为您推荐:
精华内容
最热下载
问答
  • 5星
    1KB weixin_42696271 2021-09-11 09:04:34
  • 5星
    359B weixin_45317919 2020-12-05 16:09:43
  • 学过"信号与系统"等课程的人往往会被许多问题所困惑,如:(1)周期信号傅里叶级数表示什么内容?(2)信号的频谱表示什么?(3)通过信号的频谱我们能知道什么?(4)信号的时域和频域的关系是什么?(5)傅里叶级数、傅里叶...

    傅里叶级数是周期信号的时域表达式,而傅里叶变换是非周期信号或周期信号的频谱(频域函数),要想了解它们之间的关系,需要你耐心看完下面内容。

    学过"信号与系统"等课程的人往往会被许多问题所困惑,如:

    (1)周期信号傅里叶级数表示什么内容?

    (2)信号的频谱表示什么?

    (3)通过信号的频谱我们能知道什么?

    (4)信号的时域和频域的关系是什么?

    (5)傅里叶级数、傅里叶系数、傅里叶变换的关系是什么?

    (6)周期信号傅里叶级数中的傅里叶系数物理意义是什么?

    (7)周期信号傅里叶级数中的傅里叶系数与非周期信号傅里叶变换的关系是什么?

    (8)非周期信号的傅里叶变换到底是什么意思?

    (9)傅里叶变换的物理意义是什么?

    (10)复数形式的傅里叶变换的物理意义?

    (11)为什么周期信号的傅里叶变换在相应频率处出现冲激函数?

    (12)为什么正弦(或余弦)信号的傅里叶变换是冲激函数?

    上述问题尽管看上去有些零碎,其实它们是有联系的,下面,我从头到尾把这些问题串起来,内容可能比较多,如果你想知道结果,则需要你耐心阅读,并希望下面的内容能对你有所帮助,更详细的内容和应用还请参见我写的《信号与系统分析和应用》一书,本书在高等教育出版社出版发行。

    如果你手里有《信号与系统分析和应用》教材,请你关注“信号与系统分析”微信公众号,那里面列出书中发现的问题。

    要知道傅里叶变换把时域信号变换为频域函数(频谱),首先需要知道信号的频谱是什么。我在教学的时候,规定时域是“信号”,频域是“函数”。

    注意,下面我站在求解“频谱”的角度来说问题!

    一、周期信号及其频谱

    1、先从周期信号说起

    周期信号的频谱表示了这个周期信号含有的所有不同频率余弦信号的频率、幅度和初相位这三个“参数”,每个余弦的这“三个参数”表征了这个余弦的全部信息,信号的频谱是用原周期信号含有的所有各个频率余弦信号的“三参数”来表征原时域信号的组成成分和分量(傅里叶级数是在时域用余弦信号的形式来表征周期信号的组成。注意:傅里叶级数是时域的,它的自变量是时间t)。

    我们不能总是喋喋不休地只讨论一个复杂的时间信号是由哪些基本信号合成的,而我们真正要关心的是这个复杂信号的“组成成分”和这些“成分的分量”。我非常赞赏网友用的“配方”这个词,它一针见血地指出了一个混合物(相当于时域信号)和它的组成成分及其分量(频谱---信号配方)。可以看到,周期信号的“配方”就是组成这个周期信号的各个频率的余弦的“频率”、“幅度”和“初相位”这“三个参数”。

    如一副中药相当于原时域信号,而它的“药单”相当于其“频谱”。

    一副混合好的中药(相当于一个复杂信号),你从下面图中看不出组成它的各成分的分量。一副混合好的中药(相当于一个复杂信号),你看不出组成它的各成分的分量

    要想知道它的组成成分和分量,你一定要拿到它的药单。

    药单上列出了一副中药的组成成分和各味药的“分量”。对应我们讨论的信号来说,药名相当于“余弦信号的频率”,重量相当于“余弦信号的幅度”。可以看到,这个药单图只有“各个味药”和它的重量,这个药单其实相当于“信号的幅度谱”。我们也可以把各味药的产地标上(也可以理解为余弦信号的初相位)。反过来,我们按着“药单”去抓药就能构成一副中药。

    2、傅里叶积分公式(对非周期信号来说就是它的傅里叶变换)的伟大之处在哪里?

    在这里为什么我要说“傅里叶积分公式”而不说“傅里叶变换”?因为,求周期信号的频谱是用傅里叶积分公式,而求非周期信号的频谱的公式我们通常称其为“傅里叶变换”,其实,傅里叶变换也是傅里叶积分公式。

    傅里叶积分公式的伟大之处在于:利用信号的“正交性”,通过积分公式能求出原信号的“配方”或者说求出组成原信号所有不同频率余弦(或正弦)信号的“三参数”,也就是我们在信号与系统课程中讲到“频谱”。

    傅里叶积分公式要完成两个任务:第一个是利用信号的“正交性”,从一个“混合物”(一个复杂信号)中分离出其中的一个成分(某个频率的余弦),另一个是它像一杆秤似的称出被分离出来的那个成分的“分量”(余弦的幅度和初相位)。我们不但要知道一个混合物的“成分”,还要知道其中某个成分的“分量”。所以,傅里叶积分公式兼有“成分分离器”和“秤”的双重作用。

    下面就让我们去看看如何从复杂信号中分离出一个余弦,然后怎样求出被分离出来的这个余弦的幅度和初相位(这是一个真正伟大的工作)。

    3、周期信号的表示以及它的频谱的求解

    我们先看看一个周期信号的时域表示(傅里叶级数),然后就让我们去见证一个伟大的傅里叶积分公式,它是如何求出这个周期信号的“配方”(频谱),也就是用傅里叶积分公式如何从周期信号中分离出一个余弦以及怎样求出这个余弦的幅度和初相位的(这是一个真正伟大的工作)。

