精华内容
下载资源
问答
  • 由于扩频技术具有很强的抗干扰性能、低功率密度隐蔽传输、信息保密传输、任意选址等特 点,在通信、测距、定位、控制等诸多领域使用时都有其独特优点,因而在国际上受到普遍 ...直接序列扩频通信系统的工作原理。
  • 摘 要: 讨论了高速无线分组网络中多进制正交扩频通信系统的设计和实现,其中在系统核心部分的扩频编码调制和解调等很多功能都由FPGA来完成,并对此进行了详细的介绍。  关键词: FPGA 扩频通信 多进制正交扩频 ...
  • Simulink在直接扩频通信系统的应用 详细介绍了simulink是如何创建扩频通信的!
  • 摘要:讨论了高速无线分组网络中多进制正交扩频通信系统的设计和实现,其中在系统核心部分的扩频编码调制和解调等很多功能都由FPGA来完成,并对此进行了详细的介绍。 门阵列逻辑电路在数字系统设计中得到广泛的应用...
  • 扩频通信系统的FPGA设计》系统讲述了基于FPGA的直接扩频通信系统的设计方法以及相关软硬件开发知识,并结合经典的实例应用,使读者能够从硬件设计、软件开发和系统设计等方面系统掌握FPGA的使用方法和扩频通信系统...
  • 摘要:采用TMS320C54x芯片实现扩频通信系统核心进程——扩频编码与调制。该方案具有参数修改方便、简单易行,可根据实际信道要求迅速调整扩频增益和调制频率优点。  关键词:DSP 扩频通信 卷积码 m序列 ...
  • 混沌伪随机序列的产生及其在扩频通信系统的应用_侯娟
  • 直接序列扩频通信系统的扩频增益受限,强功率的窄带干扰对其性能影响较大,为了提高系统的通信效果,需要采取信号处理技术来抑制干扰。笔者对可调谐数字外差滤波器进行了改进。提出了应用于直接序列扩频通信系统中的...
  • 1 设计思想 1.1选题主要任务 扩频通信具有很强抗干扰能力和安全性,最早出现于军事...利用Matlab工具箱中Simulink通信仿真模块和Matlab函数进行跳频扩频通信系统进行分析和仿真,在对比存在噪声干扰情况下,
  • 扩频通信自上世纪50年代中期被美国军方开始研究以来,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。进入上世纪90年代以后,扩频通信又开始向各种民用通信领域发展,典型如CDMA和...
  • 针对低仰角宽带地空通信中信道多径时延较大和快速时变问题,提出了一种应用滤波器组频域均衡技术(FB-FDE)M元扩频通信系统方案。由于在滤波器组各子带中便于采用简单均衡器消除动态长时延多径影响,而M元...
  • 扩频通信技术在遥控系统的应用、电子技术,开发板制作交流
  • 文中介绍了RF2903的主要特点和引脚功能,并对其在直接序列扩频中的正交解调以及在跳频通信系统中的FSK解调应用进行了分析,同时给出了相应的应用电路。 关键词:接收器;扩频通信;跳频;QPSK/FSK;RF2903RF...
  • 研究了将自适应BP网络应用于直接序列码分多址扩频通信的多用户检测,先给出了在同步高斯信道下运用三层自适应BP网络解调扩频信号结构框图,然后分析了基于这种网络进行多用户检测理论依据和实际性能。仿真结果表明...
  • 介绍了自编码扩频通信的原理,提出了利用自回归滤波的方法从信源...分析与仿真结果表明,AR自编码扩频系统改善了普通自编码扩频系统的误码性能,提高了系统的多址能力,为自编码扩频通信的实际应用提供了可选的方案。
  • 对于急需应用此软件仿真直扩系统的人蛮有用的,可以看看。
  • 理工大学学士学位论文 摘 要 ...本文研究是基于Matlab的扩频通信系统设计扩频通信就是将发送信号进行频谱扩展来达到提高其在信道中抗干扰能力扩频通信关键技术有接收同步技术信道编码技术信道抗干扰技术本文利用WA
  • 直接序列扩频通信系统的设计与实现 摘要: 直接序列扩频通信系统(DS-CDMA)因其抗干扰性强、 隐蔽性好、易于实现码分多址(CDMA)、抗多径干扰、直扩通信速率高等众多优点,而被广泛应用于许多领域中。本设计中首先...
  • 为了抑制多径干扰和多址干扰,要求扩频序列具有较好的相关特性,同时,直接扩频通信已经在实际的卫星通信系统中广泛应用,了解其解扩技术与截获技术,通过电子对抗的手段实现对直接扩频通信系统的性能验证,并采用...
  • 直接序列扩频通信系统(DS-CDMA)因其抗干扰性强、 隐蔽性好、易于...针对频通信广泛的应用,本文用MATLAB工具箱中的SIMULINK通信仿真模块和MATLAB函数对直接序列扩频通信系统进行了分析和仿真,使其更加形象和具体。
  • 直接扩频通信具有低截获概率、抗干扰能力强以及易于实现码分多址等优点,在抗干扰通信及民用移动通信中都得到了广泛的应用。 仿真流程图 用户1扩频加扰调制高斯信道walsh码扩频M序列加扰载波调制高斯白噪声高斯信道...

