6。IPv6 中可以用 ICMPv6 替代 ARP 发送邻居探索消息。
    • RARP 是将 ARP 反过来,从 MAC 地址定位 IP 地址的一种协议。

    5.3 ICMP

    • ICMP 的主要功能包括,确认 IP 包是否成功送达目标地址,通知在发送过程当中 IP 包被废弃的具体原因,改善网络设置等。
    • IPv4 中 ICMP 仅作为一个辅助作用支持 IPv4。也就是说,在 IPv4 时期,即使没有 ICMP,仍然可以实现 IP 通信。然而,在 IPv6 中,ICMP 的作用被扩大,如果没有 ICMPv6,IPv6 就无法进行正常通信。

    5.4 DHCP

    • 如果逐一为每一台主机设置 IP 地址会是非常繁琐的事情。特别是在移动使用笔记本电脑、只能终端以及平板电脑等设备时,每移动到一个新的地方,都要重新设置 IP 地址。
    • 于是,为了实现自动设置 IP 地址、统一管理 IP 地址分配,就产生了 DHCP(Dynamic Host Configuration Protocol)协议。有了 DHCP,计算机只要连接到网络,就可以进行 TCP/IP 通信。也就是说,DHCP 让即插即用变得可能。
    • DHCP 不仅在 IPv4 中,在 IPv6 中也可以使用。

    5.5 NAT

    • NAT(Network Address Translator)是用于在本地网络中使用私有地址,在连接互联网时转而使用全局 IP 地址的技术。
    • 除转换 IP 地址外,还出现了可以转换 TCP、UDP 端口号的 NAPT(Network Address Ports Translator)技术,由此可以实现用一个全局 IP 地址与多个主机的通信。
    • NAT(NAPT)实际上是为正在面临地址枯竭的 IPv4 而开发的技术。不过,在 IPv6 中为了提高网络安全也在使用 NAT,在 IPv4 和 IPv6 之间的相互通信当中常常使用 NAT-PT。

    5.6 IP 隧道

      • 如上图的网络环境中,网络 A 与网络 B 之间无法直接进行通信,为了让它们之间正常通信,这时必须得采用 IP 隧道的功能。
      • IP 隧道可以将那些从网络 A 发过来的 IPv6 的包统合为一个数据,再为之追加一个 IPv4 的首部以后转发给网络 C。
      • 一般情况下,紧接着 IP 首部的是 TCP 或 UDP 的首部。然而,现在的应用当中“ IP 首部的后面还是 IP 首部”或者“ IP 首部的后面是 IPv6

    过手如登山,一步一重天

    文章内容转载于:

        也谈Tcp/Ip协议 - 紫色飞猪 - 博客园

    展开全文
  • 一、OSI七层模型OSI七层协议模型主要是:应用层(Application)、表示层(Presentation)、会话层(Session)、传输层(Transport)、网络层(Network)、数据链路层(Data Link)、物理层(Physical)。二、五层体系结构五层体系...

    4638b69309ce3d91b31155947c1f682c.png

    一、OSI七层模型

    OSI七层协议模型主要是:应用层(Application)、表示层(Presentation)、会话层(Session)、传输层(Transport)、网络层(Network)、数据链路层(Data Link)、物理层(Physical)。

    二、五层体系结构

    五层体系结构包括:应用层、运输层、网络层、数据链路层和物理层。

    五层协议只是OSI和TCP/IP的综合,实际应用还是TCP/IP的四层结构。为了方便可以把下两层称为网络接口层。

    三种模型结构:

    e915efecd3c3baefdc1fd6a749927f2f.png

    各层的作用

    物理层:

    这一层的数据叫做比特。物理接口规范,传输比特流,网卡是工作在物理层的。 主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换)。

    数据链路层:

    成帧,保证帧的无误传输,MAC地址,形成EHTHERNET帧定义了如何让格式化数据以进行传输,以及如何让控制对物理介质的访问。这一层通常还提供错误检测和纠正,以确保数据的可靠传输。

    网络层:

    路由选择,流量控制,IP地址,形成IP包在位于不同地理位置的网络中的两个主机系统之间提供连接和路径选择。Internet的发展使得从世界各站点访问信息的用户数大大增加,而网络层正是管理这种连接的层。

    传输层:

    端口地址,如HTTP对应80端口。TCP和UDP工作于该层,还有就是差错校验和流量控制。

    定义了一些传输数据的协议和端口号(WWW端口80等),如: TCP(transmission control protocol –传输控制协议,传输效率低,可靠性强,用于传输可靠性要求高,数据量大的数据) UDP(user datagram protocol–用户数据报协议,与TCP特性恰恰相反,用于传输可靠性要求不高,数据量小的数据,如QQ聊天数据就是通过这种方式传输的)。 主要是将从下层接收的数据进行分段和传输,到达目的地址后再进行重组。常常把这一层数据叫做段。端口地址,如HTTP对应80端口。TCP和UDP工作于该层,还有就是差错校验和流量控制。

    会话层(解除与建立与别的接口的联系):