    (1)周期信号三角函数形式的傅里叶级数

    为了尽快完成下面内容,下面我把我写的《信号与系统分析和应用》书上内容直接复制过来,更详细内容还请参见这本书。

    请注意:为什么我把周期信号三角函数形式的傅里叶级数写成下面的形式,而不是公式(4.2-8)的形式?因为只有这样才能充分理解信号频谱以及频谱的作用、傅里叶系数、非周期确知信号的傅里叶变换的物理意义,才能充分理解我写的下面的内容。

    特别要注意:所谓的傅里叶级数是在时域用不同频率的余弦信号或正弦信号来表示原周期信号的组成。

    由公式(4.2.2)可知:

    这样就能计算出一个周期信号的频谱了(“配方”或“药单”)。我们将所有“三参数”按频率的位置表示出来就是原周期信号的“频谱”了,因此,下面的周期信号的傅里叶级数公式才是与“频谱”对应的周期信号三角函数形式的傅里叶级数。

    用上面公式表示周期信号三角函数形式的傅里叶级数才能更好地理解信号的“频谱”到底表示了什么?以及后面我要说的非周期信号傅里叶变换的“物理意义”是什么,才能更好理解信号频域分析的目的。那么,公式(4.2-8)可以看做求解信号频谱的中间环节,当然,它也是三角函数形式的傅里叶级数,只是用它不利于理解信号频谱表示的内容(也有特殊情况)。

    可以说,公式(4.2-10)以及(4.2-11)是“最伟大的积分公式”之一。这两个公式为什么能计算出an和bn?我们需要讨论信号的正交性问题。

    下面把《信号与系统分析和应用》书上内容复制过来。

    注意:上面积分区间一定在是整倍周期期间才成立。

    这样,下面的积分公式的物理意义就很清楚了:

    想必大家已经领略到了数学的伟大魔力了吧。

    4、周期信号组成成分的表示---信号频谱

    可以看到,频谱图(a)和(b)表示了组成原周期信号的所有不同频率余弦信号的“频率”(横坐标)、“幅度”以及“初相位”这三个参数,这与公式(4.2.2)是对应的,这就是为什么我将周期信号傅里叶级数写成公式(4.2.2)的根本原因。

    信号频谱的作用就是用图形(频谱图)或公式(向量形式)来表示组成这个周期信号的所有不同频率的余弦信号的“三参数” (幅度、初相和频率或角频率),也就是说,频谱是用“参数”的形式表示原信号的组成成分,我们不但要知道信号的组成成分还要知道这些成分的份额,这就是大家说到的“原信号的配方”。从频谱图上,我们就能看到原周期信号含有的所有频率的余弦(或正弦)信号的幅度和相位的大小,也就知道了周期信号含有的所有频率成分以及这些频率成分对原信号的贡献大小。上面图(c)是将图(a)和(b)合成一个图(合成的原则请参见《信号与系统分析和应用》书)。

    周期信号的傅里叶级数是在时域用不同频率的余弦信号或正弦信号来表示原周期信号的组成,而周期信号的频谱是用“参数”的形式表示这个周期信号的组成成分。

    5、周期信号复指数形式的傅里叶级数与信号频谱

    周期信号复指数形式傅里叶级数中的傅里叶系数Xn是用复数的形式表示每个余弦信号的幅度和初相位信息(包含余弦信号的两个参数)。

    一定注意:傅里叶系数Xn的积分公式其实还是求an和bn(系数为0.5),只是用一个积分公式的实部和虚部一起求出的,它还是利用“正交性”,傅里叶系数Xn就是复数形式的原周期信号的“频谱”(“药单”或“配方”)。

    特别强调一下:将傅里叶系数Xn的虚部看成是余弦信号的初相是不对的,它的虚部0.5bn是“正弦分量”的幅度信息,不是余弦信号的初相位,而余弦信号的初相是公式(4.4-17),下面讨论非周期信号傅里叶变换也是这个问题,即绝对可积非周期信号的傅里叶变换是一个复函数,它的虚部也不是任意角频率w的余弦信号的初相位。

    二、非周期信号的傅里叶变换

    非周期信号的傅里叶变换是从周期信号复指数形式傅里叶级数中的傅里叶系数Xn推导来的(注意:不是从傅里叶级数推导来的!),所以,非周期信号的傅里叶变换就是非周期信号的“频谱”。

    绝对可积信号的傅里叶变换是自变量为频率或角频率的复函数,它含有原时域信号含有的所有频率余弦信号的“三参数”信息(频率信息是由傅里叶变换的自变量来表征的),它是一个复函数(他跟周期信号傅里叶级数中的傅里叶系数Xn的物理意义相似),它的实部表示原信号含有的任意角频率w余弦信号的同相分量(余弦分量)的幅度信息,其虚部表示信号含有的任意角频率w余弦信号的正交分量(正弦分量)的幅度信息。但是,绝对可积非周期信号含有的每个余弦信号的幅度都趋于无穷小,非周期信号的傅里叶变换中的幅度谱是每个余弦信号无穷小的幅度乘上一个无穷大的周期。如果一个非周期信号是确知信号,则它的傅里叶变换就是一个自变量为频率或角频率的确知相量函数(所以,不能把它叫做信号),这说明,这个原确知时间信号含有的所有频率余弦信号的幅度和初相不是孤立的,他们满足一定关系,这个关系就是以自变量为频率或角频率的“频域函数”。更多内容请参看我写的《信号与系统分析和应用》书上第4章和第5章内容。

