精华内容
下载资源
问答
  • 一共有15个左右的规则,有的规则会触发报警,有的规则会触发降权,有的规则会触发监测对象,不知道当5-10亿数据单表的时候,MS SQL SERVER 2008 对于这样大的数据,是否确定可以快速响应查询和插入?先不考虑...

    我现在要做一套很复杂的反作弊系统,一共有15个左右的规则,有的规则会触发报警,有的规则会触发降权,有的规则会触发监测对象,不知道当5-10亿条数据单表的时候,MS SQL SERVER 2008 对于这样大的数据,是否确定可以快速响应查询和插入?先不考虑update,我现在还没有设计表结构。

     

    另外,对于SQL SERVER,除了分区表外,真的没有其他办法可以把数据分布到多台数据库服务器上吗?一定没有办法了吗?有经验的前辈们是如何处理的呢?

     

    补充一下:我对这张表的要求,是每10分钟对这张表执行几条GROUP BY而已,然后把结果存到相应的统计表,不会有客户对这张表直接做查询,他们查询到的是统计表里的结果而已。但是Insert 频率非常高,5亿行除24小时除60分钟除60秒等于每秒需要插入的数量。这样的话,如果我只对几个GROUP BY做相应的索引,查询应该不会很慢吧,因为我是10分钟才查询那么几次,然后,我在GROUP BY的时候,是否会把Insert或Update锁住

    转载于:https://www.cnblogs.com/soleds/archive/2010/07/06/1772516.html

    展开全文
  • 4、快速的ETL和建模 5、要检索所有更新的记录,无论这些更新是添加到最近日期分区的新记录还是对旧数据的更新,Hudi都允许用户使用最后一个检查点时间戳,此过程不用执行扫描整个源表的查询。   本课程包含的...
  • 万维网一出现就收到了全世界各国人的追捧,人们在它出现的十几年的一个时间段中,就在万维网这一平台上发布了几十亿条的网页信息,他的一个数据量是那么的庞大,粗略计算一下,万维网上的网页信息每天都会不断增长几...
  • 数据

    2010-03-27 09:06:47
    有个这样的需求: 1小时从交换机转来上亿条的...1)在1亿条用户记录里,如何快速查询统计出看了5个电影以上的用户? 2)用java怎么实现有每天有1亿条记录的DB存储?mysql上亿记录数据量的数据库如何设计? 感谢!
  • 最近因业务需求,需要一个能装十亿数据量以上的数据库,外加快速查询; 首先看到了elasticsearch; 需注意: 1、ES5*以上版本需要jdk1.8 2、5以上版本安装head需要安装node和grunt 安装logstash 前提:安装下载...

    最近因业务需求,需要一个能装十亿数据量以上的数据库,外加快速查询;

    首先看到了elasticsearch;

    需注意:

    1、ES5*以上版本需要jdk1.8

    2、5以上版本安装head需要安装nodegrunt


    安装logstash

    前提:安装下载ruby,准备oracle-jdbc包

    解压logstash压缩包,解压后,下载安装logstash的插件logstash-input-jdbc

    执行安装命令./logstash-plugin.bat install logstash-input-jdbc 

    静等一会儿,成功之后提示如下


    logstash/bin文件夹下建立一个文件夹,名字你可随便起,先命名为logstash_jdbc_test,创建两个文件jdbc.conf,ql_xz.sql(导入ql_xz)

    Jdbc.conf 文件如下:

    input {     stdin {     }     jdbc {       # 数据库       jdbc_connection_string =>  "jdbc:oracle:thin:@localhost:1521/orcl"       # 用户名密码       jdbc_user => "bdck"       jdbc_password => "salis"       # jar包的位置       jdbc_driver_library => "D:\Elasticsearch\ojdbc6.jar"       # mysql的Driver       jdbc_driver_class => "Java::oracle.jdbc.driver.OracleDriver"       jdbc_paging_enabled => "true"       jdbc_page_size => "50000"       statement_filepath => "D:\Elasticsearch\logstash-5.6.2\bin\logstash_jdbc_test\ql_xz.sql"       #statement => "SELECT t.yhm,t.xm,t.mm,t.ssjgdm,t.ssjgmc,t.id from bdck.users t"       schedule => "* * * * *"       #索引的类型       type => "ql_xz"     } }   filter {     json {         source => "message"         remove_field => ["message"]     } }   output { elasticsearch { hosts => "localhost:9200" # index名 index => "bdck" # 需要关联的数据库中有有一个id字段,对应索引的id号 document_id => "%{qlid}" }     stdout {         codec => json_lines     } }


    ql_xz表:

    SELECT * from bdck.bdcs_ql_xz t

    完成后,启动/bin下启动文件,./logstash.bat -f./logstash_jdbc_test/jdbc.conf 即可进行数据导入;

    速度并未完全知道,因为当天实验成功后,我就让电脑自动导入我下班了,第二天来已经导入好了;

    大概是250W条数据

    展开全文
  • Neo4j 4.0/4.1是最新的Neo4j 图数据库平台产品,提供多数据库、跨库查询、细粒度数据访问控制等丰富特性。相比3.5,4.0在配置方面也有不少改变。为了方便大家快速上手,这里提供一个配置样例。 1、系统环境 - ...

    Neo4j 4.0/4.1是最新的Neo4j 图数据库平台产品,提供多数据库、跨库查询、细粒度数据访问控制等丰富特性。相比3.5,4.0在配置方面也有不少改变。为了方便大家快速上手,这里提供一个配置样例。

    1、系统环境

    - Windows 10,Linux同样适用;

    - JDK / OpenJDK 11

    - CPU: 4 cores

    - RAM: 32GB,分配给Neo4j一共6GB。

    - 硬盘:强烈建议用SSD,如果没有就通过USB3 外接一个。

    - 适用的数据库大小:<1亿节点、5亿关系,约50GB在数据库目录下。

    2、样例配置neo4j.conf 

    #*****************************************************************
    # Neo4j configuration
    #
    # For more details and a complete list of settings, please see
    # https://neo4j.com/docs/operations-manual/current/reference/configuration-settings/
    #*****************************************************************
    
    # The name of the default database.
    #dbms.default_database=neo4j
    
    # Paths of directories in the installation.
    #dbms.directories.data=data
    #dbms.directories.plugins=plugins
    #dbms.directories.logs=logs
    #dbms.directories.lib=lib
    #dbms.directories.run=run
    #dbms.directories.metrics=metrics
    #dbms.directories.transaction.logs.root=data/transactions
    #dbms.directories.dumps.root=data/dumps
    
    # This setting constrains all `LOAD CSV` import files to be under the `import` directory. Remove or comment it out to
    # allow files to be loaded from anywhere in the filesystem; this introduces possible security problems. See the
    # `LOAD CSV` section of the manual for details.
    dbms.directories.import=import
    