    组织两个会话进程之间的通信,并管理数据的交换使用NETBIOS和WINSOCK协议。QQ等软件进行通讯因该是工作在会话层的。通过运输层(端口号:传输端口与接收端口)建立数据传输的通路。主要在你的系统之间发起会话或者接受会话请求(设备之间需要互相认识可以是IP也可以是MAC或者是主机名)

    表示层(数据格式化,代码转换,数据加密)

    使得不同操作系统之间通信成为可能。可确保一个系统的应用层所发送的信息可以被另一个系统的应用层读取。例如,PC程序与另一台计算机进行通信,其中一台计算机使用扩展二一十进制交换码(EBCDIC),而另一台则使用美国信息交换标准码(ASCII)来表示相同的字符。如有必要,表示层会通过使用一种通格式来实现多种数据格式之间的转换。

    应用层(文件传输,电子邮件,文件服务,虚拟终端)

    对应于各个应用软件

    TCP/IP协议

    TCP/IP协议是由七层模型简化成四层而来。(TPC/IP协议其实泛指了四层模型中的全部协议,区别开TCP协议,IP协议)

    七层有底向上分别是:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。

    简化后的四层分别是:主机到网络层(比特)、网络层(数据帧)、传输层(数据包)、应用层(数据段)。每一层对于上一层来讲是透明的,上层只需要使用下层提供的接口,并不关心下层是如何实现的。

    展开全文
  • 1. HTTP协议 概念: MAC地址:一个序列号标记了网卡的地址 IP地址:一个序列号标记了逻辑上的一台电脑 PORT端口:标记电脑上的软件 端口要注意点:TCP、UDP是2套协议,一次都可以用同一个数值的端口(2425) ...

    欢迎访问个人博客http://www.jkraise.top

    1. HTTP协议

    概念:
    MAC地址:一个序列号标记了网卡的地址

    IP地址:一个序列号标记了逻辑上的一台电脑

    PORT端口:标记电脑上的软件

    端口要注意点:TCP、UDP是2套协议,一次都可以用同一个数值的端口(2425)

    展开全文
  • UDP和TCP协议详解

    2021-03-19 09:44:09
    网络协议是每个程序员都要掌握的基础知识,干啥都离不开网络,就算在家里新买了个路由器不是吗,同事连不上网,你的女朋友手机没有网看剧了正看到高潮部分,到那时候你打开百度…那嫌弃的你的眼神仿佛在说,就这?...
  • 计算机网络之TCP/UDP协议详解

    千次阅读 多人点赞 2021-06-02 13:25:23
    2.2 UDP的协议段格式2.3 UDP的主要特点2.4 UDP的缓冲区3.TCP和UDP区别总结4.TCP保证可靠的机制4.1重传机制(这里只说了超时重传)4.2滑动窗口4.3流量控制4.3拥塞控制 1.TCP基础知识 1.1 什么是TCP? TCP 是⾯向...
  • OSI网络七层协议详解

    千次阅读 2020-12-25 13:19:52
    网络层4. 传输层5. 会话层6. 表示层7. 应用层8. OSI的“实现” :TCP/IP 七层OSI七层 1. 物理层 我们首先要解决两台物理机之间的通信需求,具体也就是机器A向机器B发送比特流,机器B能收到这些比特流,这便是物理层...
  • IP协议
  • UDP协议详解

    2021-03-02 00:15:01
    关注+星标公众号,不错过精彩内容转自 |知晓编程1、简介UDP(UserDatagramProtocol)是一个简单的面向消息的传输层协议,尽管UDP提供标头和有效负载的完整性验证(通过...
  • 地址管理2.1 早期划分方式2.2 五类地址详解2.3 子网掩码引入2.4 如何划分子网?2.5 公有IP地址和私有IP地址2.6 特殊的IP地址3. 1.IP协议基础知识 1.1IP协议报头格式(IPv4) 4位版本:标识IP协议的版本 4位首部...
  • 第三:正常环境下,当用户接入网络时,都会通过DHCP协议或手工配置的方式得到IP和网关信息(所以不需要代理ARP) 在没有默认网关的情况下,PC1会通过ARP去请求目的IP地址的MAC地址 路由器默认的ARP代理是开启的,...
  • UART串口协议详解

    2021-06-18 10:14:44
    通用异步收发器(Universal Asynchronous Receiver/Transmitter),通常称作UART,是一种串行、异步、全双工的通信协议,在嵌入式领域应用的非常广泛。   UART作为异步串行通信协议的一种,工作原理是将传输数据的...
  • 前言 这几年一直在it行业里摸爬滚打,一路走来,不少总结了一些python行业里的高频面试,看到大部分初入行的新鲜血液,还在为各样的面试题答案或收录有各种困难问题 于是乎,我自己开发了一款面试宝典,...HTTP协议
  • 网络协议 - UDP 协议详解 基于TCP和UDP的协议非常广泛,所以也有必要对UDP协议进行详解。@pdai¶ UDP概述UDP(User Datagram Protocol)即用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的...
  • RIP协议详解

