精华内容
下载资源
问答
  • 透彻理解万以内数的笔算减法运算法则。2.能正确的笔算多位数的减法,会解答有关的应用题。3.培养良好的学习习惯,提高学生的计算能力。4.用多种方法解决问题。5.学会减法的简便计算以及估算。二、重点、难点:重点...

    课程解读

    一、学习目标:

    1.透彻理解万以内数的笔算减法的运算法则。

    2.能正确的笔算多位数的减法,会解答有关的应用题。

    3.培养良好的学习习惯,提高学生的计算能力。

    4.用多种方法解决问题。

    5.学会减法的简便计算以及估算。

    二、重点、难点:

    重点:减法的运算法则,连续退位减法,培养学生的发散思维。

    难点:减法的运算法则,连续退位减法,培养学生的发散思维。

    三、考点分析:

    本讲内容在考试中占有很重的分量,要求同学们必须熟练掌握万以内数的减法的运算法则,本讲是数学计算的基础,考试中直接以“笔算”的方式体现。同时,估算这一知识点会以填空题的形式出现。

    知识梳理

    一、万以内数的减法法则:

    1.相同数位对齐;

    2.从个位算起;

    3.哪一位上的数不够减,就从前一位退1当10再减。

    二、估算的方法:

    结合实际,把题目中的数分别看作与它接近的整百或整十的数,再通过口算确定它们的得数的范围。

    三、简便算法:

    一个数减去接近整百的数,先把接近整百的数当成整百的数来计算,多减了几,就再加上几。

    典型例题

    方法应用题:

    例1.下列竖式计算正确的是。()

    思路分析:

    1)题意分析:本例考查笔算减法的运算法则,特别是被减数中有0的,加强对该法则的运用能力就能解决这一类问题。

    2)解题思路:用笔算减法法则来判断上面四个小题。

    解答过程:

    A、个位不够减,向十位借1当10,但十位计算时没有减1.错误

    B、十位向百位借了1,可百位运算时没有减去1.错误

    C、根据笔算减法运算法则,正确

    D、个位向十位借了1,但十位运算时没有减去1,错误

    解题后的思考:本例主要考查笔算减法的运算法则,同学们容易因粗心而犯错误,忘记把退位的1减去,只要养成认真、细心的学习习惯就可以做到正确无误。

    例2.你能很快地算出963-197的得数吗?

    思路分析:

    1)题意分析:一个数减去接近整百的数,先把接近整百的数当成整百的数来计算,多减了几,就再加上几。

    2)解题思路:先把197看作200来进行计算。

    再把多减去的数加上。

    解答过程:

    963-197=963-200+3

    =763+3

    =766

    解题后的思考:本例考查了减法的简便计算方法,只要记清多减了几就再加上几就能正确解答本例,比较容易犯的错误就是:多减了但最后忘记加上,或者少加了。所以,同学们在计算时一定要细心哦!

    例3.数学小门诊

    改正

    思路分析:

    1)题意分析:用笔算减法法则判断此题的正确性。

    2)解题思路:个位不够减向十位借1,十位在运算时要减去1,十位不够减向百位借1,百位在运算时亦要减去1。

    解答过程:

    解题后的思考:本例中,同学们容易犯的错误就是退位之后又忘记减1,养成认真细心的学习习惯是避免错误的关键。

    例4.算式:469-179的结果肯定()

    A.不到300

    B.大于300

    C.小于200

    思路分析:

    1)题意分析:用估算的知识解决本例

    2)解题思路:结合实际,把题目中的数分别看作与它接近的整百或整十的数,再通过口算确定它们的得数的范围。

    解答过程:

    解题后的思考:掌握估算的方法,并根据实际情况进行估算,难点是:是估算成整百数还是整十数,这要视实际情况而定

    综合运用题

    例5.你会吗?在中填上合适的数。

    758-=

    288+125

    思路分析:

    1)题意分析:利用等号两边的数值相同来解决本例

    2)解题思路:288+125的结果与758-()的结果相同,先算出前者的结果,再根据减法性质,求出所需结果

    解答过程:

    288+125=413

    758-413=345

    所以中应填345

    解题后的思考:本例对等号的性质,等量代换的方法,笔算减法法则的应用进行了综合考查,同学们容易出现的错误是混淆计算顺序,但只要循序渐进,就能避免错误。

    例6.五、六年级全体同学要去看电影,五年级有189个学生,六年级有219个学生,电影院里一共有400个座位,请问够坐吗?多了或少了多少个座位?