    # Whether requests to Neo4j are authenticated.
    # To disable authentication, uncomment this line
    #dbms.security.auth_enabled=false
    
    # Enable this to be able to upgrade a store from an older version.
    dbms.allow_upgrade=true
    
    # Number of databases in Neo4j is limited.
    # To change this limit please uncomment and adapt following setting:
    # dbms.max_databases=100
    
    # Enable online backups to be taken from this database.
    #dbms.backup.enabled=true
    
    # By default the backup service will only listen on localhost.
    # To enable remote backups you will have to bind to an external
    # network interface (e.g. 0.0.0.0 for all interfaces).
    # The protocol running varies depending on deployment. In a Causal Clustering environment this is the
    # same protocol that runs on causal_clustering.transaction_listen_address.
    #dbms.backup.listen_address=0.0.0.0:6362
    
    #********************************************************************
    # Memory Settings
    #********************************************************************
    #
    # Memory settings are specified kilobytes with the 'k' suffix, megabytes with
    # 'm' and gigabytes with 'g'.
    # If Neo4j is running on a dedicated server, then it is generally recommended
    # to leave about 2-4 gigabytes for the operating system, give the JVM enough
    # heap to hold all your transaction state and query context, and then leave the
    # rest for the page cache.
    
    # Java Heap Size: by default the Java heap size is dynamically calculated based
    # on available system resources. Uncomment these lines to set specific initial
    # and maximum heap size.
    dbms.memory.heap.initial_size=512m
    dbms.memory.heap.max_size=2g
    
    # The amount of memory to use for mapping the store files.
    # The default page cache memory assumes the machine is dedicated to running
    # Neo4j, and is heuristically set to 50% of RAM minus the Java heap size.
    dbms.memory.pagecache.size=4g
    
    # Limit the amount of memory that all of the running transaction can consume.
    # By default there is no limit.
    dbms.memory.transaction.global_max_size=2g
    
    # Limit the amount of memory that a single transaction can consume.
    # By default there is no limit.
    dbms.memory.transaction.max_size=256m
    
    # Transaction state location. It is recommended to use ON_HEAP.
    dbms.tx_state.memory_allocation=ON_HEAP
    
    #*****************************************************************
    # Network connector configuration
    #*****************************************************************
    
    # With default configuration Neo4j only accepts local connections.
    # To accept non-local connections, uncomment this line:
    dbms.default_listen_address=0.0.0.0
    
    # You can also choose a specific network interface, and configure a non-default
    # port for each connector, by setting their individual listen_address.
    
    # The address at which this server can be reached by its clients. This may be the server's IP address or DNS name, or
    # it may be the address of a reverse proxy which sits in front of the server. This setting may be overridden for
    # individual connectors below.
    dbms.default_advertised_address=192.168.0.209
    
    # You can also choose a specific advertised hostname or IP address, and
    # configure an advertised port for each connector, by setting their
    # individual advertised_address.
    
    # By default, encryption is turned off.
    # To turn on encryption, an ssl policy for the connector needs to be configured
    # Read more in SSL policy section in this file for how to define a SSL policy.
    
    # Bolt connector
    dbms.connector.bolt.enabled=true
    #dbms.connector.bolt.tls_level=DISABLED
    #dbms.connector.bolt.listen_address=:7687
    
    
    # To add: bolt connection pool
    #dbms.connector.bolt.thread_pool_min_size=5
    #dbms.connector.bolt.thread_pool_max_size=400
    #dbms.connector.bolt.thread_pool_keep_alive=5m
    
    
    # HTTP Connector. There can be zero or one HTTP connectors.
    dbms.connector.http.enabled=true
    #dbms.connector.http.listen_address=:7474
    
    # HTTPS Connector. There can be zero or one HTTPS connectors.
    dbms.connector.https.enabled=false
    #dbms.connector.https.listen_address=:7473
    
    # Cluster Routing Connector. Enables the opening of an additional port to allow
    # for internal communication using the same security configuration as CLUSTER
    #dbms.routing.enabled=false
    
    # Customize the listen address used for the routing connector port.
    #dbms.routing.listen_address=0.0.0.0:7688
    
    # Number of Neo4j worker threads.
    #dbms.threads.worker_count=
    
    #*****************************************************************
    # SSL policy configuration
    #*****************************************************************
    
    # Each policy is configured under a separate namespace, e.g.
    #    dbms.ssl.policy.<scope>.*
    #    <scope> can be any of 'bolt', 'https', 'cluster' or 'backup'
    #
    # The scope is the name of the component where the policy will be used
    # Each component where the use of an ssl policy is desired needs to declare at least one setting of the policy.
    # Allowable values are 'bolt', 'https', 'cluster' or 'backup'.
    
    # E.g if bolt and https connectors should use the same policy, the following could be declared
    #   dbms.ssl.policy.bolt.base_directory=certificates/default
    #   dbms.ssl.policy.https.base_directory=certificates/default
    # However, it's strongly encouraged to not use the same key pair for multiple scopes.
    #
    # N.B: Note that a connector must be configured to support/require
    #      SSL/TLS for the policy to actually be utilized.
    #
    # see: dbms.connector.*.tls_level
    
    # SSL settings (dbms.ssl.policy.<scope>.*)
    #  .base_directory       Base directory for SSL policies paths. All relative paths within the
    #                        SSL configuration will be resolved from the base dir.
    #
    #  .private_key          A path to the key file relative to the '.base_directory'.
    #
    #  .private_key_password The password for the private key.
    #
    #  .public_certificate   A path to the public certificate file relative to the '.base_directory'.
    #
    #  .trusted_dir          A path to a directory containing trusted certificates.
    #
    #  .revoked_dir          Path to the directory with Certificate Revocation Lists (CRLs).
    #
    #  .verify_hostname      If true, the server will verify the hostname that the client uses to connect with. In order
    #                        for this to work, the server public certificate must have a valid CN and/or matching
    #                        Subject Alternative Names.
    #
    #  .client_auth          How the client should be authorized. Possible values are: 'none', 'optional', 'require'.
    #
    #  .tls_versions         A comma-separated list of allowed TLS versions. By default only TLSv1.2 is allowed.
    #
    #  .trust_all            Setting this to 'true' will ignore the trust truststore, trusting all clients and servers.
    #                        Use of this mode is discouraged. It would offer encryption but no security.
    #
    #  .ciphers              A comma-separated list of allowed ciphers. The default ciphers are the defaults of
    #                        the JVM platform.
    