    千次阅读 2021-01-02 17:24:55
    RIP协议详解 RIP(Routing Information Protocol,路由信息协议)是一种内部网关协议(IGP),是一种动态路由选择协议,用于自治系统(AS)内的路由信息的传递。RIP协议基于距离矢量算法(Bellham-Ford)...
  • STP协议详解

    千次阅读 多人点赞 2021-03-21 16:12:36
    STP协议详解 文章目录STP协议详解前言一、STP协议的运行原理二、STP协议中ROOT、RP、DP的选举规则三、端口状态disable、listening、learning、forwarding、blocking所代表的含义四、实验:生成树诊断1、STP 的工作...
  • ARP协议详解

    千次阅读 2021-02-05 18:31:16
    它是IPv4中网络层必不可少的协议,不过在IPv6中已不再适用,并被邻居发现协议(NDP)所替代。 2.ARP报文格式 先要清楚,一般说以太网地址就是指MAC地址。  字段1是ARP请求的目的以太网地址,全1时代表广播地址。...
  • UDP协议详解 UDP概述 User Datagram Protocol即用户数据协议,在网络中与TCP协议一样用于处理数据包,是一种无连接的协议,在OSI模型的第四层传输层,处于IP协议的上一层,UDP用来支持那些需要在计算机之间传输数据...
  • 1.疑问 1 一台电脑是怎么把消息发给另外一台电脑的呢? 2 两台电脑啥线路也没有相连,怎么就能把消息发送给他呢? 3 世界上的电脑那么多,咋就能找到那台特点的电脑...2.协议 首先来看计算机之间要相互通信,双方就必须
  • NTP是网络时间协议(Network Time Protocol),它是用来同步网络中各个计算机的时间的协议。 在计算机的世界里,时间非常地重要,例如对于火箭发射这种科研活动,对时间的统一性和准确性要求就非常地高,是按照A这台...
  • Linux NFS协议详解

    2021-11-23 14:35:48
    NFS,是Network File System网络文件系统的简写,是一种可以将远程的磁盘挂载到本地,当作本地磁盘使用的技术。通过NFS,用户和程序可以像访问本地文件一样访问远程系统上的文件。 NFS采用C/S架构,服务端开启TCP...
  • tcp/ip协议详解

    千次阅读 2021-06-03 15:50:50
    tcp/ip 四层模型,从上到下依次是应用层,传输层,网络层,网络接口层(数据链路层) http协议请求格式: 1. 请求行: 请求行包括请求方法、URL、协议版本,它们之间用空格分隔(所以我们输入的 URL ...
  • TCP协议详解

    千次阅读 多人点赞 2021-08-07 17:29:50
    后来呢,我们都慢慢长大,了解了社会的残酷,变得复杂而成熟,就像TCP协议一样。它之所以这么复杂,那是因为它秉承的是“性恶论”。它天然认为网络环境是恶劣的,丢包、乱序、重传,拥塞都是常有的事情,一言不合就...
  • NTP协议详解

    2021-03-09 10:25:52
    NTP(Network Time Protocol)网络时间协议基于UDP,用于网络时间同步的协议,使网络中的计算机时钟同步到UTC,再配合各个时区的偏移调整就能实现精准同步对时功能。提供NTP对时的服务器有很多,比如微软的NTP对时...
  • STUN协议详解

    2021-07-05 14:20:18
        基于RFC3489标准的stun协议,无法穿越TCP类型NAT,只是适用于在现有NAT类型下的UDP穿越,另一种特殊情况NAT也无法进行穿越,就是对称型NAT,在很多企业中就很多属于对称型NAT,后面会讲到。STUN的发现过程是...
  • TCP协议详解 协议简述 TCP在网络OSI的七层模型中的第四层传输层,传输的数据叫segment,IP在第三层网络层传输的数据叫packet,ARP在第二层数据链路层,传输的数据叫frame 程序的数据首先会打到TCP的segment中,然后...
  • IP,全称InternetProtocol,中文名叫因特网协议,它工作在OSI的网络层,它负责将数据传输到正确的目的地,同时也负责路由。无论传输层使用何种协议,都要依赖IP来发送和接受数据。 IP提供一种无连接的传输机制,这...
  • VRRP协议详解

    2021-02-24 14:49:03
    VRRP协议一、VRRP简介二、VRRP作用三、VRRP小知识点(一)VRRP路由器(二)VRRP组(三)虚拟路由器(四)虚拟IP地址、MAC地址(五)Backup路由器四、虚拟MAC五、华为网络代码 一、VRRP简介 利用VRRP,一组路由器...
  • IP(网际互连协议,Internet Protocol)是TCP/I P协议族中最为核心的协议。所有的 TCP、UDP、ICMP及IGMP数据都以IP数据报格式传输。网际协议IP又称为Kahn-Cerf协议,因为这个重要协议正是Robert Kahn和Vint Cerf二人...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 126,708
精华内容 50,683
关键字:

网络协议详解

友情链接: WLKINMAN.zip