    思路分析:

    1)题意分析:将总人数和座位数进行比较,就能知道够不够坐了。

    2)解题思路:五年级人数+六年级人数=总人数

    总人数>400不够

    总人数<400够

    解答过程:189+219 =408

    408>400所以不够

    408-400=8(个)

    答:不够坐,还差8个座位。

    解题后的思考:本例综合运用了万以内数的加减法,同时又考查了数的比较方法,同学们容易出现的错误是:对题目理解不清,解题思路判断错误。审清题意是解答本例的关键。

    思维突破题(所学知识点得找到相关的拓展点进行解析)

    例7.在里填上合适的数。

    思路分析:

    1)题意分析:考查笔算减法法则。特别注意,不够减时应向前一位借1当10。

    2)解题思路:从个位分析,小数不可能减大数,那就是有退位现象,差+减数=被减数,结合以上两点解决此题。

    ①个位:7+__8_=15百位:9被借走“1”十位:3+__=十几-1(答案不唯一)

    ②个位:5+7=12十位:可以退“1”,也可以不退,百位:视十位的情况而定。

    解答过程:

    (答案不唯一)

    解题后的思考:本例是一道发散思维的题只要满足,被减数-减数=差这个条件即可。我们用比较排除的方法来解,有步骤的计算能减少失误。

    例8. 1袋糖和1袋盐共重270克,1袋糖和2袋盐共重390克,问:1袋盐重多少克?1袋糖重多少克?

    思路分析:

    1)题意分析:利用等量代换先求出1袋盐的重量,再算出1袋糖的重量

    2)解题思路:(2袋盐+1袋糖)-(1袋糖+1袋盐)=1袋盐

    270-1袋盐=1袋糖

    解答过程:

    1袋盐:390-270=120克

    1袋糖:270-120=150克

    答:1袋糖重150克,1袋盐重120克。

    解题后的思考:本例我们采用以整体求部分的方法来解,同学们在思考的时候容易走进思维误区,不能充分理解题意。解题时不能循序渐近的得出结果时,我们就必须进行逆向思维。

    提分技巧

    本讲知识是数学计算的基础,考试中以计算题形式出现为多,同学们在计算中最容易出现退位之后忘记减“1”这种情况,同时要注意被减数中有0时,退位后应直接用9减。熟练、认真、细心是学习本讲知识的关键。

    预习导学

    一、预习新知

    我们学会了万以内数的加减法后,该用什么方法去验证我们到底做对了没有呢?

    下节课我们将学习加减法的验算。

    二、预习点拨

    【反思】

    (1)加法的验算方法是什么?

    (2)减法的验算方法又是什么?

    (3)验算方法都是以什么为根据的?

    同步练习

    (答题时间:45分钟)

    一、用竖式计算。

    (1)4  8

    1(2)9

    1   3(3)8

    0

    0(4)5

    0  8

    二、小老师:判断对错(对的在○里打√,错的在○里打×并改正)

    *三、试一试

    (1)看看里应填几。

    (2)用简便方法计算。

    527-298=

    (3)先估一估,再笔算。

    698-303=

    **四、在()中填上合适的数。

    (1)()+168=823-158

    (2)654-()= 376+104

    *五、一只青蛙上午吃了253只害虫,下午比上午少吃了94只。

    (1)这只青蛙下午吃了多少只害虫?

    (2)这只青蛙一天共吃多少只害虫?

    (3)根据计算结果,你有什么建议?

    试题答案

    一、用竖式计算。

    二、小老师:判断对错(对的在○里打√错的打×并改正)

    *三、试一试

    (1)看看里填几。

    (2)用简便方法。

    527-298=527-300+2=229

    (3)先估一估,再笔算。

    698-303=395

    **四、在()中填上合适的数。

    (1)(497)+168=823-158

    (2)654-(174)= 376+104

    823-158=665   665-168=497

    376+104=480   654-480=174

    *五、一只青蛙上午吃了253只害虫,下午比上午少吃了94只。

    (1)这只青蛙下午吃了多少只害虫?