    # Bolt SSL configuration
    #dbms.ssl.policy.bolt.enabled=true
    #dbms.ssl.policy.bolt.base_directory=certificates/bolt
    #dbms.ssl.policy.bolt.private_key=private.key
    #dbms.ssl.policy.bolt.public_certificate=public.crt
    #dbms.ssl.policy.bolt.client_auth=NONE
    
    # Https SSL configuration
    #dbms.ssl.policy.https.enabled=true
    #dbms.ssl.policy.https.base_directory=certificates/https
    #dbms.ssl.policy.https.private_key=private.key
    #dbms.ssl.policy.https.public_certificate=public.crt
    #dbms.ssl.policy.https.client_auth=NONE
    
    # Cluster SSL configuration
    #dbms.ssl.policy.cluster.enabled=true
    #dbms.ssl.policy.cluster.base_directory=certificates/cluster
    #dbms.ssl.policy.cluster.private_key=private.key
    #dbms.ssl.policy.cluster.public_certificate=public.crt
    
    # Backup SSL configuration
    #dbms.ssl.policy.backup.enabled=true
    #dbms.ssl.policy.backup.base_directory=certificates/backup
    #dbms.ssl.policy.backup.private_key=private.key
    #dbms.ssl.policy.backup.public_certificate=public.crt
    
    #*****************************************************************
    # Logging configuration
    #*****************************************************************
    
    # To enable HTTP logging, uncomment this line
    #dbms.logs.http.enabled=true
    
    # Number of HTTP logs to keep.
    #dbms.logs.http.rotation.keep_number=5
    
    # Size of each HTTP log that is kept.
    #dbms.logs.http.rotation.size=20m
    
    # To enable GC Logging, uncomment this line
    #dbms.logs.gc.enabled=true
    
    # GC Logging Options
    # see https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-BE93ABDC-999C-4CB5-A88B-1994AAAC74D5
    #dbms.logs.gc.options=-Xlog:gc*,safepoint,age*=trace
    
    # Number of GC logs to keep.
    #dbms.logs.gc.rotation.keep_number=5
    
    # Size of each GC log that is kept.
    #dbms.logs.gc.rotation.size=20m
    
    # Log level for the debug log. One of DEBUG, INFO, WARN and ERROR. Be aware that logging at DEBUG level can be very verbose.
    #dbms.logs.debug.level=INFO
    
    # Size threshold for rotation of the debug log. If set to zero then no rotation will occur. Accepts a binary suffix "k",
    # "m" or "g".
    #dbms.logs.debug.rotation.size=20m
    
    # Maximum number of history files for the internal log.
    #dbms.logs.debug.rotation.keep_number=7
    
    # Log executed queries. One of OFF, INFO and VERBOSE. INFO logs queries longer than a given threshold, VERBOSE logs start and end of all queries.
    #dbms.logs.query.enabled=VERBOSE
    
    # If the execution of query takes more time than this threshold, the query is logged. If set to zero then all queries
    # are logged. Only used if `dbms.logs.query.enabled` is set to INFO
    #dbms.logs.query.threshold=0
    
    # The file size in bytes at which the query log will auto-rotate. If set to zero then no rotation will occur. Accepts a
    # binary suffix "k", "m" or "g".
    #dbms.logs.query.rotation.size=20m
    
    # Maximum number of history files for the query log.
    #dbms.logs.query.rotation.keep_number=7
    
    # Include parameters for the executed queries being logged (this is enabled by default).
    #dbms.logs.query.parameter_logging_enabled=true
    
    # Uncomment this line to include detailed time information for the executed queries being logged:
    #dbms.logs.query.time_logging_enabled=true
    
    # Uncomment this line to include bytes allocated by the executed queries being logged:
    #dbms.logs.query.allocation_logging_enabled=true
    
    # Uncomment this line to include page hits and page faults information for the executed queries being logged:
    #dbms.logs.query.page_logging_enabled=true
    
    # The security log is always enabled when `dbms.security.auth_enabled=true`, and resides in `logs/security.log`.
    
    # Log level for the security log. One of DEBUG, INFO, WARN and ERROR.
    #dbms.logs.security.level=INFO
    
    # Threshold for rotation of the security log.
    #dbms.logs.security.rotation.size=20m
    
    # Minimum time interval after last rotation of the security log before it may be rotated again.
    #dbms.logs.security.rotation.delay=300s
    
    # Maximum number of history files for the security log.
    #dbms.logs.security.rotation.keep_number=7
    
    #*****************************************************************
    # Causal Clustering Configuration
    #*****************************************************************
    
    # Uncomment and specify these lines for running Neo4j in Causal Clustering mode.
    # See the Causal Clustering documentation at https://neo4j.com/docs/ for details.
    
    # Database mode
    # Allowed values:
    # CORE - Core member of the cluster, part of the consensus quorum.
    # READ_REPLICA - Read replica in the cluster, an eventually-consistent read-only instance of the database.
    # To operate this Neo4j instance in Causal Clustering mode as a core member, uncomment this line:
    #dbms.mode=CORE
    
    # Expected number of Core servers in the cluster at formation
    #causal_clustering.minimum_core_cluster_size_at_formation=3
    
    # Minimum expected number of Core servers in the cluster at runtime.
    #causal_clustering.minimum_core_cluster_size_at_runtime=3
    
    # A comma-separated list of the address and port for which to reach all other members of the cluster. It must be in the
    # host:port format. For each machine in the cluster, the address will usually be the public ip address of that machine.
    # The port will be the value used in the setting "causal_clustering.discovery_listen_address".
    #causal_clustering.initial_discovery_members=localhost:5000,localhost:5001,localhost:5002
    
    # Host and port to bind the cluster member discovery management communication.
    # This is the setting to add to the collection of address in causal_clustering.initial_core_cluster_members.
    # Use 0.0.0.0 to bind to any network interface on the machine. If you want to only use a specific interface
    # (such as a private ip address on AWS, for example) then use that ip address instead.
    # If you don't know what value to use here, use this machines ip address.
    #causal_clustering.discovery_listen_address=:5000
    
    # Network interface and port for the transaction shipping server to listen on.
    # Please note that it is also possible to run the backup client against this port so always limit access to it via the
    # firewall and configure an ssl policy. If you want to allow for messages to be read from
    # any network on this machine, us 0.0.0.0. If you want to constrain communication to a specific network address
    # (such as a private ip on AWS, for example) then use that ip address instead.
    # If you don't know what value to use here, use this machines ip address.
    #causal_clustering.transaction_listen_address=:6000
    
    # Network interface and port for the RAFT server to listen on. If you want to allow for messages to be read from
    # any network on this machine, us 0.0.0.0. If you want to constrain communication to a specific network address
    # (such as a private ip on AWS, for example) then use that ip address instead.
    # If you don't know what value to use here, use this machines ip address.
    #causal_clustering.raft_listen_address=:7000
    
