精华内容
下载资源
问答
  • 最近用python数据处理,363个文件逐比较相似度,总共65703次。之前学习神经网络发现cpu使用率只有30%多,应该是只用了一核,这次计算密集型任务,用多进程跑下看看提速效果。先把分析对象拆成多份,让每份的数量...

    多进程提高运算效率

    最近用python做数据处理,363个文件逐对比较相似度,总共65703次。之前学习神经网络发现cpu使用率只有30%多,应该是只用了一核,这次计算密集型任务,用多进程跑下看看提速效果。先把分析对象拆成多份,让每份的数量基本均匀,然后多线程跑,风扇果然嗡嗡起来了。下面是一个小样本量的测试结果,由于每次比对的计算量不同,所以效率不会是线性提升,我做了一个计算量相同的测试,效率也不是线性提升的,不是简单的多用一核就能提高一倍效率,这个好理解。总cpu使用率相对每个cpu使用率是线性累加的。我的cpu是i7-7500U CPU @ 2.70GHz~2.90G,双核双线程四个逻辑核。三个线程基本就跑满了。对于大数据量的场景,多线程的威力就发挥得更明显了。

    我有一次跑的过程中报错了,没细看,里面有pandas的内容,直觉是多进程可能不稳定,后面再跑没遇到过。

    运行环境 进程数 总cpu使用率 每进程cpu使用率 耗时(s)
    ubuntu子系统 1 37% 32 94
    ubuntu子系统 2 65% 31 67
    ubuntu子系统 3 96% 30 60
    ubuntu子系统 4 100% 24 57

    细致比较多进程

    364个文件逐对比较,总共比较次数为66066

    进程 起始时间戳 处理条数 耗时(s)
    1个进程 - - -
    进程1 1528290177.8083532 66066 19.36804223060608
    66066 19.423198461532593
    2个进程 - - -
    进程1 1528290066.5728095 33153 10.518495559692383
    进程2 1528290066.5882878 32913 10.646009922027588
    66066 10.698017120361328
    3个进程 - - -
    进程1 1528289094.8444376 22011 9.382812976837158
    进程2 1528289094.8605711 22110 9.47968602180481
    进程3 1528289094.8762245 21945 9.627197742462158
    66066 9.712886095046997
    4个进程 - - -
    进程1 1528289148.3423731 16302 9.519663095474243
    进程2 1528289148.3572035 16611 9.670548915863037
    进程3 1528289148.376095 16471 9.6192147731781
    进程4 1528289148.3954604 16682 9.710239171981812
    66066 9.799142360687256

    结论:1个进程到2个进程接近线性提升,3个进程提升微弱,4个进程反而比3个进程更慢。

    多进程代码

    if __name__ == '__main__':
    
        start = time.time()
    
        # 进程安全的列表
        result = Manager().list()
    
        # 下面均分函数的输出
        shred = [(0, 49), (49, 106), (106, 182), (182, 364)]
    
        # 将进程添加进列表
        task = []
    
        for i in shred:
            task.append(Process(target=compare, args=(i[0], i[1], result)))
    
        # 逐个启动进程,不要把join直接写在start后面,那样就成单进程了
        for i in task:
            i.start()
    
        # 进程全部阻塞以后再打印列表    
        for i in task:
            i.join()
    
        for i in result:
            print(i)
    
        print(time.time() - start)

    均分比较次数

    n个文件逐对比较总共比较len(list(itertools.combinations(range(100),2)))次,写了一个均分比较次数的函数,比较弱,但还好使。我觉得这可以作为一道面试题。

    """
    """
    均分比较次数
    输入:file-文件数量 shred-份数
    输出:列表,元素是分段起止位置组成的元祖
    """
    def find_div_pos(file, shred):
        s = sum(range(file))
        point = [s * i / shred for i in range(1, shred + 1)][:-1]
        result = []
        for p in point:
            accu = file - 1
            # 倒着迭代是为了更快找到切分点
            # 每次都从头开始迭代影响效率,但是可以忽略
            for i in range(file - 2, 0, -1):
                accu += i
                if abs(accu - i - p) > abs(accu - p) < abs(accu + i - 1 - p):
                    result.append(file - i)
                    break
        return list(zip([0] + result, result + [file]))
    
    
    re = find_div_pos(364, 4)
    展开全文
  • gensim基本使用+文本相似度分析

    万次阅读 多人点赞 2018-09-12 13:58:53
    1、python︱六款中文分词模块尝试:jieba、THULAC、SnowNLP、pynlpir、CoreNLP、pyLTP 2、Hanlp 首先要句子进行初步处理。本文文本依次进行了【去空去重、切词分词和停用词过滤】操作。 原始数据会存在...