    253-94=159(只)

    答:这只青蛙下午吃了159只害虫。

    (2)这只青蛙一天吃了多少只害虫?

    253+159=412(只)

    答:这只青蛙一天吃了412只害虫。

    (3)根据计算结果,你有什么建议?

    青蛙是益虫,请大家保护青蛙,保护我们的环境。

    展开全文
  • 专项复习1—加减法运算法则一、整数加减法1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2.整数减法计算法则:相同数位对齐,从低位减起,哪一位上的数不够减,就从它的前...

    专项复习

    1

    —加减法运算法则

    一、整数加减法

    1.

    整数加法计算法则:

    相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

    2.

    整数减法计算法则:

    相同数位对齐,

    从低位减起,

    哪一位上的数不够减,

    就从它的前一位退一作十,

    和本位上的数合并在一起,再减。

    练习

    (列竖式计算)

    225

    214=      521

    26=       97+535=         198

    157=

    362

    138=     479

    254=      450

    242=        283

    76=

    二、小数加减法

    计算小数加、减法,先把各数的

    小数点对齐

    .....

    (也就是把相同数位上的数对齐)

    再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数

    点。

    练习

    (列竖式计算)

    0.608 + 0.842 =

    75.8 + 26.28 =

    2.983 + 0.52 =

    12.05

    0.87 =

    6.07

    4.896 =

    10

    0.41 =

    三、分数加减法

    1.

    同分母分数加减法计算法则:

    同分母分数相加、减,分母(

    不变

    )

    ,

    分子(

    相加减

    )

    ,结果要(

    约分)

    2.

    异分母分数加减法计算法则:

    异分母分数相加、

    减,

    (

    通分

    )

    然后按照

    (

    同分母分数加减法计算法则

    )

    进行计算。

    (

    注意结果要(

    约分

    )

    ,假分数要化成带分数

    )

    展开全文
  • 1数学加减法运算和运算法则一·教学目标1·掌握数学的加法及解答一些简单应用题;2·了解运算法则,灵活运用一些数字类题目;3·通过讲解引导学生形成类比思想并调动起兴趣;二·教学用具动物群体图片(用于加减法...

    1

    数学加减法运算和运算法则

    一·教学目标

    1

    ·掌握数学的加法及解答一些简单应用题;

    2

    ·了解运算法则,灵活运用一些数字类题目;

    3

    ·通过讲解引导学生形成类比思想并调动起兴趣;

    二·教学用具

    动物群体图片(用于加减法和数数强化

    )

    ,对硬件强的需要用

    PPT

    讲解展示,对硬件弱的

    需要文字表述。

    准备一些古人计数的方法和故事,

    如绳结法和石头计数法。

    并要求用趣味性

    讲解来引起学生兴趣。

    三·教学方法

    教师通过有浅到深的讲解,让学生了解并掌握加减法和法则。要求尽可能多用卡通人物

    和故事情节来编题目以吸引注意,要着重于加法讲解带出减法,引导学生形成类比的思路,

    让其自行总结减法。

    四·课时安排

    需要大约

    6

    个学时

    五·内容安排(注意,这内容可根据老师自己安排)

    第一课时:重点引导学生来关注你,开场白先介绍自己,可能学生遇到新老师会兴奋,课

    堂会比较活跃,要适当给予压制,但不能让学生感到害怕。

    开始正式上课,

    首先通过对古人的计数方法的视频·

    图片或故事来作为开端,

    然后引出主

    题:加减法运算。要求学生举例生活中可以用到的例子,用以活跃课堂气氛。

    要主动与学生交流,

    了解他们知识水平,

    用来确定教学进度。

    (

    提一些简单的问题,

    1+1=2

    等问题,

    还有让学生来做一个个简单的课堂小游戏介绍自己的同桌,

    了解其属于哪个学习段

    );

    要求他们会去后制备

    100

    支短棒用于下节课用;

    第二课时:

    开始进入

    10

    以内的加法运算,

    注意多用图片来呈现,

    或用生活中买东西的例

    子来举例;

    先让他们在课堂上从

    1

    数到

    50

    ,注意观察学生的表情,这也是了解他们底子的方法。

    然后引导他们其实加多少就是向后数多少个。如

    5+4=

    就是先拿出

    5

    根手指,后数

    4

    支,最

    后重新数。对这要多教几次,带学生一起做那些题目使其熟悉;

    训练题

    一.计算题

    2+4=

    5+3=

    7+2=

    3+2=

    8+1=

    4+2=

    6+3=

    9+1=

    4+5=

    5+4=

    2+1=

    1+3=

    二.应用题

    1.