    前言

    直接扩频序列调制是用速率很高的伪噪声码序列与信息码序列模二相加(波形相乘)后得到复合码序列,用复合码序列去控制载波相位,从而获得直接扩频序列信号的。直接扩频通信具有低截获概率、抗干扰能力强以及易于实现码分多址等优点,在抗干扰通信及民用移动通信中都得到了广泛的应用。

    文章迭代更新

    文章进行了大改
    发现了为什么振幅是0.2和0.4时,系统无法正常工作的原因。因为bitMultiple函数把运算结果格式转换成了int8,导致精度大量失真!当时转换格式是为内存空间与运行速度做打算,结果今天发现做了负优化!修改后,发现载波振幅对于系统的误码率曲线几乎无影响。
    另外,解调函数也做了修改,会根据输入自动计算判决阈值,解决了之前人为设定阈值
    的局限,阈值采用正态分布解算法,详见demodulate函数内注释。
    新版修改了以下函数:
    1. bitMultiple
    2. demodulate
    3. 新增arrayGroupSum函数

    仿真流程图

    用户1
    扩频
    加扰
    调制
    高斯信道
    walsh码
    扩频
    M序列
    加扰
    载波
    调制
    高斯白噪声
    高斯信道
    用户2
    相加
    解调
    去扰
    用户1解扩
    用户2解扩
    还原信号1
    还原信号2

    关键技术细节

    1. 仿真中,用户码元使用双极性(1和-1)码。
    2. 代码的最后通过还原信号与码元做对比,计算误码率,来评价通信质量的好坏。
    3. 为了研究信噪比对误码率的影响,代码中用了多线程,针对不同的信噪比进行解调去扰解扩,计算不同信噪比下的误码率。
    4. 为了研究载波振幅对信噪比——误码率曲线的影响,增加了振幅的迭代。

    扩频解扰解扩部分

    1. 采用64阶的walsh码矩阵,由walsh函数产生。
    2. 两个用户使用同一扩频矩阵的不同相位(实际上是不同一行)进行扩频。
    3. 扩频时,首先对用户码元按照扩频增益,进行周期延拓,然后点乘扩频码,实现扩频。
    4. 解扩时,首先对输入的去扰后的码按扩频时一样的相位对应点乘扩频码,然后进行判决。

    加扰去扰部分

    1. 加扰采用的是5阶的M序列,反馈系数为67(八进制)。
    2. 加扰同样采用点乘,输入码元1:1地点乘加扰码。
    3. 因为加扰码具有很高的自相关性,所以去扰时只需执行加扰时一样的操作即可。

    加扰原理图

    加扰原理图

    调制解调部分

    1. 调制采用BPSK(二进制移相键控)调制。
    2. 调制所使用的载波为正弦波,通过对其等间隔采样形成离散样值。
    3. 调制时,一个加扰后的码元对应相乘一串正弦波的周期采样值,把相乘结果汇总后就是调制后的结果
    4. 解调时,把一个码元所对应的一串正弦波的周期采样值与载波采样值进行点乘,根据点乘结果中,正数、负数还是零多,判决这是什么码元。