    # List a set of names for groups to which this server should belong. This
    # is a comma-separated list and names should only use alphanumericals
    # and underscore. This can be used to identify groups of servers in the
    # configuration for load balancing and replication policies.
    #
    # The main intention for this is to group servers, but it is possible to specify
    # a unique identifier here as well which might be useful for troubleshooting
    # or other special purposes.
    #causal_clustering.server_groups=
    
    #*****************************************************************
    # Causal Clustering Load Balancing
    #*****************************************************************
    
    # N.B: Read the online documentation for a thorough explanation!
    
    # Selects the load balancing plugin that shall be enabled.
    #causal_clustering.load_balancing.plugin=server_policies
    
    ####### Examples for "server_policies" plugin #######
    
    # Will select all available servers as the default policy, which is the
    # policy used when the client does not specify a policy preference. The
    # default configuration for the default policy is all().
    #causal_clustering.load_balancing.config.server_policies.default=all()
    
    # Will select servers in groups 'group1' or 'group2' under the default policy.
    #causal_clustering.load_balancing.config.server_policies.default=groups(group1,group2)
    
    # Slightly more advanced example:
    # Will select servers in 'group1', 'group2' or 'group3', but only if there are at least 2.
    # This policy will be exposed under the name of 'mypolicy'.
    #causal_clustering.load_balancing.config.server_policies.mypolicy=groups(group1,group2,group3) -> min(2)
    
    # Below will create an even more advanced policy named 'regionA' consisting of several rules
    # yielding the following behaviour:
    #
    #            select servers in regionA, if at least 2 are available
    # otherwise: select servers in regionA and regionB, if at least 2 are available
    # otherwise: select all servers
    #
    # The intention is to create a policy for a particular region which prefers
    # a certain set of local servers, but which will fallback to other regions
    # or all available servers as required.
    #
    # N.B: The following configuration uses the line-continuation character \
    #      which allows you to construct an easily readable rule set spanning
    #      several lines.
    #
    #causal_clustering.load_balancing.config.server_policies.policyA=\
    #groups(regionA) -> min(2);\
    #groups(regionA,regionB) -> min(2);
    
    # Note that implicitly the last fallback is to always consider all() servers,
    # but this can be prevented by specifying a halt() as the last rule.
    #
    #causal_clustering.load_balancing.config.server_policies.regionA_only=\
    #groups(regionA);\
    #halt();
    
    #*****************************************************************
    # Causal Clustering Additional Configuration Options
    #*****************************************************************
    # The following settings are used less frequently.
    # If you don't know what these are, you don't need to change these from their default values.
    
    # Address and port that this machine advertises that it's RAFT server is listening at. Should be a
    # specific network address. If you are unsure about what value to use here, use this machine's ip address.
    #causal_clustering.raft_advertised_address=:7000
    
    # Address and port that this machine advertises that it's transaction shipping server is listening at. Should be a
    # specific network address. If you are unsure about what value to use here, use this machine's ip address.
    #causal_clustering.transaction_advertised_address=:6000
    
    # The time window within which the loss of the leader is detected and the first re-election attempt is held.
    # The window should be significantly larger than typical communication delays to make conflicts unlikely.
    #causal_clustering.leader_failure_detection_window=20s-23s
    
    # The rate at which leader elections happen. Note that due to election conflicts it might take several attempts to
    # find a leader. The window should be significantly larger than typical communication delays to make conflicts unlikely.
    #causal_clustering.election_failure_detection_window=3s-6s
    
    # The time limit allowed for a new member to attempt to update its data to match the rest of the cluster.
    #causal_clustering.join_catch_up_timeout=10m
    
    # Maximum amount of lag accepted for a new follower to join the Raft group.
    #causal_clustering.join_catch_up_max_lag=10s
    
    # The size of the batch for streaming entries to other machines while trying to catch up another machine.
    #causal_clustering.catchup_batch_size=64
    
    # When to pause sending entries to other machines and allow them to catch up.
    #causal_clustering.log_shipping_max_lag=256
    
    # Retry time for log shipping to followers after a stall.
    #causal_clustering.log_shipping_retry_timeout=5s
    
    # Raft log pruning frequncy.
    #causal_clustering.raft_log_pruning_frequency=10m
    
    # The size to allow the raft log to grow before rotating.
    #causal_clustering.raft_log_rotation_size=250M
    
    # The name of a server_group whose members should be prioritized as leaders for the given database.
    # This does not guarantee that members of this group will be leader at all times, but the cluster
    # will attempt to transfer leadership to such a member when possible.
    # N.B. the final portion of this config key is dynamic and refers to the name of the database being configured.
    # You may specify multiple `causal_cluster.leadership_priority_group.<database-name>=<server-group>` pairs:
    #causal_cluster.leadership_priority_group.foo=
    #causal_cluster.leadership_priority_group.neo4j=
    
    # Which strategy to use when transferring database leaderships around a cluster.
    # This can be one of `equal_balancing` or `no_balancing`.
    # `equal_balancing` automatically ensures that each Core server holds the leader role for an equal number of databases.
    # `no_balancing` prevents any automatic balancing of the leader role.
    # Note that if a `leadership_priority_group` is specified for a given database,
    # the value of this setting will be ignored for that database.
    #causal_clustering.leadership_balancing=equal_balancing
    
    ### The following setting is relevant for Read Replica servers only.
    # The interval of pulling updates from Core servers.
    #causal_clustering.pull_interval=1s
    
    #********************************************************************
    # Security Configuration
    #********************************************************************
    
    # The authentication and authorization providers that contains both users and roles.
    # This can be one of the built-in `native` or `ldap` auth providers,
    # or it can be an externally provided plugin, with a custom name prefixed by `plugin`,
    # i.e. `plugin-<AUTH_PROVIDER_NAME>`.
    #dbms.security.authentication_providers=native
    #dbms.security.authorization_providers=native
    
    # The time to live (TTL) for cached authentication and authorization info when using
    # external auth providers (LDAP or plugin). Setting the TTL to 0 will
    # disable auth caching.
    #dbms.security.auth_cache_ttl=10m
    
    # The maximum capacity for authentication and authorization caches (respectively).
    #dbms.security.auth_cache_max_capacity=10000
    
    # Set to log successful authentication events to the security log.
    # If this is set to `false` only failed authentication events will be logged, which
    # could be useful if you find that the successful events spam the logs too much,
    # and you do not require full auditing capability.
    #dbms.security.log_successful_authentication=true
    
    #================================================
    # LDAP Auth Provider Configuration
    #================================================
    
    # URL of LDAP server to use for authentication and authorization.
    # The format of the setting is `<protocol>://<hostname>:<port>`, where hostname is the only required field.
    # The supported values for protocol are `ldap` (default) and `ldaps`.
    # The default port for `ldap` is 389 and for `ldaps` 636.
    # For example: `ldaps://ldap.example.com:10389`.
    #
    # NOTE: You may want to consider using STARTTLS (`dbms.security.ldap.use_starttls`) instead of LDAPS
    # for secure connections, in which case the correct protocol is `ldap`.
    #dbms.security.ldap.host=localhost
    