    gensim基本使用

    gensim 是一个通过衡量词组(或更高级结构,如整句或文档)模式来挖掘文档语义结构的工具
    三大核心概念:文集(语料)–>向量–>模型

    • 文集:
      将原始的文档处理后生成语料库
    from gensim import corpora
    import jieba
    documents = ['工业互联网平台的核心技术是什么',
                '工业现场生产过程优化场景有哪些']
    def word_cut(doc):
        seg = [jieba.lcut(w) for w in doc]
        return seg
    
    texts= word_cut(documents)
    
    ##为语料库中出现的所有单词分配了一个唯一的整数id
    dictionary = corpora.Dictionary(texts)
    dictionary.token2id
    
    {'互联网': 0,
     '什么': 1,
     '优化': 7,
     '哪些': 8,
     '场景': 9,
     '工业': 2,
     '平台': 3,
     '是': 4,
     '有': 10,
     '核心技术': 5,
     '现场': 11,
     '生产': 12,
     '的': 6,
     '过程': 13}
    
    • 向量
      把文档表示成向量
    ##该函数doc2bow()只计算每个不同单词的出现次数,将单词转换为整数单词id,并将结果作为稀疏向量返回
    bow_corpus = [dictionary.doc2bow(text) for text in texts]
    bow_corpus 
    
    [[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)],
     [(2, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1)]]
    

    每个元组的第一项对应词典中符号的 ID,第二项对应该符号出现的次数。

    • 模型
    
    from gensim import models
    # train the model
    tfidf = models.TfidfModel(bow_corpus)
    
    

    一、分词

    1. 分词工具
      1、python︱六款中文分词模块尝试:jieba、THULAC、SnowNLP、pynlpir、CoreNLP、pyLTP
      2、Hanlp
      首先要对句子进行初步处理。本文对文本依次进行了【去空去重、切词分词和停用词过滤】操作。

      原始数据会存在一些【空或重复的语句】,须过滤掉这些【无价值且影响效率】的语句。使用计算机自动地对中文文本进行词语切分的过程称为中文分词(Chinese Word Segmentation),即使中文句子中的词之间有空格标识。若要对一个句子进行分析,就需要将其切分成词的序列,然后以词为单位进行句子的分析,故中文分词是中文自然语言处理中最基本的一个环节。

    2. 生成分词列表
      1、首先停用词过滤,返回一个停用词表
      可以使用中科院的“计算所汉语词性标记集”以及哈工大停用词表

    def StopWordsList(filepath):
        wlst = [w.strip() for w in open(filepath,'r',encoding='utf8').readlines()]
        return wlst
    

    2、结巴分词后的停用词性 [标点符号、连词、助词、副词、介词、时语素、‘的’、数词、方位词、代词]

    stop_flag = ['x', 'c', 'u','d', 'p', 't', 'uj', 'm', 'f', 'r']
    
    对文本集中的文本进行中文分词,返回分词列表
    
    def seg_sentence(sentence,stop_words):
        sentence_seged = jieba.cut(sentence.strip())
        # sentence_seged = set(sentence_seged)
        outstr = ''
        for word in sentence_seged:
            if word not in stop_words:
                if word != '\t':
                    outstr += word
                    outstr += ' '
    
        return outstr.split(' ')
    

    二、 基于文本集建立词典,计算相似度##

     #1、将【文本集】生产【分词列表】
        texts = [seg_sentence(seg,stop_words) for seg in open(tpath,'r',encoding='utf8').readlines()]
    #一、建立词袋模型
        #2、基于文件集建立【词典】,并提取词典特征数
        dictionary = corpora.Dictionary(texts)
        feature_cnt = len(dictionary.token2id.keys())
        #3、基于词典,将【分词列表集】转换为【稀疏向量集】,也就是【语料库】
        corpus = [dictionary.doc2bow(text) for text in texts]
    #二、建立TF-IDF模型
        #4、使用“TF-TDF模型”处理【语料库】
        tfidf = models.TfidfModel(corpus)
    #三构建一个query文本,利用词袋模型的字典将其映射到向量空间    
        #5、同理,用词典把搜索词也转换为稀疏向量
        kw_vector = dictionary.doc2bow(seg_sentence(keyword,stop_words))
        #6、对稀疏向量建立索引
        index = similarities.SparseMatrixSimilarity(tfidf[corpus],num_features=feature_cnt)
        #7、相似的计算
        sim = index[tfidf[kw_vector]]
    