    调制原理图

    调制原理图

    解调原理图

    解调原理图

    高斯信道部分

    1. 使用matlab自带的函数awgn(input,snr(dB),inputPower)
    2. 只要传入需要加高斯噪声的信号,信噪比还有输入信号的功率,即可返回添加了高斯白噪声的信号。

    实验结果

    扩频增益为10时,walsh矩阵为64阶时,不同振幅下信噪比误码率曲线

    扩频增益为10时,walsh矩阵为64阶时,不同振幅下信噪比误码率曲线

    扩频增益为20时,walsh矩阵为64阶时,不同振幅下信噪比误码率曲线

    扩频增益为20时,walsh矩阵为64阶时,不同振幅下信噪比误码率曲线
    以上两次实验结果显示,载波振幅对于系统性能无明显影响,这是文章改版前的一个很大的错误!在此笔者向各位读者道歉。

    误码率随信噪比的变化曲线

    误码率随信噪比的变化曲线
    观察以上曲线可以发现,随着信噪比的上升,误码率以近似于抛物线的形式在不断下降,并最终等于0,这足以证明本次直接序列扩频系统仿真符合预期结果。

    源代码

    可以修改的参数

    1. 轮回次数。通过修改轮回次数,获得更好的曲线,或者更快的代码运行速度,代码运行参考速度:i7-4790:实测速率9.8秒/轮回 @1280*2&1280码元20&10扩频增益。
    2. 用户1的码元数量与扩频增益、用户2的码元数量与扩频增益。修改时注意两用户的码元必须是walsh码阶数的增数倍,同时要保证:用户1的码元数量 * 用户1的扩频增益=用户2的码元数量 * 用户2的扩频增益。
    3. walsh码的阶数。但walsh码阶数必须大于扩频增益。
    4. 用户1扩频相位、用户2扩频相位。注意相位必须1到64之间取值,两个用户的取值不能一样。
    5. M序列阶数与返回系数。反馈系数取值有相关要求,详见百度,作为参数传入时要以八进制表示。
    6. 半个载波周期的采样点数。
    7. 最小最大信噪比,以及其尝试步进。
    8. 最小最大载波振幅,以及其尝试步进。

    !下载链接!

    链接:https://pan.baidu.com/s/11Oy55u8Cb7tIKfyH9P9aUQ
    提取码:5k88

    核心代码

    主函数

    main.m

    %{
        本函数是整个仿真的主函数,用于研究在移动通信时,信噪比对误码率的影响
    首先生成随机双极性码,然后经过扩频,加扰,BPSK调制,加高斯白噪声,混合
    然后模拟接收端的解调,去扰,解扩,判决。
        通过比较接收端判决输出与原来的码元,计算出误码率,首先通信系统的仿真
    以及误码率-信噪比的变化曲线的绘制.
    2019/11/22(以上)
        在当前版本中,添加了对信噪比&误码率曲线随BPSK调制载波振幅变化而变化
    的相关研究功能。因为实际发现,之前的代码中曲线会在-20dB到0dB处出现平缓现象,
    实际排查发现是载波的振幅导致的。振幅研究结果发现:振幅小于0.4时,系统无法正常
    工作!其误码率曲线在后期随着信噪比的增加呈现反常膨胀!
    ^-^想要得到抛物线,只有在载波振幅为1的时候。^-^,不然随着振幅的增加,曲线曲线趋于平缓的信噪比范围会越大;
    同时发现大于0.6的曲线会近似相交于某一点,交点前同等信噪比下振幅高的误码率低,但在交点后
    ***同等的信噪比下振幅小的误码率反而低!!!***
        在本版本中,walsh矩阵的所有码元都被用于扩频,没有使用前一版的矩阵截取方法,
    规避了鬼魅版的非严格正交问题,但前面的截取版本恰恰说明非严格正交对本系统影响曲线
    的影响并不是很大,但却可以使得系统能在更低的误码率下工作。
        至此,代码已经经历10次版本迭代。
    2019/12/1(以上)
        第二次答辩,仍出现部分平滑问题,并且老师说系统性能太好了,与实际系统不符,并且
    曲线不应该受振幅的影响,基于此再对代码做修改,计算了输入信号的平均功率,作为第3
    个参数传给awgn,否则awgn会把输入信号的功率视为0dBW!现在曲线基本重合。但0.20.4
    的问题仍未解决!
        至此,程序第11次版本迭代
    2019/12/2(以上)
        第十二次迭代。
        发现了为什么振幅是0.20.4时,系统无法正常工作的原因,是因为
    bitMultiple函数把运算结果格式转换成了int8,导致精度大量失真!当时转换格式是为
    内存空间与运行速度做打算,结果今天发现做了负优化!修改后,发现载波振幅对于系统
    的误码率曲线几乎无影响。
        另外,解调函数也做了修改,会根据输入自动计算判决阈值,解决了之前人为设定阈值
    的局限,阈值采用正态分布解算法,详见demodulate函数内注释。
    2020/7/1(以上)
        i7-4790:实测速率9.8/轮回 @1280*2&1280码元20&10扩频增益
    %}
    clear variable;
    close all;
    