    下面举个信号的例子:

    上面是信号傅里叶变换是复函数的物理意义。下面看看因果稳定系统的频率响应的物理意义。

    因果稳定系统的频率响应是此系统单位冲激响应的傅里叶变换,由于此系统是因果稳定系统,则其频率响应也是复函数。

    可以看到,信号的傅里叶变换与系统单位冲激响应的傅里叶变换即使都是复函数,但是,它们的物理意义是不同的。

    三、周期信号的傅里叶变换以及冲激函数的作用

    除了上述对信号进行傅里叶变换得到信号的频谱以及对系统单位冲激响应进行傅里叶变换而得到系统频率响应,这些“傅里叶变换”都有其物理意义,人们还发现时域信号经过傅里叶变换后在变换域内其频域函数之间的运算比时域简单,人们借助于频域运算可以简化时域里的运算。最后,简单总结一下傅里叶变换:

    (1)对信号进行傅里叶变换得到信号的频谱;

    (2)对系统单位冲激响应进行傅里叶变换得到系统频率响应;

    (3)经过傅里叶变换后能使运算简单;

    如果你手里有《信号与系统分析和应用》教材,请你关注“信号与系统分析”微信公众号,那里面列出书中发现的问题。

    展开全文
    weixin_36382265 2020-12-24 23:04:22
  • 这篇文章介绍了首先介绍点的概念,从简单的点到复杂的点然后再从点到函数,接着引出傅里叶变换,介绍了它的优缺点,根据缺点提出改进的措施。

    这篇文章首先介绍点的概念,从简单的点到复杂的点,讲解如何用表示这些点。然后再从复杂的点到函数,引出傅里叶分析,并介绍了傅里叶变换的优缺点,根据其缺点提出改进措施。

    一、点的概念

    1.1 一个简单的点

    点在一个直线上可以表示为一个数,在二维平面上可以表示为 x + j y = α e j φ x + jy = \alpha {e^{j\varphi }} x+jy=αejφ。在实数的n维空间中,可以表示为 [ x 1 , x 2 , … , x n ] T {[{x_1},{x_2}, \ldots ,{x_n}]^T} [x1,x2,,xn]T。当有很多点的时候,用上述方式就不太可行了。我们希望用少量的资源,表示出所有的点。那么,如何做呢?

    1.2 基

    大家应该都听过这个名字。那为什么要有基的概念呢?

    基:就是用更少的资源,表示全部。
    平凡基(一般坐标系): p 1 = [ 1 , 0 , … , 0 ] T , p 2 = [ 0 , 1 , … , 0 ] T , ⋯   , p n = [ 0 , 0 , … , 1 ] T p_{1}=[1,0, \ldots, 0]^{T},p_{2}=[0,1, \ldots, 0]^{T}, \cdots, p_{n}=[0,0, \ldots, 1]^{T} p1=[1,0,,0]T,p2=[0,1,,0]T,,pn=[0,0,,1]T 空间中任意点,都可以用这个坐标表示。

    举个栗子,现有一点的坐标是 [ 1 , 2 , 3 ] T [1,2,3]^{T} [1,2,3]T,这个就是又上面 n = 3 n=3 n=3的平凡基构成的。如果,我想要用更少的资源去表示这个点,我只需要将平凡基换成 p 1 = 1 14 [ 1 , 2 , 3 ] T , p 2 = 1 5 [ − 2 , 1 , 0 ] T , p 3 = 1 47 [ 3 , 6 , − 5 ] T p_{1}=\frac{1}{\sqrt{14}}[1,2,3]^{T}, \quad p_{2}=\frac{1}{\sqrt{5}}[-2,1,0]^{T}, \quad p_{3}=\frac{1}{\sqrt{47}}[3,6,-5]^{T} p1=14 1[1,2,3]T,p2=5 1[2,1,0]T,p3=47 1[3,6,5]T(其中 p 1 , p 2 , p 3 p_{1},p_{2},p_{3} p1,p2,p3是正交的,改变的基不唯一哦)。因此,在这个新基下,同一空间中的点可以表示为 [ 14 , 0 , 0 ] T [\sqrt{14},0,0]^{T} [14 ,0,0]T。这样,我们就将3个数表示的点变成了1个数。看下图,可以更加直观的感受。
    红色是修改后的基
    (蓝色是平凡基,红色是修改后的基)

    1.3 函数

    这里给出另一个角度来理解函数。将上面介绍的有限维的点 p ( x 1 , x 2 , … , x n ) p(x_{1},x_{2},\ldots,x_{n}) p(x1,x2,,xn)左右延伸,变成 p ( … , x − 1 , x 0 , x 1 , … ) p(\ldots,x_{-1},x_{0},x_{1},\ldots) p(,x1,x0,x1,)无限维,这时无数点联合起来就变成了一个函数。函数又分为周期函数和非周期函数。

    二、傅里叶分析

    从函数的角度出发,如何用上面谈到的基来表示任意复杂函数呢?Fourier在1807年提出傅里叶级数。 f ( t ) = ∑ k = − ∞ + ∞ α k e i k t f(t)=\sum_{k=-\infty}^{+\infty} \alpha_{k} e^{i k t} f(t)=k=+αkeikt,只有确定系数 α k {\alpha _k} αk,该函数就可以表达出来了。
    意义:
    1)不同函数的差异就体现在系数 α k {\alpha _k} αk上。
    2)对不同特点的函数的分析,可以选择不同的基。
    缺点:
    对于随着时间变换的非平稳信号,它没法区分频谱。只能获取一段信号总体上包含哪些频率的成分,但是对各成分出现的时刻并无所知。因此时域相差很大的两个信号,可能频谱图一样。
    解决办法:
    所以,这里提出两种解决办法。①加入局部参数,比如加窗。②换基。
    关于傅里叶级数和傅里叶变换的具体公式推导总结,见https://blog.csdn.net/weixin_46017950/article/details/114691667。