    # Use secure communication with the LDAP server using opportunistic TLS.
    # First an initial insecure connection will be made with the LDAP server, and then a STARTTLS command
    # will be issued to negotiate an upgrade of the connection to TLS before initiating authentication.
    #dbms.security.ldap.use_starttls=false
    
    # The LDAP referral behavior when creating a connection. This is one of `follow`, `ignore` or `throw`.
    # `follow` automatically follows any referrals
    # `ignore` ignores any referrals
    # `throw` throws an exception, which will lead to authentication failure
    #dbms.security.ldap.referral=follow
    
    # The timeout for establishing an LDAP connection. If a connection with the LDAP server cannot be
    # established within the given time the attempt is aborted.
    # A value of 0 means to use the network protocol's (i.e., TCP's) timeout value.
    #dbms.security.ldap.connection_timeout=30s
    
    # The timeout for an LDAP read request (i.e. search). If the LDAP server does not respond within
    # the given time the request will be aborted. A value of 0 means wait for a response indefinitely.
    #dbms.security.ldap.read_timeout=30s
    
    #----------------------------------
    # LDAP Authentication Configuration
    #----------------------------------
    
    # LDAP authentication mechanism. This is one of `simple` or a SASL mechanism supported by JNDI,
    # for example `DIGEST-MD5`. `simple` is basic username
    # and password authentication and SASL is used for more advanced mechanisms. See RFC 2251 LDAPv3
    # documentation for more details.
    #dbms.security.ldap.authentication.mechanism=simple
    
    # LDAP user DN template. An LDAP object is referenced by its distinguished name (DN), and a user DN is
    # an LDAP fully-qualified unique user identifier. This setting is used to generate an LDAP DN that
    # conforms with the LDAP directory's schema from the user principal that is submitted with the
    # authentication token when logging in.
    # The special token {0} is a placeholder where the user principal will be substituted into the DN string.
    #dbms.security.ldap.authentication.user_dn_template=uid={0},ou=users,dc=example,dc=com
    
    # Determines if the result of authentication via the LDAP server should be cached or not.
    # Caching is used to limit the number of LDAP requests that have to be made over the network
    # for users that have already been authenticated successfully. A user can be authenticated against
    # an existing cache entry (instead of via an LDAP server) as long as it is alive
    # (see `dbms.security.auth_cache_ttl`).
    # An important consequence of setting this to `true` is that
    # Neo4j then needs to cache a hashed version of the credentials in order to perform credentials
    # matching. This hashing is done using a cryptographic hash function together with a random salt.
    # Preferably a conscious decision should be made if this method is considered acceptable by
    # the security standards of the organization in which this Neo4j instance is deployed.
    #dbms.security.ldap.authentication.cache_enabled=true
    
    #----------------------------------
    # LDAP Authorization Configuration
    #----------------------------------
    # Authorization is performed by searching the directory for the groups that
    # the user is a member of, and then map those groups to Neo4j roles.
    
    # Perform LDAP search for authorization info using a system account instead of the user's own account.
    #
    # If this is set to `false` (default), the search for group membership will be performed
    # directly after authentication using the LDAP context bound with the user's own account.
    # The mapped roles will be cached for the duration of `dbms.security.auth_cache_ttl`,
    # and then expire, requiring re-authentication. To avoid frequently having to re-authenticate
    # sessions you may want to set a relatively long auth cache expiration time together with this option.
    # NOTE: This option will only work if the users are permitted to search for their
    # own group membership attributes in the directory.
    #
    # If this is set to `true`, the search will be performed using a special system account user
    # with read access to all the users in the directory.
    # You need to specify the username and password using the settings
    # `dbms.security.ldap.authorization.system_username` and
    # `dbms.security.ldap.authorization.system_password` with this option.
    # Note that this account only needs read access to the relevant parts of the LDAP directory
    # and does not need to have access rights to Neo4j, or any other systems.
    #dbms.security.ldap.authorization.use_system_account=false
    
    # An LDAP system account username to use for authorization searches when
    # `dbms.security.ldap.authorization.use_system_account` is `true`.
    # Note that the `dbms.security.ldap.authentication.user_dn_template` will not be applied to this username,
    # so you may have to specify a full DN.
    #dbms.security.ldap.authorization.system_username=
    
    # An LDAP system account password to use for authorization searches when
    # `dbms.security.ldap.authorization.use_system_account` is `true`.
    #dbms.security.ldap.authorization.system_password=
    
    # The name of the base object or named context to search for user objects when LDAP authorization is enabled.
    # A common case is that this matches the last part of `dbms.security.ldap.authentication.user_dn_template`.
    #dbms.security.ldap.authorization.user_search_base=ou=users,dc=example,dc=com
    
    # The LDAP search filter to search for a user principal when LDAP authorization is
    # enabled. The filter should contain the placeholder token {0} which will be substituted for the
    # user principal.
    #dbms.security.ldap.authorization.user_search_filter=(&(objectClass=*)(uid={0}))
    
    # A list of attribute names on a user object that contains groups to be used for mapping to roles
    # when LDAP authorization is enabled.
    #dbms.security.ldap.authorization.group_membership_attributes=memberOf
    
    # An authorization mapping from LDAP group names to Neo4j role names.
    # The map should be formatted as a semicolon separated list of key-value pairs, where the
    # key is the LDAP group name and the value is a comma separated list of corresponding role names.
    # For example: group1=role1;group2=role2;group3=role3,role4,role5
    #
    # You could also use whitespaces and quotes around group names to make this mapping more readable,
    # for example: dbms.security.ldap.authorization.group_to_role_mapping=\
    #          "cn=Neo4j Read Only,cn=users,dc=example,dc=com"      = reader;    \
    #          "cn=Neo4j Read-Write,cn=users,dc=example,dc=com"     = publisher; \
    #          "cn=Neo4j Schema Manager,cn=users,dc=example,dc=com" = architect; \
    #          "cn=Neo4j Administrator,cn=users,dc=example,dc=com"  = admin
    #dbms.security.ldap.authorization.group_to_role_mapping=
    
    
    #*****************************************************************
    # Miscellaneous configuration
    #*****************************************************************
    
    # Enable this to specify a parser other than the default one.
    #cypher.default_language_version=3.5
    
    # Determines if Cypher will allow using file URLs when loading data using
    # `LOAD CSV`. Setting this value to `false` will cause Neo4j to fail `LOAD CSV`
    # clauses that load data from the file system.
    #dbms.security.allow_csv_import_from_file_urls=true
    