    全部代码:

    import jieba
    import jieba.posseg as pseg
    from gensim import corpora, models, similarities
    
    def StopWordsList(filepath):
        wlst = [w.strip() for w in open(filepath, 'r', encoding='utf8').readlines()]
        return wlst
    
    
    def seg_sentence(sentence, stop_words):
        # stop_flag = ['x', 'c', 'u', 'd', 'p', 't', 'uj', 'm', 'f', 'r']#过滤数字m
        stop_flag = ['x', 'c', 'u', 'd', 'p', 't', 'uj', 'f', 'r']
        sentence_seged = pseg.cut(sentence)
        # sentence_seged = set(sentence_seged)
        outstr = []
        for word,flag in sentence_seged:
            # if word not in stop_words:
            if word not in stop_words and flag not in stop_flag:
                outstr.append(word)
        return outstr
    
    
    if __name__ == '__main__':
        spPath = 'stopwords.txt'
        tpath = 'test.txt'
      
        stop_words = StopWordsList(spPath)
        keyword = '吃鸡'
    
        # 1、将【文本集】生产【分词列表】
        texts = [seg_sentence(seg, stop_words) for seg in open(tpath, 'r', encoding='utf8').readlines()]
        orig_txt = [seg for seg in open(tpath, 'r', encoding='utf8').readlines()]
    
    #一、建立词袋模型
        # 2、基于文件集建立【词典】,并提取词典特征数
        dictionary = corpora.Dictionary(texts)
        feature_cnt = len(dictionary.token2id.keys())
        # 3、基于词典,将【分词列表集】转换为【稀疏向量集】,也就是【语料库】
        corpus = [dictionary.doc2bow(text) for text in texts]
        # 4、使用“TF-TDF模型”处理【语料库】
    #二、建立TF-IDF模型
        tfidf = models.TfidfModel(corpus)
    #三构建一个query文本,利用词袋模型的字典将其映射到向量空间
        # 5、同理,用词典把搜索词也转换为稀疏向量
        kw_vector = dictionary.doc2bow(seg_sentence(keyword, stop_words))
        # 6、对稀疏向量建立索引
        index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features=feature_cnt)
        # 7、相似的计算
        sim = index[tfidf[kw_vector]]
    
        result_list = []
        for i in range(len(sim)):
            print('keyword 与 text%d 相似度为:%.2f' % (i + 1, sim[i]))
            if sim[i] > 0.4:
                result_list.append(orig_txt[i])
    
        print('原始的句子:',result_list)
    
    

    参考资料

    python文本相似度计算

    展开全文
  • 各种相似度计算的python实现

    万次阅读 2015-07-04 10:54:22
    各种相似度计算的python实现(一)前言在数据挖掘中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。我们这里把一些...

    前言

    在数据挖掘中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。我们这里把一些常用的相似度计算方法,用python进行实现以下。如果是初学者,我认为把公式先写下来,然后再写代码去实现比较好。

    欧几里德距离

    几个数据集之间的相似度一般是基于每对对象间的距离计算。最常用的当然是欧几里德距离,其公式为:

    #-*-coding:utf-8 -*-
    #计算欧几里德距离:
    def euclidean(p,q):
    #如果两数据集数目不同,计算两者之间都对应有的数
    same = 0
    for i in p:
        if i in q:
            same +=1
    
    #计算欧几里德距离,并将其标准化
    e = sum([(p[i] - q[i])**2 for i in range(same)])
    return 1/(1+e**.5)
    

    我们用数据集可以去算一下:

    p = [1,3,2,3,4,3]
    q = [1,3,4,3,2,3,4,3]
    print euclidean(p,q)
    

    得出结果是:0.261203874964

    皮尔逊相关度

    几个数据集中出现异常值的时候,欧几里德距离就不如皮尔逊相关度‘稳定’,它会在出现偏差时倾向于给出更好的结果。其公式为:

    -*-coding:utf-8 -*-
    #计算皮尔逊相关度:
    def pearson(p,q):
    #只计算两者共同有的
        same = 0
        for i in p:
            if i in q:
                same +=1
    
        n = same
        #分别求p,q的和
        sumx = sum([p[i] for i in range(n)])
        sumy = sum([q[i] for i in range(n)])
        #分别求出p,q的平方和
        sumxsq = sum([p[i]**2 for i in range(n)])
        sumysq = sum([q[i]**2 for i in range(n)])
        #求出p,q的乘积和
        sumxy = sum([p[i]*q[i] for i in range(n)])
        # print sumxy
        #求出pearson相关系数
        up = sumxy - sumx*sumy/n
        down = ((sumxsq - pow(sumxsq,2)/n)*(sumysq - pow(sumysq,2)/n))**.5
        #若down为零则不能计算,return 0
        if down == 0 :return 0
        r = up/down
        return r
    

    用同样的数据集去计算:

    p = [1,3,2,3,4,3]
    q = [1,3,4,3,2,3,4,3]
    print pearson(p,q)
    

    得出结果是:0.00595238095238

    曼哈顿距离

    曼哈顿距离是另一种相似度计算方法,不是经常需要,但是我们仍然学会如何用python去实现,其公式为:

    #-*-coding:utf-8 -*-
    #计算曼哈顿距离:
    def manhattan(p,q):
    #只计算两者共同有的
        same = 0
        for i in p:
            if i in q:
            same += 1
    #计算曼哈顿距离
        n = same
        vals = range(n)
        distance = sum(abs(p[i] - q[i]) for i in vals)
        return distance
    

    用以上的数据集去计算:

    p = [1,3,2,3,4,3]
    q = [1,3,4,3,2,3,4,3]
    print manhattan(p,q)
    

    得出结果为4

    Jaccard系数

    当数据集为二元变量时,我们只有两种状态:0或者1。这个时候以上的计算相似度的方法就无法派上用场,于是我们引出Jaccard系数,这是一个能够表示两个数据集都是二元变量(也可以多元)的相似度的指标,其公式为:

    #-*-coding:utf-8 -*-
    # 计算jaccard系数
    def jaccard(p,q):
        c = [a for i in p if v in b]
        return float(len(c))/(len(a)+len(b)-len(b))
    #注意:在使用之前必须对两个数据集进行去重
    我们用一些特殊的数据集去测试一下:
    
    p = ['shirt','shoes','pants','socks']
    q = ['shirt','shoes']
    print jaccard(p,q)
    得出结果是:0.5
    
    展开全文
  • Python数据分析:K-Means算法 k-means属于无监督学习算法 数据挖掘十大经典算法之一 算法接收参数k,然后将样本点划分为k个类别,同一类别的样本相似度较高,不同类别的样本相似度较小 算法思想: 随机选取...

    Python数据分析:K-Means算法

    • k-means属于无监督学习算法

    • 数据挖掘十大经典算法之一

    • 算法接收参数k,然后将样本点划分为k个类别,同一类别的样本相似度较高,不同类别的样本相似度较小

    • 算法思想:

      随机选取空间中k个样本点为中心进行聚类,对最靠近他们的样本点归类,通过迭代的方法逐步更新给聚类中心,知道聚类中心不再改变

    • 算法描述:

      1. 随机选取K个聚类初始中心
      2. 在第n次迭代中,对任意一个样本,求其到k个聚类中心的距离,将该样本点归类到距离最小的中心所在的类别
      3. 利用均值等方法更新各类的中心值
      4. 对所有的k个聚类中心,进行2,3,步的迭代,直到聚类中心不再改变。
    • 优点:速度快,简单易于实现

    • 缺点:最终结果和初始点的选择有关,容易陷入局部最优,需要给定k值

    kmeans的实现:

    import math
    import random
    
    
    class Cluster(object):
        """
            聚类
        """
    
        def __init__(self, samples):
            if len(samples) == 0:
                # 如果聚类中无样本点
                raise Exception("错误:一个空的聚类!")
    
            # 属于该聚类的样本点
            self.samples = samples
    
            # 该聚类中样本点的维度
            self.n_dim = samples[0].n_dim
    
            # 判断该聚类中所有样本点的维度是否相同
            for sample in samples:
                if sample.n_dim != self.n_dim:
                    raise Exception("错误: 聚类中样本点的维度不一致!")
    