    三、短时傅里叶变换STFT

    方法一:加窗。
    STFT在傅里叶变换的基础上加窗,分段做FFT变换,假定认为信号在窗宽度的时间内是平稳的。但是,窗宽度太窄,信号太短信息少,频率分析不准确,频率分辨率差;窗太宽时间分辨率差。对于时变的非稳态信号,高频适合小窗口,低频适合大窗口。(高频,顾名思义就是信号变化很快,所以,在时域中,需要小窗口,时间分辨率高。)然而STFT的窗口是固定的,在一次STFT中宽度不会变化,所以STFT还是无法满足非稳态信号变化的频率的需求。不采用可变窗的STFT,是因为这样做冗余会太严重,STFT做不到正交化,这也是它的一大缺陷。

    四、小波变换

    方法二:换基。
    何为小波呢?“小”是指衰减性,比如有些小波基只有局部是非零,这也称为紧支性。“波”是指波动性。
    小波变换直接把傅里叶变换的基给换了——将
    无限长的三角函数基
    换成了有限长的会衰减的小波基。这样不仅能够获取频率,还可以定位到时间,获取时频分析。目标:时间分辨率和频率分辨率可以随着本身信号特变进行自适应调整。这里的“自适应”是很难的。
    W T ( a , b ) = 1 a ∫ − ∞ ∞ f ( t ) ∗ ψ ( t − b a ) d t W T(a, b)=\frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) * \psi\left(\frac{t-b}{a}\right) d t WT(a,b)=a 1f(t)ψ(atb)dt
    小波还有一些好处,比如,我们知道对于突变信号,傅里叶变换存在吉布斯效应,我们用有限长的频率信号是怎么也拟合不好突变信号的。

    JPEG2000压缩就是用正交小波变换。比如典型的正交基:二维笛卡尔坐标系的(1,0)、(0,1),用它们表达一个信号显然非常高效,计算简单。而如果用三个互成120°的向量表达,则会有信息冗余,有重复表达。但是并不意味着正交一定优于不正交。比如,如果是做图像增强,有时候反而希望能有一些冗余信息,更利于对噪声的抑制和对某些特征的增强。

    4.1 小波变换的应用

    1、数据压缩。目前许多应用领域(如卫星监测、地震勘探、天气预报)都存在海量数据传输或存储问题,如果不对数据进行压缩,数量巨大的数据就很难存储、处理和传输。因此,伴随小波分析的诞生,数据压缩一直是小波分析的重要应用领域之一,并由此带来巨大的经济效益和社会效益。
    2、语音分析与处理。小波理论应用于语音分析与处理的主要内容包括:清/浊音分割;基音检测与声门开启时刻定位;去噪、压缩、重建几个方面。
    3、瞬态信号或图像的突变点常包含有很重要的故障信息,例如,机械故障、电力系统故障、脑电图、心电图中的异常、地下目标的位置及形状等,都对应于测试信号的突变点。因此,小波分析在故障检测和信号的多尺度边缘特征提取方面的应用具有广泛的应用前景。
    4、神经网络与小波分析相结合,分形几何与小波分析相结合是国际上研究的热点之一。基于神经网络的智能处理技术,模糊计算、进化计算与神经网络结合的研究,没有小波理论的嵌入很难取得突破。非线性科学的研究正呼唤小波分析,也许非线性小波分析是解决非线性科学问题的理性工具。

    下一篇文章写一写小波变换在图像方面的分析与应用(Matlab代码)。

    展开全文
    weixin_46017950 2021-03-08 12:01:56
  • 1、 考虑到一个函数可以展开成一个多项式的和,可惜多项式并不能直观的表示周期函数,由于正余弦函数是周期函数,可以考虑任意一个周期函数能否表示成为一系列正余弦函数的和。假设可以,不失一般性,于是得到:f(t)...

    1、  考虑到一个函数可以展开成一个多项式的和,可惜多项式并不能直观的表示周期函数,由于正余弦函数是周期函数,可以考虑任意一个周期函数能否表示成为一系列正余弦函数的和。假设可以,不失一般性,于是得到:

    f(t)= A0+∑(n=1,∞) Ansin(nωt+Φn)

    2、  将后面的正弦函数展开:

    Ansin(nωt+Φn)=AnsinΦncosnωt+AncosΦnsinnωt

    令 a0/2 =A0,an = AnsinΦn,bn=AncosΦn,x=ωt,可得

    f(x)= a0/2+∑(n=1,∞)(ancosnx+bnsinnx)

    对两边在区间[-π,π]积分,得

    ƒ(-π->π) f(x)dx = ƒ(-π->π)a0/2dx +ƒ(-π->π)(∑(n=1,∞) (ancosnx+bnsinnx))dx

    ƒ(-π->π) f(x)dx = ƒ(-π->π)a0/2dx +∑(1 -> ∞) (ƒ(-π->π)(ancosnx+bnsinnx)dx)

    ƒ(-π->π) f(x)dx = ƒ(-π->π)a0/2dx +∑( 1 -> ∞) [anƒ(-π->π)cosnxdx+bnƒ(-π->π)sinnxdx]

    ƒ(-π->π) f(x)dx =a0/2 * 2π  +∑( 1 -> ∞) [anƒ(-π->π)cosnxdx+bnƒ(-π->π)sinnxdx]