    # Retention policy for transaction logs needed to perform recovery and backups.
    #dbms.tx_log.rotation.retention_policy=7 days
    
    # Limit the number of IOs the background checkpoint process will consume per second.
    # This setting is advisory, is ignored in Neo4j Community Edition, and is followed to
    # best effort in Enterprise Edition.
    # An IO is in this case a 8 KiB (mostly sequential) write. Limiting the write IO in
    # this way will leave more bandwidth in the IO subsystem to service random-read IOs,
    # which is important for the response time of queries when the database cannot fit
    # entirely in memory. The only drawback of this setting is that longer checkpoint times
    # may lead to slightly longer recovery times in case of a database or system crash.
    # A lower number means lower IO pressure, and consequently longer checkpoint times.
    # The configuration can also be commented out to remove the limitation entirely, and
    # let the checkpointer flush data as fast as the hardware will go.
    # Set this to -1 to disable the IOPS limit.
    # dbms.checkpoint.iops.limit=300
    
    # Only allow read operations from this Neo4j instance. This mode still requires
    # write access to the directory for lock purposes.
    #dbms.read_only=false
    
    # Comma separated list of JAX-RS packages containing JAX-RS resources, one
    # package name for each mountpoint. The listed package names will be loaded
    # under the mountpoints specified. Uncomment this line to mount the
    # org.neo4j.examples.server.unmanaged.HelloWorldResource.java from
    # neo4j-server-examples under /examples/unmanaged, resulting in a final URL of
    # http://localhost:7474/examples/unmanaged/helloworld/{nodeId}
    #dbms.unmanaged_extension_classes=org.neo4j.examples.server.unmanaged=/examples/unmanaged
    
    # A comma separated list of procedures and user defined functions that are allowed
    # full access to the database through unsupported/insecure internal APIs.
    dbms.security.procedures.unrestricted=apoc.*,gds.*
    
    # A comma separated list of procedures to be loaded by default.
    # Leaving this unconfigured will load all procedures found.
    dbms.security.procedures.whitelist=apoc.*,gds.*
    
    # For how long should drivers cache the discovery data from
    # the dbms.routing.getRoutingTable() procedure. Defaults to 300s.
    #dbms.routing_ttl=300s
    
    #********************************************************************
    # JVM Parameters
    #********************************************************************
    
    # G1GC generally strikes a good balance between throughput and tail
    # latency, without too much tuning.
    dbms.jvm.additional=-XX:+UseG1GC
    
    # To add: other GC options
    # ---- Shenandoah: compact live objects, clean garbage, and release RAM back to the OS almost immediately after detecting free memory. 
    #dbms.jvm.additional=-XX:+UseShenandoahGC 
    #dbms.jvm.additional=-XX:ShenandoahUncommitDelay=1000
    #dbms.jvm.additional=-XX:ShenandoahGuaranteedGCInterval=10000
    
    
    # Have common exceptions keep producing stack traces, so they can be
    # debugged regardless of how often logs are rotated.
    dbms.jvm.additional=-XX:-OmitStackTraceInFastThrow
    
    # Make sure that `initmemory` is not only allocated, but committed to
    # the process, before starting the database. This reduces memory
    # fragmentation, increasing the effectiveness of transparent huge
    # pages. It also reduces the possibility of seeing performance drop
    # due to heap-growing GC events, where a decrease in available page
    # cache leads to an increase in mean IO response time.
    # Try reducing the heap memory, if this flag degrades performance.
    dbms.jvm.additional=-XX:+AlwaysPreTouch
    
    # Trust that non-static final fields are really final.
    # This allows more optimizations and improves overall performance.
    # NOTE: Disable this if you use embedded mode, or have extensions or dependencies that may use reflection or
    # serialization to change the value of final fields!
    dbms.jvm.additional=-XX:+UnlockExperimentalVMOptions
    dbms.jvm.additional=-XX:+TrustFinalNonStaticFields
    
    # Disable explicit garbage collection, which is occasionally invoked by the JDK itself.
    dbms.jvm.additional=-XX:+DisableExplicitGC
    
    #Increase maximum number of nested calls that are can be inlined from 9 (default) to 15
    dbms.jvm.additional=-XX:MaxInlineLevel=15
    
    # Restrict size of cached JDK buffers to 256 KB
    dbms.jvm.additional=-Djdk.nio.maxCachedBufferSize=262144
    
    # More efficient buffer allocation in Netty by allowing direct no cleaner buffers.
    dbms.jvm.additional=-Dio.netty.tryReflectionSetAccessible=true
    
    # Exits JVM on the first occurrence of an out-of-memory error. Its preferable to restart VM in case of out of memory errors.
    # dbms.jvm.additional=-XX:+ExitOnOutOfMemoryError
    
    # Remote JMX monitoring, uncomment and adjust the following lines as needed. Absolute paths to jmx.access and
    # jmx.password files are required.
    # Also make sure to update the jmx.access and jmx.password files with appropriate permission roles and passwords,
    # the shipped configuration contains only a read only role called 'monitor' with password 'Neo4j'.
    # For more details, see: http://download.oracle.com/javase/8/docs/technotes/guides/management/agent.html
    # On Unix based systems the jmx.password file needs to be owned by the user that will run the server,
    # and have permissions set to 0600.
    # For details on setting these file permissions on Windows see:
    #     http://docs.oracle.com/javase/8/docs/technotes/guides/management/security-windows.html
    #dbms.jvm.additional=-Dcom.sun.management.jmxremote.port=3637
    #dbms.jvm.additional=-Dcom.sun.management.jmxremote.authenticate=true
    #dbms.jvm.additional=-Dcom.sun.management.jmxremote.ssl=false
    #dbms.jvm.additional=-Dcom.sun.management.jmxremote.password.file=/absolute/path/to/conf/jmx.password
    #dbms.jvm.additional=-Dcom.sun.management.jmxremote.access.file=/absolute/path/to/conf/jmx.access
    
    # Some systems cannot discover host name automatically, and need this line configured:
    #dbms.jvm.additional=-Djava.rmi.server.hostname=$THE_NEO4J_SERVER_HOSTNAME
    
    # Expand Diffie Hellman (DH) key size from default 1024 to 2048 for DH-RSA cipher suites used in server TLS handshakes.
    # This is to protect the server from any potential passive eavesdropping.
    dbms.jvm.additional=-Djdk.tls.ephemeralDHKeySize=2048
    