    mulTimes = 5;  %轮回次数
    
    walshOrder = 64;    %walsh码的阶数,必须大于扩频增益
    
    N1 = 1280*2;   %用户1码元数量
    N2 = 1280;   %用户2码元数量
    
    user1SPgain = 10;  %用户1的扩频增益
    user2SPgain = 20;  %用户2的扩频增益
    
    %记录两个用户的walsh相位,注意相位必须在164之间取值
    %两个用户的取值不能一样
    user1Phase = 2; %用户1的相位
    user2Phase = 16; %用户2的相位
    
    %加扰使用的m序列的参数
    mOrder = 5; %级数5级
    feedBack = 67;%反馈系数67
    
    %调整时,半个周期的采样点数
    samplePiont = 4;
    
    %生成需要使用的walsh码
    walshCode = walsh(walshOrder);
    
    %针对低性能电脑做优化,采取以时间换取空间的思路
    maxSnr = 20;    %尝试的最大信噪比
    minSnr = -20;   %尝试的最小信噪比
    div = 1;      %信噪比的尝试步进
    maxTime = (maxSnr-minSnr)/div;  %尝试次数
    timesUser1Acc = zeros(mulTimes,maxTime);
    timesUser2Acc = zeros(mulTimes,maxTime);
    
    %生成双极性码片
    user1 = genBipolar(N1);
    user2 = genBipolar(N2);   
    
    %扩频
    spread1 = spreadSpectrum(user1,walshCode,user1SPgain,user1Phase);
    spread2 = spreadSpectrum(user2,walshCode,user2SPgain,user2Phase);
    
    %加扰
    Mseq1 = MseqGen(mOrder,feedBack); %用户1加扰用的m序列
    Mseq2 = MseqGen(mOrder,feedBack); %用户2加扰用的m序列
    user1scarm = scarmbling(spread1,Mseq1);
    user2scarm = scarmbling(spread2,Mseq2);
    
    maxAmp = 1.2;    %尝试的最大载波振幅
    minAmp = 0.2;   %尝试的最小载波振幅
    divAmp = 0.2;      %载波振幅的尝试步进
    maxTimesAmp = floor((maxAmp-minAmp)/divAmp);  %振幅尝试次数
    
    ampRecords1 = zeros(maxTimesAmp,maxTime);
    ampRecords2 = zeros(maxTimesAmp,maxTime);
    
    for amp = 1:maxTimesAmp %测试不同的载波振幅下的曲线
        
        fprintf('目前正在第%d个振幅\n',amp);
    
        %调制BPSK
        %生成载波,两用户使用同一个载波
        carrier = (minAmp + divAmp*(amp-1))*sin(0:(pi/samplePiont):(2*pi-2*pi/samplePiont));
        user1modulate = modulate(user1scarm,carrier);
        user2modulate = modulate(user2scarm,carrier);
        