    当n=0時

    ƒ(-π->π) f(x)dx = ao * π

    于是我们求出了a0的值。

    ao  = ƒ(-π->π) f(x)dx /π

    三角函数系{1,cosx,sinx,cos2x,sin2x,……,cosnx,sinnx,……}  -------------- ⑴

    在区间[-π,π]上正交,就是指在三角函数系⑴中任何不同的两个函数的乘积在区间[-π,π]上的积分等于0,即

    ∫[-π->π]cosnxdx=0

    ∫[-π->π]sinnxdx=0

    ∫[-π->π]sinkxcosnxdx=0

    ∫[-π->π]coskxcosnxdx=0

    ∫[-π->π]sinkxsinnxdx=0

    (k,n=1,2,3.....,k≠n)

    下面利用三角函数正交性求出an,在原函数两端乘以cos(nx)再进行积分。

    ƒ(-π->π) f(x)*cosnx dx = ƒ(-π->π)a0/2 * cosnx dx +ƒ(-π->π)(∑(n=1,∞)(ancosnx*cosnx + bnsinnx*cosnx))dx

    ƒ(-π->π) f(x)*cosnx dx = a0/2 ƒ(-π->π) cosnx dx +∑(n=1,∞)[ an ƒ(-π->π)cosnx*cosnxdx + bn ƒ(-π->π)sinnx*cosnxdx])

    根据上面提到的性质,可知 ƒ(-π->π) cosnx dx =0,ƒ(-π->π)sinnx*cosnxdx =0, 因此

    ƒ(-π->π) f(x)*cosnx dx = an ƒ(-π->π)[cosnx*cosnxdx]

    ƒ(-π->π) f(x)*cosnx dx = an  ƒ(-π->π)[1+cos2nx)/2 dx]

    ƒ(-π->π) f(x)*cosnx dx = an [  ƒ(-π->π)1/2 dx +  ƒ(-π->π)(cos2nx/2 )dx

    ƒ(-π->π) f(x)*cosnx dx = an ( π + 1/2 *( sin2nx|(-π->π))

    ƒ(-π->π) f(x)*cosnx dx = an  π

    得  an = 1/π ƒ(-π->π) f(x)*cosnx dx (n=1,2,3.....)

    再用sin(nx)乘,再进行积分就会得到bn,

    bn = 1/π ƒ(-π->π) f(x)*sinnx dx (n=1,2,3.....)

    于是乎得到了一个任意函数展开成为正余弦函数的通用表达式,同时为什么会出现A0/2而不是直接的A0的原因也很明朗:就是让整个表达式更具有通用性,体现一种简洁的美。

    通过了以上的证明过程,应该很容易记住傅里叶变换的公式。

    到此为止,作为一个工程人员不用再去考虑了,可是作为每一个数学家他们想的很多,他们需要知道右侧的展开式为什么收敛于原函数,这个好难,有个叫Dirichlet的家伙证明出如下结论:

    这里涉及两个函数

    (1)事先给定一个函数f(x)

    (2)根据f(x)构造一个Fourier级数,这是一个形式上的无穷项的和,和函数F(x)不一定存在.所以要判断它是否收敛.如果不收敛,f(x)与F(x)就毫无关系.

    (3)如果判断出Fourier级数收敛,其和函数为F(x),而F(x)也不一定是f(x)

    (4)Dirichlet定理指出,满足收敛定理2条件时,和函数F(x)恰等于f(x)在点x处左右极限的平均值.

    用一个生活中的例子来阐明这过程:

    (1)事先给您一只动物(如小兔)的旧衣服,小兔的旧衣服就是f(x)

    (2)您根据小兔的旧衣服为它做一件新衣服,新衣服就是F(x),但是衣服F(x)未必能穿(未必收敛)

    (3)即使能穿(收敛),新旧衣服也不一定大小完全一样(f与F未必相同)

    (4)如果满足一定条件,新衣服F(x)在某些地方(f(x)连续点)与旧衣服f(x)完全相同.新衣服F(x)在某些地方(f(x)的不连续点,像衣服的破洞)与旧衣服f(x)是不相同的.

    至此以2π为周期的傅里叶变换证明完毕,只不过我们经常遇到的周期函数我想应该不会这么凑巧是2π,于是乎任意的一个周期函数如何知道其傅里叶变换呢,数学向来都是一个很具有条理性的东西,任意周期的函数的傅里叶变换肯定也是建立在2π周期函数的基础之上的。

    一个以2L为周期的函数f1(x)如何进行傅里叶变换?因为z=2π*x/(2L)=πx/L,可以用 sin z(即sinπx/L)作基函数,用πx/L替换傅里叶变换右边表达式各项中的x,不难看出就是对原f(x)图像沿x轴进行缩放L/π倍,显然这个求和后的新图像就是f1(x), 于是乎得到如下公式:

    f(x)= a0/2+∑(n=1,∞)(ancos n zx +bnsin n zx) = a0/2+∑(n=1,∞)(ancosnπx/L+bnsinnπx/L)

    同前面的计算方法,可得

    an =  1/L ƒ(-L->L) f(x)*cosn πx/L dx      // 基函数为sin πx/L

    bn =  1/L ƒ(-L->L) f(x)*sinn πx/L dx      // 基函数为sin πx/L

    傅里叶函数看起来其实还是比较复杂的,有没有一种更简单的表达形式来表示呢。既然提出这个问题,肯定是有的,我个人猜想肯定是复变

    函数大师在挖掘复变函数的时候,用复变函数去套用经典的傅里叶变换,偶然间发现的••••••

    一个基本的欧拉公式eiθ=cosθ +i*sinθ,这个很容易可以从复数的几何意义上得知,我们通过取两个互为相反数的θ可以得到两个式子,

    进而可以得到cos 和 sin 的复数表达形式:

    fT(t)= a0/2+∑(n=1,∞)(ancosnω0t+bnsinnω0t)     ...........(L)

    ejθ=cosθ +j*sinθ                     (1)

    ej-θ= cos-θ +j*sin-θ=  cosθ-j*sinθ    (2)