    小明一天种树

    4

    棵,小红种树

    5

    棵,问一共种树多少棵?

    2.

    灰太狼一天去抓羊,先抓住喜洋洋和沸羊羊。后抓住美羊羊、懒洋

    展开全文
  • 概率相对而言,就是考记忆的了,记好书上的公式就行了,计算还是靠微积分,所以一般都放在最后,特别是放在高数的后面。另外,针对做题的问题。我认为,还是做考研辅导书上的比较好,教材上的题也可以练,...

    数学复习经验之谈

    应该先看看高数,因为相对而言,高数偏向于理解,出的题比较灵活,需要长时间的练习才能有所提高。

    线代虽然也是考理解的,不过题目出得都比较简单一点,一般都是送分的,所以不要花太多的时间,多了也是浪费。

    概率相对而言,就是考记忆的了,记好书上的公式就行了,计算还是靠微积分,所以一般都放在最后,特别是放在高数的后面。

    另外,针对做题的问题。我认为,还是做考研辅导书上的比较好,教材上的题也可以练,不过那些和考研都有一定的距离,不是太难就是太简单,会浪费你的时间的。

    我推荐,高数用陈文登或者李正元的,线代用李永乐的,概率嘛因为不难,用谁的都差不多。

    至于,是先做题好呢还是先看知识点好呢?我认为,两者是相互促进的,同步进行的。特别是在第一遍,一定要打扎实基础。开始的时候,要以考研大纲为标准,把知识点一个一个的过一遍,怎么过呢?先看看教材上的相关内容,看完一个知识点,就做几道考研参考书上的题,通过做题及时发现问题,然后回过去再看教材,这样循环往复,直到搞懂为止。只有在一个知识点搞懂了之后才能去搞下一个,不要一下子弄好多,都没弄扎实,到头来还得从头再来,很不划算。

    =\=\=\=\=

    这里有一些数学公式,可供你参考:

    http://iask.sina.com.cn/ishare/browse_file.php?fileid=694775

    =\=\=\=\=

    下面是《数学一考试大纲》

    数学一

    考试科目:

    高等数学、线性代数、概率论与数理统计

    高等数学

    一、函数、极限、连续

    考试内容

    函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

    数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :

    函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

    考试要求

    1.理解函数的概念,掌握函数的表示法,并会函数关系的建立。

    2.了解函数的有界性、单调性、周期性和奇偶性.

    3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

    4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.

    5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.

    6.  掌握极限的性质及四则运算法则

    7.  掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

    8.  理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.

    9.  理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

    10.  了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

    二、一元函数微分学

    考试内容。

    导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别  函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径

    考试要求

    1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

    2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

    3.了解高阶导数的概念,会求简单函数的n阶导数.

    4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。

    6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.

    9.掌握用洛必达法则求未定式极限的方法.

    7.  理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.

    8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

    10.了解曲率和曲率半径的概念,会计算曲率和曲率半径.

    三、一元函数积分学

    考试内容

    原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分概定积分的应用

    考试要求

    1.理解原函数概念,理解不定积分和定积分的概念.

    2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

    3.会求有理函数、三角函数有理式及简单无理函数的积分.

    4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.

    5.了解广义积分的概念,会计算广义积分.

    6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等.

    四、向量代数和空间解析几何

    考试内容

    向量的概念  向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程

    考试要求

    1. 理解空间直角坐标系,理解向量的概念及其表示。

    2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。

    3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。

    4.掌握平面方程和直线方程及其求法。

    5.会求平面与平面、平面与直线、  直线与直线之间的夹角,并会利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题。

    6.会求点到直线以及点到平面的距离。

    7. 了解曲面方程和空间曲线方程的概念。

    8.  了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

    9.  了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求其方程。

    五、多元函数微分学

    考试内容

    多元函数的概念 二元函数的几何意义 二元函数的极限和连续的概念 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法  二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用