        %计算载波功率
        power = powerCnt(carrier);
        
        for times = 1:mulTimes
    
            fprintf('目前正在第%d个轮回\n',times);
    
            user1Acc = zeros(1,maxTime);
            user2Acc = zeros(1,maxTime);
    
            parfor index = 1:maxTime 
                snr = minSnr + (index-1)*div; %加在发送信号上的高斯噪声的信噪比(dBW)
                            
                %通过高斯信道,添加高斯噪声
                user1send = awgn(user1modulate,snr,power);
                user2send = awgn(user2modulate,snr,power);
    
                %接收方
                receive = user1send + user2send; %收到混合起来的信号
    
                %解调
                demodulateRes = demodulate(receive,carrier);
    
                %去扰
                user1Descarm = deScarmbling(demodulateRes,Mseq1);
                user2Descarm = deScarmbling(demodulateRes,Mseq2);
    
                %解扩
                user1deDS = deSpreadSpectrum(user1Descarm,walshCode,user1SPgain,user1Phase);
                user2deDS = deSpreadSpectrum(user2Descarm,walshCode,user2SPgain,user2Phase);
    
                %计算误码率
                [~,user1Accuracy] = compare(user1,user1deDS);
                [~,user2Accuracy] = compare(user2,user2deDS);
                user1Acc(index) = 1-user1Accuracy;
                user2Acc(index) = 1-user2Accuracy;
            end
            timesUser1Acc(times,:) = user1Acc;
            timesUser2Acc(times,:) = user2Acc;
        end
        %总结统计多次实验的结果
        for i = 1:maxTime
            user1Acc(i) = mean(timesUser1Acc(:,i));
            user2Acc(i) = mean(timesUser2Acc(:,i));
        end
        ampRecords1(amp,:) = user1Acc;
        ampRecords2(amp,:) = user2Acc;
    end
    
    %误码率随信噪比的变化曲线
    figure(1);
    X1 = (minSnr:div:maxSnr-div);
    semilogy(X1,ampRecords1(5,:),'b');
    xlabel('信噪比(dB)');
    ylabel('误码率');
    title('误码率随信噪比的变化曲线');
    hold on;
    semilogy(X1,ampRecords2(5,:),'g');
    legend('用户1(扩频增益10)','用户2(扩频增益20)');
    
    %用户1振幅不同的误码率随信噪比的变化曲线
    figure(2);
    for i = 1:maxTimesAmp
        semilogy(X1,ampRecords1(i,:));
        hold on;
    end
    xlabel('信噪比(dB)');
    ylabel('误码率');
    title('用户1振幅不同的误码率随信噪比的变化曲线');
    legend('0.2','0.4','0.6','0.8','1.0');
    
    %用户2振幅不同的误码率随信噪比的变化曲线
    figure(3);
    for i = 1:maxTimesAmp
        semilogy(X1,ampRecords2(i,:));
        hold on;
    end
    xlabel('信噪比(dB)');
    ylabel('误码率');
    title('用户2振幅不同的误码率随信噪比的变化曲线');
    legend('0.2','0.4','0.6','0.8','1.0');
    

    walsh码生成

    walsh.m

    % 产生 Walsh函数通用函数
    % 参数N表示Walsh函数阶数,当N不是2的幂时,通过向无穷大取整使得所得Walsh阶数为2的幂
    function [walsh]=walsh(N)
        M = ceil(log2(N));
        wn = 0;
        for i = 1:M
            w2n = [wn,wn;wn,~wn];
            wn = w2n;
        end
        wn(wn == 0) = -1;
        walsh = int8(wn);
    end
    

    M序列生成

    MseqGen.m

    %M序列发生器
    %order:阶数
    %setBakc:反馈系数
    function res = MseqGen(order,feedBack)
        res = zeros(2^order-1,order);
        feedBack = Oct2Bin(feedBack);
        feedBack = feedBack(2:6);
        temp = rand(1,order);
        temp(temp < 0.5) = 0;
        temp(temp >= 0.5) = 1;
        res(1,:) = temp;
        for i = 2:2^order-1
            newBit = sum(res(i-1,feedBack == 1));
            newBit = mod(newBit,2);
            for j = 1:order-1
                res(i,j+1) = res(i-1,j);
            end
            res(i,1) = newBit;
        end
        res(res == 0) = -1;
    end
    