            # 设置初始化的聚类中心
            self.centroid = self.cal_centroid()
    
        def __repr__(self):
            """
                输出对象信息
            """
            return str(self.samples)
    
        def update(self, samples):
            """
                计算之前的聚类中心和更新后聚类中心的距离
            """
    
            old_centroid = self.centroid
            self.samples = samples
            self.centroid = self.cal_centroid()
            shift = get_distance(old_centroid, self.centroid)
            return shift
    
        def cal_centroid(self):
            """
               对于一组样本点计算其中心点
            """
            n_samples = len(self.samples)
            # 获取所有样本点的坐标(特征)
            coords = [sample.coords for sample in self.samples]
            unzipped = zip(*coords)
            # 计算每个维度的均值
            centroid_coords = [math.fsum(d_list)/n_samples for d_list in unzipped]
    
            return Sample(centroid_coords)
    
    
    class Sample(object):
        """
            样本点类
        """
        def __init__(self, coords):
            self.coords = coords    # 样本点包含的坐标
            self.n_dim = len(coords)    # 样本点维度
    
        def __repr__(self):
            """
                输出对象信息
            """
            return str(self.coords)
    
    
    def get_distance(a, b):
        """
            返回样本点a, b的欧式距离
        """
        if a.n_dim != b.n_dim:
            # 如果样本点维度不同
            raise Exception("错误: 样本点维度不同,无法计算距离!")
    
        acc_diff = 0.0
        for i in range(a.n_dim):
            square_diff = pow((a.coords[i]-b.coords[i]), 2)
            acc_diff += square_diff
        distance = math.sqrt(acc_diff)
    
        return distance
    
    
    def gen_random_sample(n_dim, lower, upper):
        """
            生成随机样本
        """
        sample = Sample([random.uniform(lower, upper) for _ in range(n_dim)])
        return sample
    
    

    主函数:

    import random
    from kmeans_tools import Cluster, get_distance, gen_random_sample
    import matplotlib.pyplot as plt
    from matplotlib import colors as mcolors
    
    
    def kmeans(samples, k, cutoff):
        """
            kmeans函数
        """
    
        # 随机选k个样本点作为初始聚类中心
        init_samples = random.sample(samples, k)
    
        # 创建k个聚类,聚类的中心分别为随机初始的样本点
        clusters = [Cluster([sample]) for sample in init_samples]
    
        # 迭代循环直到聚类划分稳定
        n_loop = 0
        while True:
            # 初始化一组空列表用于存储每个聚类内的样本点
            lists = [[] for _ in clusters]
    
            # 开始迭代
            n_loop += 1
            # 遍历样本集中的每个样本
            for sample in samples:
                # 计算样本点sample和第一个聚类中心的距离
                smallest_distance = get_distance(sample, clusters[0].centroid)
                # 初始化属于聚类 0
                cluster_index = 0
    
                # 计算和其他聚类中心的距离
                for i in range(k - 1):
                    # 计算样本点sample和聚类中心的距离
                    distance = get_distance(sample, clusters[i+1].centroid)
                    # 如果存在更小的距离,更新距离
                    if distance < smallest_distance:
                        smallest_distance = distance
                        cluster_index = i + 1
    
                # 找到最近的聚类中心,更新所属聚类
                lists[cluster_index].append(sample)
    
            # 初始化最大移动距离
            biggest_shift = 0.0
    
            # 计算本次迭代中,聚类中心移动的距离
            for i in range(k):
                shift = clusters[i].update(lists[i])
                # 记录最大移动距离
                biggest_shift = max(biggest_shift, shift)
    
            # 如果聚类中心移动的距离小于收敛阈值,即:聚类稳定
            if biggest_shift < cutoff:
                print("第{}次迭代后,聚类稳定。".format(n_loop))
                break
        # 返回聚类结果
        return clusters
    
    
    def run_main():
        """
            主函数
        """
        # 样本个数
        n_samples = 1000
    
        # 特征个数 (特征维度)
        n_feat = 2
    
        # 特征数值范围
        lower = 0
        upper = 200
    
        # 聚类个数
        n_cluster = 4
    
        # 生成随机样本
        samples = [gen_random_sample(n_feat, lower, upper) for _ in range(n_samples)]
    
        # 收敛阈值
        cutoff = 0.2
    
        clusters = kmeans(samples, n_cluster, cutoff)
    