    考试要求

    1.理解多元函数的概念,理解二元函数的几何意义。

    2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。

    3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。

    4.理解方向导数与梯度的概念并掌握其计算方法。

    5.掌握多元复合函数一阶、二阶偏导数的求法。

    6.了解隐函数存在定理,会求多元隐函数的偏导数。

    7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。

    8.了解二元函数的二阶泰勒公式。

    9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。

    六、多元函数积分学

    考试内容

    二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 已知全微分求原函数 两类曲面积分的概念、性质及计算  两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(STOKES)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用

    考试要求

    1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。

    2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。

    3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

    4.掌握计算两类曲线积分的方法。

    5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。

    6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式、斯托克斯公式计算曲面、曲线积分。

    7.了解散度与旋度的概念,并会计算。

    8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。

    七、无穷级数

    考试内容

    常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质  简单幂级数的和函数的求法 初等幂级数展开式函  函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dlrichlei)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数

    考试要求

    1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。

    2.掌握几何级数与p级数的收敛与发散的条件。

    3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。

    4.掌握交错级数的莱布尼茨判别法。

    5. 了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。

    6.了解函数项级数的收敛域及和函数的概念。

    7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法。

    8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。

    9.了解函数展开为泰勒级数的充分必要条件。

    10.掌握ex、sinx、cosx、ln(1+x)和(1+x)α的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。

    11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[-L,L]上的函数展开为傅里叶级数,会将定义在[0,L]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。

    八、常微分方程

    考试内容

    常微分方程的基本概念  变量可分离的方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程简单应用

    考试要求

    1了解微分方程及其阶、解、通解、初始条件和特解等概念.

    2.掌握变量可分离的方程及一阶线性方程的解法.

    3.会解齐次方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程

    4.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')和y''=f(y,y').

    5.理解线性微分方程解的性质及解的结构定理.

    6.掌握二队常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

    7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.

    8.会解欧拉方程.

    9.会用微分方程解决一些简单的应用问题.

    线性代数

    一、行列式

    考试内容

    行列式的概念和基本性质 行列式按行(列)展开定理

    考试要求

    1.了解行列式的概念,掌握行列式的性质.

    2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

    二、矩阵

    考试内容

    矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵等价 分块矩阵及其运算

    考试要求

    1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.

    2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质

    3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

    4.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

    5. 了解分块矩阵及其运算.

    三、向量

    考试内容

    向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质

    考试要求

    1.理解n维向量的概念、向量的线性组合与线性表示的概念.

    2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.

    3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.

    4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系”

    5.了解n维向星空间、子空间、基底、维数、坐标等概念.

    6.了解基变换和坐标变换公式,会求过渡矩阵.

    7.了解内积的概念,掌握线性无关向量组标准规范化的施密特(SChnddt)方法.

    8.了解标准正交基、正交矩阵的概念,以及它们的性质.

    四、线性方程组

    考试内容

    线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解

    考试要求

    l.会用克莱姆法则.

    2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.

    3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。

    4.理解非齐次线性方程组解的结构及通解的概念.

    5.掌握用初等行变换求解线性方程组的方法.

    五、矩阵的特征值和特征向量

    考试内容

    矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵

    考试要求

    1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量

    2.了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。

    3.掌握实对称矩阵的特征值和特征向量的性质.

    六、二次型考试内容

    二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性

    考试要求

    1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.

    2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.

    3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

    概率论与数理统计初步

    一、随机事件和概率

    考试内容

    随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

    考试要求

    1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.

    2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.

    3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

    二、随机变量及其概率分布

    考试内容

    随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布

    考试要求

    1.理解随机变量及其概率分市的概念.理解分布函数

    F(x)=P{X<=x}(-∞<x<+∞)

    的概念及性质.会计算与随机变量有关的事件的概率.

    2.理解离散型随机变量及其概率分布的概念,掌握0-l分布、二项分布、超几何分布、泊松(Poisson)分布及其应用.

    3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

    4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为

    5.会求随机变量函数的分布.

    三、二维随机变量及其概率分布

    考试内容

    二维随机变量及其概率分布 二线离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常用二维随机变量的概率分布 两个随机变量简单函数的概率分布

    考试要求

    1.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及两种基本形式。理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维离散型随机变量的概率密度、边缘密度和条件密度.会求与二维连续型随机变量相关事件的概率.

    2.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.

    3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.

    4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布”.