    扩频模块

    spreadSpectrum.m

    %扩频函数
    %userCode:需要扩频的用户码元
    %PNseq:用于扩频的随机码
    %gain:扩频增益
    %phase:用户扩频码相位
    function res = spreadSpectrum(userCode,PNseq,gain,phase)
        %首先对码元进行周期延拓
        [~,userCode2] = selfCopy(userCode,gain);
        %计算扩频码的行数
        [lineSize,~] = size(PNseq);
        %对扩频码进行重排行序,使初相位位于第一行
        PN = PNseq(phase:lineSize,:);
        PN = [PN;PNseq(1:phase-1,:)];
        res = bitMultiple(userCode2,PN(:)');
    end
    

    解扩模块

    deSpreadSpectrum.m

    %本函数用于解扩
    %userCode:需要解扩的用户码元
    %PNseq:用于扩频的随机码
    %gain:扩频增益
    %phase:用户扩频码相位
    function res = deSpreadSpectrum(userCode,PNseq,gain,phase)
        [lineSize,~] = size(PNseq);
        PN = PNseq(phase:lineSize,:);
        PN = [PN;PNseq(1:phase-1,:)];
        temps = bitMultiple(userCode,PN(:)');
        %这里是matlab的一个小bug,重排序以列作为索引,我的要求是以行
        %作为索引,所以要行列反写再取转置矩阵
        temps = reshape(temps,gain,length(temps)/gain);
        temps = temps';
        %解扩第二步,码元判决
        res = ones(1,length(temps(:))/gain);
        for i = 1:length(temps(:))/gain
            if sum(temps(i,:)) < 0
                res(i) = -1;
            end
        end
    end
    

    加扰模块

    scarmbling.m

    %加扰函数
    %source:被加扰的信号
    %PNCode:用于加扰的扰码
    %1:1的数据加扰
    function res = scarmbling(source,PNCode)
        res = bitMultiple(source,PNCode);
    end
    

    去扰模块

    deScarmbling.m

    %本函数用于对信号做去扰处理,实际操作与加扰完全一致
    %input:需要去扰的信号
    %PNseq:用于去扰的随机序列
    function res = deScarmbling(input,PNseq)
        res = bitMultiple(input,PNseq);
    end
    

    调制模块

    modulate.m

    function res = modulate(source,carrier)
    %调制函数
    %source:被调制信号
    %carrier:载波信号
        sizeSource = length(source);
        sizeCarrier = length(carrier);
        res = zeros(sizeSource,sizeCarrier);
        for i = 1:sizeSource
            res(i,:) = double(source(i))*carrier;
        end
        %把res按行拼接成一行
        res = res';
        res = res(:);
    end
    

    解调模块

    demodulate.m

    function res = demodulate(input,carrier)
    %本函数实现对接收信号的解调
    %原理:极性比较
    %input:被解调的信号
    %carrier:载波信号
    
    %按位循环相乘
    res_bitMultiple = bitMultiple(input,carrier);
    %分组相加
    res_arrayGroupSum = arrayGroupSum(res_bitMultiple,length(carrier));
    %{
        以上处理后,结果正负侧近似于泊松分布,为了处理方便,根据大数定理,
        近似地视为正态分布,从而计算阈值。按照正态分布,-1,1,0平分概率,每一个分得1/3的概率。
    %}
    %计算标准差
    res_std = std(res_arrayGroupSum);
    %计算平均数
    res_mean = mean(res_arrayGroupSum);
    %解算阈值
    syms temp;
    %以下计算时会有一个"Unable to solve symbolically. Returning a numeric solution using
    %vpasolve"的警告,让系统不显示
    warning off;
    threshhold_negative = double(solve(normcdf(temp,res_mean,res_std)==1/3));
    %计算概率为2/3时的阈值,也就是判决为1的阈值
    threshhold_postive = double(solve(normcdf(temp,res_mean,res_std)==2/3));
    res = zeros(1,length(res_arrayGroupSum));
    for i = 1:length(res_arrayGroupSum)
        if res_arrayGroupSum(i) > threshhold_postive
            res(i) = 1;
        elseif res_arrayGroupSum(i) < threshhold_negative
            res(i) = -1;
        end
    end
    end
    