    (1)+( 2),得

    cosθ = ( ejθ+ej-θ)  /2             (3)

    据(1)和(3),得

    sinθ = ( ejθ-ej-θ)  /2j

    则(L)可变形为

    fT(t) = a0/2+ ∑(n=1,∞)( an  ( 1/2 * (e(jnω0t)+e(-jnω0t)))+ bn( 1/2 * e(jnω0t)-e(-jnω0t))))

    = a0/2+ ∑(n=1,∞)( an  ( 1/2 * (e(jnω0t)+e(-jnω0t)))- bn( j/2 * e(jnω0t)-e(-jnω0t))))

    = a0/2 + ∑(n=1,∞)( (an-jbn)/2 e(jnω0t)+(an+jbn)/2 e(-jnω0t))

    令 c0 = a0/2 = 1/T  ƒ(-T/2->T/2) fT(t)dt

    令  cn = (an-jbn)/2 = 1/T [ ƒ(-T/2->T/2) fT(t) cosnω0t dt - j ƒ(-T/2->T/2) fT(t) sinnω0t dt]

    = 1/T  ƒ(-T/2->T/2)fT(t)(cosnω0t- jsinnω0t)dt  = 1/T  ƒ(-T/2->T/2)fT(t)(cos-nω0t + jsin-nω0t)dt

    = 1/T  ƒ(-T/2->T/2)fT(t) e(-jnωot) dt  ( n=1,2,3...)

    同理  c_n = (an+jbn)/2 = 1/T [ ƒ(-T/2->T/2) fT(t) ejnω0t dt    ( n=1,2,3...)

    cn = 1/T  ƒ(-T/2->T/2)fT(t) e-jnω0t dt  ( n =±1,±2,±3,......)

    据 ωon=ωn 得

    cn == 1/T  ƒ(-T/2->T/2)fT(t) e(-jωnt) dt

    看出来了么,在不同波形图(f(x)表达式不同)中,同一个正弦函数曲线(ωn 或频率相同),它们的系数不同,是因为f(x)不同,无它。

    fT(t) = c0+∑(n=1,∞)[ cn ejωnt +c_n e-jωnt ]

    fT(t) = c0+∑(n=-∞,∞)[ cn ejωnt]       ( n =0,±1,±2,±3,......)

    展开全文
    weixin_39788792 2020-12-21 08:10:37
  • 作者丨咚懂咚懂咚@知乎(已授权)来源丨https://zhuanlan.zhihu.com/p/22450818转载丨极市平台导读想要正确的认识小波变换就必须先了解傅里叶变换,本文作...
    
    

    作者丨咚懂咚懂咚@知乎(已授权)

    来源丨https://zhuanlan.zhihu.com/p/22450818

    转载丨极市平台

    导读

     

    想要正确的认识小波变换就必须先了解傅里叶变换,本文作者按照傅里叶-短时傅里叶变换-小波变换的顺序,由浅到深的解释小波变换的缘由以及思路。帮助初学者们深入理解傅里叶变换和小波变换。

    从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。

    下面我就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。(反正题主要求的是通俗形象,没说简短,希望不会太长不看。。)

    一、傅里叶变换

    关于傅里叶变换的基本概念在此我就不再赘述了,默认大家现在正处在理解了傅里叶但还没理解小波的道路上。(在第三节小波变换的地方我会再形象地讲一下傅里叶变换)

    下面我们主要讲傅里叶变换的不足。即我们知道傅里叶变化可以分析信号的频谱,那么为什么还要提出小波变换?答案就是@方沁园所说的“对非平稳过程,傅里叶变换有局限性”。看如下一个简单的信号:

    做完FFT(快速傅里叶变换)后,可以在频谱上看到清晰的四条线,信号包含四个频率成分。

    一切没有问题。但是,如果是频率随着时间变化的非平稳信号呢?

    如上图,最上边的是频率始终不变的平稳信号。而下边两个则是频率随着时间改变的非平稳信号,它们同样包含和最上信号相同频率的四个成分。

    做FFT后,我们发现这三个时域上有巨大差异的信号,频谱(幅值谱)却非常一致。尤其是下边两个非平稳信号,我们从频谱上无法区分它们,因为它们包含的四个频率的信号的成分确实是一样的,只是出现的先后顺序不同。

    可见,傅里叶变换处理非平稳信号有天生缺陷。它只能获取一段信号总体上包含哪些频率的成分,但是对各成分出现的时刻并无所知。因此时域相差很大的两个信号,可能频谱图一样。

    然而平稳信号大多是人为制造出来的,自然界的大量信号几乎都是非平稳的,所以在比如生物医学信号分析等领域的论文中,基本看不到单纯傅里叶变换这样naive的方法。

    上图所示的是一个正常人的事件相关电位。对于这样的非平稳信号,只知道包含哪些频率成分是不够的,我们还想知道各个成分出现的时间。知道信号频率随时间变化的情况,各个时刻的瞬时频率及其幅值——这也就是时频分析。

    二、短时傅里叶变换(Short-time Fourier Transform, STFT)

    一个简单可行的方法就是——加窗。我又要套用方沁园同学的描述了,“把整个时域过程分解成无数个等长的小过程,每个小过程近似平稳,再傅里叶变换,就知道在哪个时间点上出现了什么频率了。”这就是短时傅里叶变换。

    看图:

    时域上分成一段一段做FFT,不就知道频率成分随着时间的变化情况了吗!