    四、随机变量的数字特征

    考试内客

    随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 矩、协方差 相关系数及其性质

    考试要求

    1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征

    2.会根据随机变量的概率分布求其函数的数学期望。

    五、大数定律和中心极限定理

    考试内容

    切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-…lace)定理 列维-林德伯格(Levy-Undbe)定理

    考试要求

    1.了解切比雪夫不等式.

    2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。

    3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).

    六、数理统计的基本概念

    考试内容

    总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 x2分布 t分布 F分布 分位数 正态总体的某些常用抽样分布

    考试要求

    1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:

    2.了解x2分布、t分布和F分布的概念及性质,了解分位数的概念并会查表计算.

    3.了解正态总体的某些常用抽样分布.

    七、参数估计

    考试内容

    点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计

    考试要求

    1.理解参数的点估计、估计量与估计值的概念.

    2.掌握矩估计法(一阶、二阶矩)和最大似然估计法.

    3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.

    4。.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.

    八 假设检验

    考试内容

    显著性检验 假设检验的两类错误 单个及两个正态总体的均值和万差的假设检验

    考试要求

    1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.

    2..掌握单个及两个正态总体的均值和方差的假设检验”。

    试卷结构

    (一)题分及考试时间

    试卷满分为150分,考试时间为180分钟。

    (二)内容比例

    高等教学 约60%

    线性代数 约20%

    概率论与数理统计20%

    (三)题型比例

    填空题与选择题 约40%

    解答题(包括证明题) 约60%

    =\=\=\=\=

    另外,这里有去年合肥工大的一些模拟题,出得很不错!你可以看看

    http://iask.sina.com.cn/ishare/browse_file.php?fileid=630704


    附件:概率公式.doc 考研数学满分者的四大复习绝招

    http://education.163.com 2005-12-05 15:49:36 来源: 中国考研网