    模块测试代码

    本部分的代码用于单独测试三大模块是否正常工作

    扩频解扩模块测试

    testSpreadSpectrum.m

    %本代码用于测试扩频,解扩模块是否正常工作
    %注意扩频与解扩针对的是双极性码
    function testSpreadSpectrum()
        raw = genBipolar(64);
        walshCode = walsh(64);
        afterDSSS = spreadSpectrum(raw,walshCode,4,2);
        res= deSpreadSpectrum(afterDSSS,walshCode,4,2);
        [trueNum,accuracy] = compare(raw,res);
        fprintf("正确码元数量:%d\n正确率:%f\n",trueNum,accuracy); 
    end
    

    加扰去扰模块测试

    testScarmbling.m

    %本代码用于测试加扰,去扰模块能否正常工作
    function testScarmbling()
        %M序列发生器可以自定义阶数和反馈系数
        Mseq = MseqGen(5,67); %产生加扰用的m序列
        raw = tripleGen(1e6);
        afterScarmb = scarmbling(raw,Mseq);
        res = deScarmbling(afterScarmb,Mseq);
        [trueNum,accuracy] = compare(raw,res);
        fprintf("正确码元数量:%d\n正确率:%f\n",trueNum,accuracy);    
    end
    

    调制解调模块测试

    testModulate.m

    %本代码用于测试BPSK调制与解调模块能否正常工作
    function testModulate()
        carrier = 10*sin(0:pi/32:2*pi-pi/32);
        raw = tripleGen(1e6);
        afterModu = modulate(raw,carrier);
        res = demodulate(afterModu,carrier);
        [trueNum,accuracy] = compare(raw,res);
        fprintf("正确码元数量:%d\n正确率:%f\n",trueNum,accuracy);   
    end
    

    非核心代码

    八进制转二进制模块

    Oct2Bin.m

    %八进制转二进制,返回一个二进制数组
    function res = Oct2Bin(value)
        [bitNum,bit] = getPalces(value);
        res = int8(zeros(1,bitNum*3));
        for i = 1:bitNum*3
            bitMain = bit(floor((i-1)/3)+1);
            switch mod(i-1,3)
                case 0
                    if bitMain >= 4
                        res(i) = 1;
                    end
                case 1
                    if bitMain == 2 || bitMain == 3 || bitMain == 6 || bitMain == 7
                       res(i) = 1;
                    end
                case 2
                    if mod(bitMain,2) ~= 0
                        res(i) = 1;
                    end
            end
        end
    end
    

    点乘模块

    bitMultiple.m

    %按bit循环相乘函数,如果信号长度不一致,则较短的信号被循环使用
    %signal1:相乘信号1
    %signal2:相乘信号2
    %res:相乘结果
    function res = bitMultiple(signal_1,signal_2)
        sizeSource = length(signal_1);
        sizePNCode = length(signal_2);
        %如果长度不满足条件时,调换顺序递归调用
        if sizeSource < sizePNCode
            res = bitMultiple(signal_2,signal_1);
            return;
        end
        res = zeros(1,sizeSource);
        for i = 1:sizeSource
            res(i) = signal_1(i) * signal_2(mod(i-1,sizePNCode)+1);
        end
        res = int8(res);
    end
    

    码元比较模块

    compare.m

    %比较两个数组
    %input1:数组1
    %input2:数组2
    %res:正确码元数量
    %accuracy:正确率
    function [res,accuracy] = compare(input1,input2)
        temp = (input1 == input2);
        res = length(find(temp == 1));
        sizeInput = max(length(input1),length(input2));
        accuracy = res/double(sizeInput);
    end
    

    双极性码生成模块

    genBipolar.m

    %产生双极性码
    %num:双极性码的规模
    %res:满载双极性码的数组
    function res = genBipolar(num)
        res = rand(1,num);
        res = value2Bipolar(res);
    end
    