    用这样的方法,可以得到一个信号的时频图了:

    ——此图像来源于“THE WAVELET TUTORIAL”

    图上既能看到10Hz, 25 Hz, 50 Hz, 100 Hz四个频域成分,还能看到出现的时间。两排峰是对称的,所以大家只用看一排就行了。

    是不是棒棒的?时频分析结果到手。但是STFT依然有缺陷。

    使用STFT存在一个问题,我们应该用多宽的窗函数?

    窗太宽太窄都有问题:

    窗太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差。窗太宽,时域上又不够精细,时间分辨率低。

    (这里插一句,这个道理可以用海森堡不确定性原理来解释。类似于我们不能同时获取一个粒子的动量和位置,我们也不能同时获取信号绝对精准的时刻和频率。这也是一对不可兼得的矛盾体。我们不知道在某个瞬间哪个频率分量存在,我们知道的只能是在一个时间段内某个频带的分量存在。所以绝对意义的瞬时频率是不存在的。)

    看看实例效果吧:

    ——此图像来源于“THE WAVELET TUTORIAL”

    上图对同一个信号(4个频率成分)采用不同宽度的窗做STFT,结果如右图。用窄窗,时频图在时间轴上分辨率很高,几个峰基本成矩形,而用宽窗则变成了绵延的矮山。但是频率轴上,窄窗明显不如下边两个宽窗精确。

    所以窄窗口时间分辨率高、频率分辨率低宽窗口时间分辨率低、频率分辨率高。对于时变的非稳态信号,高频适合小窗口,低频适合大窗口。然而STFT的窗口是固定的,在一次STFT中宽度不会变化,所以STFT还是无法满足非稳态信号变化的频率的需求。

    三、小波变换

    那么你可能会想到,让窗口大小变起来,多做几次STFT不就可以了吗?!没错,小波变换就有着这样的思路。

    但事实上小波并不是这么做的(关于这一点,方沁园同学的表述“小波变换就是根据算法,加不等长的窗,对每一小部分进行傅里叶变换”就不准确了。小波变换并没有采用窗的思想,更没有做傅里叶变换。)
    至于为什么不采用可变窗的STFT呢,我认为是因为这样做冗余会太严重,STFT做不到正交化,这也是它的一大缺陷。

    于是小波变换的出发点和STFT还是不同的。STFT是给信号加窗,分段做FFT;而小波直接把傅里叶变换的基给换了——将无限长的三角函数基换成了有限长的会衰减的小波基。这样不仅能够获取频率,还可以定位到时间了~

    【解释】

    来我们再回顾一下傅里叶变换吧,没弄清傅里叶变换为什么能得到信号各个频率成分的同学也可以再借我的图理解一下。

    傅里叶变换把无限长的三角函数作为基函数:

    这个基函数会伸缩、会平移(其实本质并非平移,而是两个正交基的分解)。缩得窄,对应高频;伸得宽,对应低频。然后这个基函数不断和信号做相乘。某一个尺度(宽窄)下乘出来的结果,就可以理解成信号所包含的当前尺度对应频率成分有多少。于是,基函数会在某些尺度下,与信号相乘得到一个很大的值,因为此时二者有一种重合关系。那么我们就知道信号包含该频率的成分的多少。

    仔细体会可以发现,这一步其实是在计算信号和三角函数的相关性。

    看,这两种尺度能乘出一个大的值(相关度高),所以信号包含较多的这两个频率成分,在频谱上这两个频率会出现两个峰。

    以上,就是粗浅意义上傅里叶变换的原理。

    如前边所说,小波做的改变就在于,将无限长的三角函数基换成了有限长的会衰减的小波基。

    这就是为什么它叫“小波”,因为是很小的一个波嘛~

    从公式可以看出,不同于傅里叶变换,变量只有频率ω,小波变换有两个变量:尺度a(scale)和平移量 τ(translation)。尺度a控制小波函数的伸缩平移量 τ控制小波函数的平移尺度就对应于频率(反比),平移量 τ就对应于时间

    当伸缩、平移到这么一种重合情况时,也会相乘得到一个大的值。这时候和傅里叶变换不同的是,这不仅可以知道信号有这样频率的成分,而且知道它在时域上存在的具体位置。

    而当我们在每个尺度下都平移着和信号乘过一遍后,我们就知道信号在每个位置都包含哪些频率成分

    看到了吗?有了小波,我们从此再也不害怕非稳定信号啦!从此可以做时频分析啦!

    做傅里叶变换只能得到一个频谱,做小波变换却可以得到一个时频谱

    ↑:时域信号

    ↑:傅里叶变换结果

    ——此图像来源于“THE WAVELET TUTORIAL”
    ↑:小波变换结果

    小波还有一些好处,比如,我们知道对于突变信号,傅里叶变换存在吉布斯效应,我们用无限长的三角函数怎么也拟合不好突变信号:

    然而衰减的小波就不一样了:

    以上,就是小波的意义。

    -----------------------------------------------------------------------------------------------------------

    以上只是用形象地给大家展示了一下小波的思想,希望能对大家的入门带来一些帮助。毕竟如果对小波一无所知,直接去看那些堆砌公式、照搬论文语言的教材,一定会痛苦不堪。
    在这里推荐几篇入门读物,都是以感性介绍为主,易懂但并不深入,对大家初步理解小波会很有帮助。文中有的思路和图也选自于其中:
    1. THE WAVELET TUTORIAL (强烈推荐,点击链接:Ihttp://users.rowan.edu/~polikar/WTtutorial.html)
    2. WAVELETS:SEEING THE FOREST AND THE TREES
    3. A Really Friendly Guide to Wavelets
    4. Conceptual wavelets