    # This mitigates a DDoS vector.
    dbms.jvm.additional=-Djdk.tls.rejectClientInitiatedRenegotiation=true
    
    # Enable remote debugging
    #dbms.jvm.additional=-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:5005
    
    # This filter prevents deserialization of arbitrary objects via java object serialization, addressing potential vulnerabilities.
    # By default this filter whitelists all neo4j classes, as well as classes from the hazelcast library and the java standard library.
    # These defaults should only be modified by expert users!
    # For more details (including filter syntax) see: https://openjdk.java.net/jeps/290
    #dbms.jvm.additional=-Djdk.serialFilter=java.**;org.neo4j.**;com.neo4j.**;com.hazelcast.**;net.sf.ehcache.Element;com.sun.proxy.*;org.openjdk.jmh.**;!*
    
    # Increase the default flight recorder stack sampling depth from 64 to 256, to avoid truncating frames when profiling.
    dbms.jvm.additional=-XX:FlightRecorderOptions=stackdepth=256
    
    # Allow profilers to sample between safepoints. Without this, sampling profilers may produce less accurate results.
    dbms.jvm.additional=-XX:+UnlockDiagnosticVMOptions
    dbms.jvm.additional=-XX:+DebugNonSafepoints
    
    #********************************************************************
    # Wrapper Windows NT/2000/XP Service Properties
    #********************************************************************
    # WARNING - Do not modify any of these properties when an application
    #  using this configuration file has been installed as a service.
    #  Please uninstall the service before modifying this section.  The
    #  service can then be reinstalled.
    
    # Name of the service
    dbms.windows_service_name=neo4j
    
    #********************************************************************
    # Other Neo4j system properties
    #********************************************************************
    

    说明:

    1. 需要修改的行#94,请改成你的机器的IP,或者localhost。例如:dbms.default_advertised_address=192.168.0.209  
    2. 已配置的内容 (--->>> 后面是配置文件中的对应配置项):
      - JAVA堆内存:最大2g,最小512m --->>> dbms.memory.heap.max_size=2g
      - JAVA页缓存:4g --->>> dbms.memory.pagecache.size=4g
      - 单个事务占用最大内存256m;--->>> dbms.memory.transaction.max_size=256m 
      - 允许来自外部主机的请求;--->>> dbms.default_listen_address=0.0.0.0
      - 缺省端口:http - 7474, bolt - 7687
         --->>>  #dbms.connector.bolt.listen_address=:7687
         --->>> #dbms.connector.http.listen_address=:7474
      - 缺省GC:g1gc --->>> dbms.jvm.additional=-XX:+UseG1GC 
      - 允许执行apoc和gds扩展库;
        --->>> dbms.security.procedures.unrestricted=apoc.*,gds.*  
        --->>> dbms.security.procedures.whitelist=apoc.*,gds.*
      - 单服务器模式 --->>> #dbms.mode=CORE
    展开全文
  • 在这个数据爆发的时代,像大型电商的数据量达到百亿级别,我们往往无法对海量的明细数据做进一步层次的预聚合,大量的业务数据都是好几亿数据关联,并且我们需要聚合结果能在秒级返回。 包括我们的画像数据,也是有...
  • 该项目的目标:在单台服务器上达到300~1000万个传感器数据按照秒级变化的数据的历史存储,分布式版本可以达到上亿以及十亿级别。 目前测试的结果是,在如下配置的商务台式电脑上可以达到100万个传感器数据按照秒级...
  • 可能快速的来访问数据库,所以在这些方面albianj做了很大的限制,这也导致了不是太符 合传统企业的业务。albianj2从开始设计的时候其实主要考虑的都是互联网的业务,albianj 几乎适合做互联网所有的业务,不管你是想...
  • 16 构建需求响应式亿级商品详情页 324 16.1 商品详情页是什么 324 16.2 商品详情页前端结构 325 16.3 我们的性能数据 327 16.4 单品页流量特点 327 16.5 单品页技术架构发展 327 16.5.1 架构1.0 328 16.5.2 架构2.0 ...
  • 因研发工作的需要,经常要查询一些数据库,如:CNKI中文期刊数据库、中国优秀博硕士学位论文全文数据库、维普数据库、万方数 据库等等,还要经常查询和下载美国专利、英国专利、欧洲专利、中国专利、日本专利、...
  • 16 构建需求响应式亿级商品详情页 / 324 16.1 商品详情页是什么 / 324 16.2 商品详情页前端结构 / 325 16.3 我们的性能数据 / 327 16.4 单品页流量特点 / 327 16.5 单品页技术架构发展 / 327 16.5.1 架构1.0 / 328 ...
  • btrdb-explained-源码

    2021-05-02 10:36:53
    伯克利树数据库(BTrDB)的发音为“ Better DB ”。 商业数据库 用于高精度,高采样率遥测的下一代时间序列数据库。 问题:现有的时间序列数据库不能很好地用于新一代超快速传感器遥测。...每秒1.19亿查询
  • Windows7安装和使用Inforbright

    千次阅读 2016-10-19 09:40:16
    Infobright是一款基于知识网格的列式数据库,对大批量数据(百万、千万、亿级)的查询性能非常高,据说比MyISAM、InnoDB等普通MySQL引擎快5~60倍,可存储TB级体积的数据,存储数据高压缩比可达到40:1。基于列式存储...

    Inforbright简介

    Infobright是一款基于知识网格的列式数据库,对大批量数据(百万、千万、亿级)的查询性能非常高,据说比MyISAM、InnoDB等普通MySQL引擎快5~60倍,可存储TB级体积的数据,存储数据高压缩比可达到40:1。基于列式存储,无需索引、无需分区。快速响应复制的聚合查询,非常适合分析性的SQL,如SUM、AVG、COUNT、GROUP BY 等。

    Infobright的使用场景

    1、大数据量的分析应用。如:网页/在线分析、移动端数据分析、营销分析、广告定位、客户行为分析等。
    2、日志/事件管理系统。电信详单分析和报告、系统/网络 安全认证记录。
    3、数据集市。企事业单位特定数据仓库、为中小企业提供数据仓库。
    4、嵌入式分析。为独立软件供应商/ SaaS供应商提供嵌入式分析应用

    Infobright的限制

    1、不支持数据更新:社区版Infobright只能使用“LOAD DATA INFILE”的方式导入数据,不支持INSERT、UPDATE、DELETE。
    2、不支持高并发:只能支持10多个并发查询,用于企业高层决策和产品定向已经足够了。

    Infobright安装

    下载相应的Windows版本安装:https://www.infobright.org/index.php/Download/ICE

    安装成功后如图:
    这里写图片描述

    打开Infobright Commond Line Client,如图
    这里写图片描述

    设置密码之后只能通过命令行窗口进入Infobright的bin目录执mysql,可以打开Infobright的命令行窗口:
    这里写图片描述
    但是设置密码之后会有一系列的权限问题,解决方法先保留。

    创建数据库(无密码)

    创建数据库并指定字符集:

    CREATE DATABASE mytest DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;