    在2005年的考研中,我的数学一得了满分,在这里,我想谈一谈我个人对于考研数学复习备考的一些心得体会。虽然我的经历可能不太具备典型性,但对于数学学科来说,复习的环节以及复习的侧重点都应该是相通的,借此机会,和广大研友交流一下。 考研数学作为一种选拔性考试,必然具有一定的难度。但是从近几年的试题来看,随着研究生招生规模的扩大,其整体难度已有所下降,考研数学越来越接近标准化考试,即试题越来越基础,越来越注重考察考生对基本概念、基本方法和基本性质的掌握程度,以及运算能力、逻辑推理能力等基本数学素质。 在备考之前,我对考研数学的基本命题趋势和试题难度已经有了比较深刻的认识,根据自己对考研数学的定位,我制定了自己复习备考的主要策略:紧扣考纲,扎实基础,注重联系,加强训练。 第一,紧扣考纲。考研数学作为标准化考试,其命题范围有明确的规定,我的第一轮复习主要就是依据考试大纲,详细了解考试的基本要求,题型、类别和难度特点,准确定位。对于考试大纲未作要求的内容和知识点,我都没有看。因为从历年试题来看,偏题怪题越来越少,超纲题基本没有,因此没有必要在这上面浪费过多的时间和精力。 第二,扎实基础。考研数学所考察的重点就是考生的数学基本功,在根据考试大纲要求循序渐进地进行全面系统的复习的过程中,应该重点加强对基本概念、基本定理的理解,以及对基本方法的掌握。只有深入理解基本概念,牢牢掌握基本定理和公式,才能迅速而准确地找到解题的突破口和切入点,我们在考试中失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,解题不得要领。 对于基本知识、基本定理和基本方法,关键在理解,而且理解还存在程度的问题,不能仅仅停留在看懂了的层次上,对一些易推导的定理,有时间一定要动手推一推,对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写,这些基本功都很重要,到临场时就可以发挥作用了。 第三,注重联系。考研试题中一般不太可能单独考察某个知识点,一般都是几个知识点结合起来考察考生的综合分析能力,因此复习时就应该注意知识点之间的联系,一是学科内部知识点的纵向联系,例如微积分中级数的求和一般都要用到微分或积分。同时还要注意三大学科之间的横向联系,例如概率试题通常都会用到微积分的知识等等。这些在综合练习时都是应该总结和注意的地方。 第四,加强训练。数学学科的特点,决定了数学考试要想取得好成绩就离不开大量有效的练习,俗话说熟能生巧,对于数学的基本概念、公式、结论等只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。 数学考研题的重要特征之一就是综合性强、知识覆盖面广,一些稍有难度的试题一般比较灵活,对知识点串联的要求比较高,只有通过逐步的训练,不断积累解题经验,在考试时才更有机会较快找到突破口。平时有针对性的训练也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。 以上四点是我考研数学复习的主要策略,当然,要想考到比较高的分数,要注意的地方还有很多,尤其是一些细节问题,平时复习时要很细心地加以总结,对自己练习中出现的问题一定要认真对待,找到薄弱环节。临场发挥也很重要,一个良好的心态有助于数学水平的稳定发挥,甚至可以帮助灵感的降临,从而解决一些表面比较困难的试题。 但是,总的一点,数学复习其实并没有捷径,这个学科的特点就决定了必须经过大量的训练才能达到一定的熟练程度,才有可能拿到满意的成绩。就我而言,虽然复习数学大概只有一个半月左右的时间,但是这其中大部分时间都是在做各种模拟试题,以及对做过的试题的总结。正是有了大量高水平的训练,使我最后考试中能够很顺利地解决所有问题,今年的数学一试卷我只用了一个半小时就做完了,两个小时交的卷,做完后的感觉很轻松,但这背后包含了无数的高强度的训练。 总之,我认为考研数学的复习备考关键就在于在理解基础知识的基础上,进行足够的有效的练习和巩固。当然,并不是单纯的题海战术,做题后的总结也非常重要。我不赞同数学只要理解而不需要练习的观点,那也许是其本身的数学基本功很扎实,或者考试运气比较好而已。 数学复习只是有一些值得注意的策略和方法,而没有一蹴而就的捷径,关键在个人的努力。当然,如果基础较弱,或者时间紧张,我觉得参加一定的考研辅导班也是不错的选择,因为我们从小到大,已经习惯了课堂的学习氛围。而且专业的考研辅导可以使你的复习更具方向性和目的性,能使你较快地发现自己原来的薄弱环节并予以补救。 最后要说的是,数学只是考研的其中一科,要想考研取得满意的成绩,当然数学必须要达到一定的标准,但是一定要有大局观,考虑各科的平衡,因为最后还是要看总分的。就是数学学科内部复习时,也要有全局观念,如何根据自身情况,制定合理的时间分配,都是要认真考虑的问题。 祝考研的朋友们都能取得理想的成绩! 做题,做题,还是做题,