    但是真正理解透小波变换,这些还差得很远。比如你至少还要知道有一个“尺度函数”的存在,它是构造“小波函数”的关键,并且是它和小波函数一起才构成了小波多分辨率分析,理解了它才有可能利用小波做一些数字信号处理;你还要理解离散小波变换、正交小波变换、二维小波变换、小波包……这些内容国内教材上讲得也很糟糕,大家就一点一点啃吧~

    ------

    一些问题的回答:

    1. 关于海森堡不确定性原理

    不确定性原理,或者叫测不准原理,最早出自量子力学,意为在微观世界,粒子的位置与动量不可同时被确定。但是这个原理并不局限于量子力学,有很多物理量都有这样的特征,比如能量和时间、角动量和角度。体现在信号领域就是时域和频域。不过更准确一点的表述应该是:一个信号不能在时空域和频域上同时过于集中;一个函数时域越“窄”,它经傅里叶变换的频域后就越“宽”。

    如果有兴趣深入研究一下的话,这个原理其实非常耐人寻味。信号处理中的一些新理论在根本上也和它有所相连,比如压缩感知。如果你剥开它复杂的数学描述,最后会发现它在本质上能实现其实和不确定性原理密切相关。而且大家不觉得这样一些矛盾的东西在哲学意义上也很奇妙吗?

    2. 关于正交化

    什么是正交化?为什么说小波能实现正交化是优势?

    简单说,如果采用正交基,变换域系数会没有冗余信息,变换前后的信号能量相等,等于是用最少的数据表达最大的信息量,利于数值压缩等领域。JPEG2000压缩就是用正交小波变换。

    比如典型的正交基:二维笛卡尔坐标系的(1,0)、(0,1),用它们表达一个信号显然非常高效,计算简单。而如果用三个互成120°的向量表达,则会有信息冗余,有重复表达。

    但是并不意味着正交一定优于不正交。比如如果是做图像增强,有时候反而希望能有一些冗余信息,更利于对噪声的抑制和对某些特征的增强。

    3. 关于瞬时频率

    原问题:图中时刻点对应一频率值,一个时刻点只有一个信号值,又怎么能得到他的频率呢?

    很好的问题。如文中所说,绝对意义的瞬时频率其实是不存在的。单看一个时刻点的一个信号值,当然得不到它的频率。我们只不过是用很短的一段信号的频率作为该时刻的频率,所以我们得到的只是时间分辨率有限的近似分析结果。这一想法在STFT上体现得很明显。小波用衰减的基函数去测定信号的瞬时频率,思想也类似。(不过到了Hilbert变换,思路就不一样了,以后有机会细讲)

    4. 关于小波变换的不足

    这要看和谁比了。

    A.作为图像处理方法,和多尺度几何分析方法(超小波)比:
    对于图像这种二维信号的话,二维小波变换只能沿2个方向进行,对图像中点的信息表达还可以,但是对线就比较差。而图像中最重要的信息恰是那些边缘线,这时候ridgelet(脊波), curvelet(曲波)等多尺度几何分析方法就更有优势了。

    B. 作为时频分析方法,和希尔伯特-黄变换(HHT)比:
    相比于HHT等时频分析方法,小波依然没脱离海森堡测不准原理的束缚,某种尺度下,不能在时间和频率上同时具有很高的精度;以及小波是非适应性的,基函数选定了就不改了。

    5. 关于文中表述的严谨性

    评论中有不少朋友提到,我的一些表述不够精准。这是肯定的,并且我也是知道的。比如傅里叶变换的理解部分,我所说的那种“乘出一个大的值”的表述肯定是不够严谨的。具体我也在评论的回答中做了解释。我想说的是通俗易懂和精确严谨实在难以兼得,如果要追求严谨,最好的就是教科书上的数学表达,它们无懈可击,但是对于初学者来说,恐怕存在门槛。如果要通俗解释,必然只能侧重一个关键点,而出现漏洞。我想这也是教科书从来不把这些通俗解释写出来的原因吧——作者们不是不懂,而是怕写错。所以想深入理解傅里叶变换和小波变换的朋友还请认真学习教材,如果这篇文章能给一些初学者一点点帮助,我就心满意足了。

    展开全文
    algorithmPro 2021-01-21 11:40:00
  • qq_40985985 2021-07-22 20:11:24
  • qq_41852768 2021-04-01 15:00:56
  • weixin_33054847 2021-04-22 10:00:19
  • weixin_39789094 2021-04-21 19:31:17
  • Infinity_07 2021-05-11 09:30:15
  • weixin_39729115 2020-12-21 08:12:16
  • weixin_39838231 2021-05-23 01:52:37
  • dongke1991 2021-10-01 22:56:58
  • weixin_36221948 2020-12-30 22:39:05
  • weixin_33971463 2021-01-12 23:16:16
  • qq_40052036 2021-02-28 16:21:14
  • weixin_44821644 2021-01-26 23:24:52
  • weixin_34268617 2021-04-22 03:26:18
  • weixin_32228727 2021-07-17 03:44:30
  • weixin_35006181 2021-04-25 13:49:38
  • weixin_33542924 2020-12-29 08:50:53
  • weixin_39565910 2021-04-22 11:02:56
  • qq_43528044 2021-11-25 11:15:47
  • weixin_42128315 2021-02-11 09:49:43
  • kodoshinichi 2021-03-06 10:30:51
  • bigData1994pb 2021-05-20 15:26:54
  • weixin_32488761 2020-12-30 06:07:58
  • lafea 2021-07-11 10:45:28

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 47,944
精华内容 19,177
关键字:

1的傅里叶变换