    结果

    mysql> CREATE DATABASE mytest DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;
    Query OK, 1 row affected (0.00 sec)
    
    mysql> use mytest;
    Database changed
    mysql>

    创建表

    从现有的MySQL表脚本修改

    现有的MySQL建表脚本(这里以我的reviews表为例)

    CREATE TABLE `reviews` (
        `id` VARCHAR(32) NOT NULL,
        `review` VARCHAR(10000) NULL DEFAULT NULL,
        `reviewer` VARCHAR(100) NULL DEFAULT NULL,
        `date` DATE NOT NULL DEFAULT '0000-00-00',
        `helpful_count` INT(11) NULL DEFAULT NULL,
        `starts` FLOAT NULL DEFAULT NULL,
        PRIMARY KEY (`id`),
        FULLTEXT INDEX `fulltext_reviews` (`review`, `reviewer`)
    )
    COLLATE='utf8_general_ci'
    ENGINE=MyISAM
    ;

    修改为适应Infobright的建表脚本如下:

    CREATE TABLE `reviews` (
        `id` CHAR(32) NOT NULL,
        `review` VARCHAR(10000) NULL DEFAULT NULL,
        `reviewer` VARCHAR(100) NULL DEFAULT NULL,
        `date` DATE NOT NULL DEFAULT '0000-00-00',
        `helpful_count` INT(11) NULL DEFAULT NULL,
        `starts` FLOAT NULL DEFAULT NULL
    )
    COLLATE='utf8_general_ci'
    ENGINE=brighthouse;

    对比一下,ID是定长的,干脆改成CHAR了。
    去掉PRIMARY KEYFULLTEXT INDEX等索引,因为Infobright是无需索引的。
    把ENGINE修改为brighthouse
    执行脚本:
    这里写图片描述

    导入CSV数据

    使用命令先设置以CSV格式导入(安装的是社区版(ICE),只能支持CSV)

     set @bh_dataformat = 'txt_variable';


    如果是企业版(IEE),需要支持多种格式如binary、MySQL,可以参考
    {Infobright_home}/Data_Loading_Guide.pdf

    使用MySQL客户端工具将现有的reviews表数据导出为reviews.csv,使用命令导入到Infobright的mytest.reviews表中

    load data infile 'd:\\reviews.csv' into table reviews fields terminated by ',' optionally enclosed by  '"' lines terminated by '\n';

    Infobright的默认端口是:5029

    展开全文
  • 安装和使用Inforbright

    千次阅读 2016-06-23 17:36:34
    Inforbright简介Infobright是一款基于知识网格的列式数据库,对大批量数据(百万、千万、亿级)的查询性能非常高,据说比MyISAM、InnoDB等普通MySQL引擎快5~60倍,可存储TB级体积的数据,存储数据高压缩比可达到40:1...
  • 目标:一个算号系统,要将系统产生的一亿条数据(卡号),(没有存在与其他表中的卡号)呈现...怎么能让1E条数据快速插入数据库中。 以上方法那种效率更高?或者有其他方法。有意帮忙的 直接回复或QQ 362129760 诚谢。
  • Taobao oceanbase代码

    2012-04-20 21:13:46
    然而,随着业务的快速发展,这些数据急剧膨胀,记录数从几千万条增加到数十亿条,数据量从百GB增加到数TB,未来还可能增加到数千亿条和数百TB,传统的关系型数据库已经无法承担如此海量的数据。OceanBase解决不断...
  • 双击某个字,可快速查询该字的古义解释和新华字典中的解释;选中划词可快速查询该词条在汉语词典中的解释。朗读功能可全文朗读或输出成MP3。 《国学大师》分为联网版和离线版同时上线,完全离线版6.5G,联网版38M,...
  • mycat 指南

    2018-04-05 12:55:12
    每天2亿数据的实时查询案例 145 物联网26亿数据的案例 146 大型分布式零售系统案例 146 生产环境部署 148 单节点mycat部署 148 mycat的高可用与负载均衡 148 Mycat最佳实践 158 Mycat 如图所述通过后端接入不同的...
  •  诚然,这个数据的确显示数据库的内存命中率低得可怜,但是我想告诉你的是,这是一个在线分析(OLAP)系统的数据库,运行着很多非常大的查询,每个查询搜索的范围都在上亿条记录以上,那这个结果不是很正常吗?...
  • 财务统计 对系统营业额按照不同的条件进行查询统计,可以查看餐馆营业额,时间段内营业额,今日营业额等各项数据指标。 短信通知 有订单自动短信提醒到对应的餐厅。订单通过短信网关下发给商家,发送送餐信息给用户,...
  • 要求设计一个DNS的Cache结构,要求能够满足每秒5000以上的查询,满足IP数据快速插入,查询的速度要快。(题目还给出了一系列的数据,比如:站点数总共为5000万,IP地址有1000万,等等) 3.5.1 找出给定字符串对应...
  • 1.4亿实体、数据增强在机器翻译及其他nlp任务中的应用及效果、allennlp阅读理解:支持多种数据和模型、PDF表格数据提取工具 、 Graphbrain:AI开源软件库和科研工具,目的是促进自动意义提取和文本理解以及知识的探索...
  • 在系统 install/Sqlscripts/路径下面有三个数据库安装文件,其中biao.sql是数据库表结构文件,shopData是数据文件,您先建立一个新的数据库,再通过查询分析器打开biao.sql这个文件将数据库结构安装好,然后再...
  • 基于 flink 的电商用户行为数据分析【5】基于埋点日志数据的网络流量统计 基于 flink 的电商用户行为数据分析【6】APP市场推广统计 基于 flink 的电商用户行为数据分析【7】页面广告分析 基于 flink 的电商...
  • 数据源支持模拟数据(默认)、数据库采集、串口通信(需定制)、网络通信(需定制)、网络请求等,可自由设定每个子界面的采集间隔即数据刷新频率。 采用纯QWidget编写,亲测Qt4.6到Qt5.15任意版本,理论上支持后续...
  • Apache Hive: 是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析 笔记 Hive篇 ...
  • 事务处理原理 第2版

    热门讨论 2012-12-30 10:49:38
    事务处理产品和服务的销售额每年高达几百亿美元。作为消费者,我们每天都在使用这一技术来取款、购买燃气、租影碟及网上购物。  事务处理系统的工作原理具体是怎样的呢?这一问题曾经只有商用数据处理领域的计算机...
  • [虎扑 - 上亿数据迁移服务] 项目介绍: 随着数据规模的越来越大,mysql已经不能适用大数据多维度的查询,需要用ES等一类的搜索引擎,进行多维度的分词查询,MYSQL现阶段使用按天分表存储,不能满足跨天的长时间...

空空如也

空空如也

1 2 3 4
收藏数 64
精华内容 25
关键字:

数据库5亿数据快速查询