    数字位数获取模块

    getPlaces.m

    %统计一个数字的位数,并返回每位的数字
    function [Places,item] = getPalces(value)
        Places = 0;
        temp = abs(value);
        while temp ~= 0
            temp = floor(temp/10);
            Places = Places + 1;
        end
        item = uint8(zeros(1,Places));
        temp = value;
        for i = Places:-1:1
            item(i) = mod(temp,10);
            temp = floor(temp/10);
        end
    end
    

    功率计算模块

    powerCnt.m

    %计算输入信号的平均功率(dBW)
    function res = powerCnt(input)
        res = 10*log10(sum(input.*input));
    end
    

    周期延拓模块

    selfCopy.m

    %本函数实现数组的周期延拓
    %input:需要延拓的数组
    %times-1:延拓的次数
    %比如selfCopy([1,2,3],2) = [1,2,3,1,2,3,1,2,3]
    function [res,res2] = selfCopy(input,times)
        if times <= 1
            res = input;
        else
            res = zeros(length(input),times);
            for i = 1:times
                res(:,i) = input;
            end
            res2 = res';
            res2 = res2(:)';
            res = res(:)';
        end
    end
    

    三极码生成模块

    tripleGen.m

    %本函数用于生成指定数量的随机三极性码,主要用于做模块测试
    %num:数量
    %res:满载结果的数组
    function res = tripleGen(num)
        raw = rand(1,num);
        for i = 1:num
            if raw(i) >= 0.75
                raw(i) = 1;
            elseif raw(i) <= 0.25
                raw(i) = -1;
            else
                raw(i) = 0;
            end
        end
        res = int8(raw);
    end
    

    0~1转双极性模块

    value2Bipolar.m

    % 本函数用户把随机生成的0~1之间的double数转换成双极性码
    function res = value2Bipolar(input)
        res = zeros(1,length(input));
        for index = 1:length(input)
            if(input(index) < 0.5)
                res(index) = -1;
            else
                res(index) = 1;
            end
        end
        res = int8(res);
    end
    

    分组相加模块

    arrayGroupSum.m

    function res = arrayGroupSum(input,group_num)
    %arrayGroupSum 数组分组求和,如果数组长度除去group_num无法整除,则截短input数组
    %input 目标数组
    %group_num 分组数
    len = floor(length(input)/group_num);
    res = zeros(1,len);
    for i = 1:len
        res(i) = sum(input((i-1)*group_num+1:i*group_num));
    end
    end
    
    展开全文
  • 以此技术进行信号传输便形成了扩频通信技术[1-3]。在许多施工现场,需要一种带有遥控调节装置进行远距离操作。以在工业焊接施工过程为例,目前常用焊机遥控器是有线遥控器,即从焊机引出多芯控制电缆与遥控...
  • 提出一种改进混沌扩频序列, 并将其应用在多用户混沌扩频通信系统中, 给出了多用户混沌扩频通信系统的理论推导和SIMULINK仿真模型。对该系统进行了详细的性能分析, 包括信噪比、用户数、改进混沌扩频序列的分形参数和...
  • 扩频通信技术自 50 年代中期美国军方开始研究,一直为军事通信所独占, 广泛应用于军事通信,电子对抗以及导航,测量等各个领域,直到 80 年代初才被应用于民 用通信领域. 为了满足日益增长民用通信容量需求和有效地...
  • 介绍了自编码扩频通信的原理,提出了利用自回归滤波的方法从信源序列中提取扩频码的AR自编 ...扩频系统改善了普通自编码扩频系统的误码性能,提高了系统的多址能力,为自编码扩频通信的实际应用提供了 可选的方案。
  • 扩频通信系统与常规的通信系统...理论分析了直接序列扩频通信系统的原理,并用功能强大的仿真软件SystemView对直接序列扩频通信系统进行建模,仿真分析了系统的抗干扰特性等特点,对扩频通信系统的实现有着重要意义。

空空如也

空空如也

1 2 3 4 5 ... 16
收藏数 306
精华内容 122
关键字:

扩频通信系统的应用