    另加 复习和研究你做错了的题 你应该去看看高数一

    展开全文
  • 高考要求导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式 四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导重难点归纳1 深刻理解导数的概念,了解用定义求简单的...
  • 加减乘除四则运算四加十是十四,十加四是十四,绕口令加减乘除四则运算。十四减四是十,十四减十是四。十乘四是四十,四乘十是四十。四十除十是四,四十除四是十。十乘四加四是四十四,四乘十加四是四十四。四十四减...
  • 运算法则1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在...
  • 六年级数学各种运算法则1. 整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2. 整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和...
  • 原标题:矩阵的运算及其运算规则 今天清北学堂信息学金牌教研团队给大家汇总了一下矩阵的运算一、矩阵的加法与减法1、运算规则 设矩阵 则 清北学堂信息学金牌教研团队提醒,两个矩阵相加减,即它们相同位置的元素...
  • ﹋﹋﹋﹋﹋有理数基本加法、减法﹋﹋﹋﹋﹋1、有理数加法法则:1.1 同号两数相加,取相同的符号,并把绝对值相加。例: (+3)+(+5)=8 ;(-3)+(-5)=-(3+5)=-81.2 绝对值不相等的异号两数相加,取绝对值较大的加数符号...
  • 针对这个问题,我汇总了小学1-6年级公式及定理,有了这个,就不用翻书找公式了。小学数学公式大全1、每份数×份数=总数; 总数÷每份数=份数;总数÷份数=每份数2、 1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几...
  • 有理数加减乘除混合运算知识点总结法则符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异...
  • (持续更新版)有限个极限的各种运算法则的前提条件:每个步骤中涉及的极限一定都要存在、分母不为零初学极限运算的时候初学者总会犯一些问题,尤其当课程进度推进时,各种知识、方法不断出现,这时如果掌握不牢固就...
  • 对于一元二次方程 ,当 时方程没有实数根,这时就需要引入复数(Complex ...对于任意的两个复数 与 有以下四则运算: 上述的代数运算是比较抽象的,那么如何直观理解复数的四则运算呢?下面先介绍复平面(Argand diagra...
  • 01握基础知识是形成计算能力的前提面对计算题时,要得到计算结果,首先要考虑运用什么数学概念、运算定律、运算性质、运算法则和计算公式等等,因此充分理解和掌握这些基础知识决定了是否具有计算能...
  • 公式01几何公式►长方形的周长=(长+宽)×2C=(a+b)×2►长方形的面积=长×宽S=ab►正方形的周长=边长×4C=4a►正方形的面积=边长×边长S=a.a=a►三角形的面积=底×高÷2S=ah÷2►三角形的内角和=180度►平行四边形的...
  • 01公式几何公式►长方形的周长=(长+宽)×2C=(a+b)×2►长方形的面积=长×宽S=ab►正方形的周长=边长×4C=4a►正方形的面积=边长×边长S=a.a=a►三角形的面积=底×高÷2S=ah÷2►三角形的内角和=180度►平行四边形的...
  • (1)笔算两位数加法,要记三条...(3)混合运算计算法则 1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; 2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; 3、算...
  • 孩子数学公式,知识点总是记不住,怎么办?...) 二、20以内退位减法 20以内退位减,口算方法和简单。 十位退一,个加补,又准又快写得数。 三、加法意义,竖式计算 两数合并用加法,加的结果叫做和。 ...
  • 有些学生在去绝对值和利用绝对值几何意义做题时比较容易出错(去绝对值的主要数学思想是“分情况讨论”这也是贯穿初高中的一个重要数学思想)3*、有理数混合运算中去 去括号变号很多同学 容易在这块丢分。1、有理数的...
  • 背诵了公式却不会用,做题无从下手;面对稍微复杂一点的题,算半天都得不出答案……如果孩子存在以上任意一种情况,家长一定要警惕!孩子的数学基础知识掌握不牢固!其实小学数学并不难,都是一些最基础的知识,做题...
  • 1、字母表达形式:运算定律共有五个:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律,要求在理解的基础上掌握,并能灵活...运算法则包括:整数四则运算法则、小数四则运算法则、分数四则运算法则,要...
  • 掌握有理数减法法则运算技巧,认识减法与加法的内在联系;2.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.有理数的减法1.定义...
  • 觉得还不错要拉到文末点【在看】哦!每一次【分享】,每一条【留言】,都是您对我的鼓励!【星标】冰城云课堂,就不会再走丢啦!...在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺...
  • 四则混合运算法则 同级运算时,从左到右依次计算。 两级运算时,先算乘除,后算加减。 有括号时,先算括号里面的,再算括号外面的。 有多层括号时,先算小括号里的,再算中括号里面的,再算大括号里面的,最后算括号...
  • (2)有理数的混合运算法则: 先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 (3)把一个大于10的数表示成a×10的n次方的形式,使用的就是...
  • “四方数”的字根码,皆可拆分为“2格字 + 二”。英文十六进制数字...但只有在特定情况下,能明确知道是在用“基本字根”表示数字(比如:日历、记分牌、计时器、公式、手印......);或配合文字,说明某串“...
  • 小学1-6年级数学基础知识整理小学一年级:初步认识加减法,学会基础加减。小学二年级:完善加减法、表内乘法、学会应用题、基础几何图形。小学三年级:学会万以内数的加减法、长度单位和质量单位、倍数的认识、多位...
  • 乘除法则乘法:底数不变,指数相加;除法:底数不变,指数相减;加法和减法:合并同类项。a?-a2=a2a3-1=a2a-1a2+a+1乘法(1)同底数幂相乘,底数不变,指数相加:a^m×a^n=a^m+n)(m、n都是整数)。即幂的乘方,底数不.....
  • 写在前面:游戏中很多地方都会涉及到数学运算,而在数学运算中,也是有运算效率的区分的,加(+)减法(-)是最快的,其次是乘法(*)和取余(%),接着才是除法(/),开根号(√)的运算会比前面几者都要慢。...

空空如也

空空如也

1 2 3
收藏数 44
精华内容 17
关键字:

减法公式运算法则