        # 输出结果
        for i, c in enumerate(clusters):
            for sample in c.samples:
                print('聚类--{},样本点--{}'.format(i, sample))
    
        # 可视化结果
        plt.subplot()
        color_names = list(mcolors.cnames)
        for i, c in enumerate(clusters):
            x = []
            y = []
            random.choice
            color = [color_names[i]] * len(c.samples)
            for sample in c.samples:
                x.append(sample.coords[0])
                y.append(sample.coords[1])
            plt.scatter(x, y, c=color)
        plt.show()
    
    if __name__ == '__main__':
        run_main()
    

    运行结果:
    在这里插入图片描述
    在这里插入图片描述

    展开全文
  • 最近了解了一些Python数据挖掘方面的内容,主要学习了《Python数据挖掘入门与实践》这本书的内容,在这里书中的内容以及我遇到的一些问题进行整理。 数据挖掘旨在让计算机根据已有的数据作出决策。 数据挖掘的第...
  • 现如今各种APP、微信订阅号、... 利用python的第三方模块SnowNLP可以实现评论内容的情感分析预测,SnowNLP可以方便的处理中文文本内容,如中文分词、词性标注、情感分析、文本分类、提取文本关键词、文本相似度
  • 第二点:判断没啥大用。 2)TF-IDF 3)相似度 第一步:进行分词; 第二步:获取词频向量; 第三步:计算向量之间的余弦相似度。<a,b>/(|a|*|b|) 2.代码实现 import pandas as pd import jieba df_news =...
  • Python 进行系统聚类分析

    千次阅读 2020-07-22 21:39:36
    在进行机器学习时,我们往往要对数据进行聚类分析,聚类,说白了就是把相似的样品点/数据点进行归类,相似度高的样品点会放在一起,这样一个样本就会被分成几类。而聚类分析也有很多种方法,比如分解...
  • python 使用K-Means算法对数据进行聚类

    万次阅读 多人点赞 2018-05-20 15:24:21
    K-Means是聚类算法的一种,以距离来判断数据点间的相似度对数据进行聚类。前面的文章中我们介绍过K-Means聚类算法的原理及实现。本篇文章使用scikit-learn库对数据进行聚类分析。准备工作开始之前先导入要使用的...
  • 本文以中文文本数据作为分析对象,针对中文文本存在的特征进行文本预处理,并调用Gensim工具包实现文本的TFIDF建模已经LDA建模,从文本中抽取出的特征进行表征文本信息,可用于后续文本相似度、个性化推荐等研究。...
  • Python亲和性分析

    2019-07-27 17:51:57
    亲和性分析: 亲和性分析根据样本个体之间的相似度,确定它们关系的亲疏。 - 具体应用场景 向网站用户提供多样化的服务或投放定向广告; 为了向用户推荐电影或商品,而卖...商家收集足够多的数据,就可以其...
  • 希望能得到的结果是:每个短文本每个主题都有对应的相关程度,类似于推荐模型的相似度,然后根据需要选取相似程度较高的主题进行归类,不知道能不能实现,望论坛里面能有大神赐教。 由于数据涉及保密性,只需要...
  • Python中的轨迹分析和分类(Pandas和Scikit Learn) 一项针对数据挖掘研究生课程的大学项目。 给我们一个trainset,其中地理点与时间间隔成。 首先,我们清理数据集,然后形成轨迹(具有相应的路线ID)。 本部分...
  • 巫师nlp分析 假期刷了猎魔人的美剧,又心血来潮重新半通关了而巫师3主线,无意间看到了一个把冰与...核心部分的代码放在了里面,很多结果已经可视化,甚至不懂数据分析python的同学也可以看。 洗数据的代码放在了里面
  • 1、微博数据进行信息采集。 2、微博数据进行文本特征项抽取。 3、文本进行向量化。 4、采取相似度公式进行相似度计算和对比。 5、采用K均值聚类算法进行聚类。 6、结合导致微博热点话题产生的各个...
  • K-Means是聚类算法的一种,通过距离来判断数据点间的相似度并据此对数据进行聚类。 1 聚类算法 科学计算中的聚类方法 方法名称 参数 可伸缩性 用例 几何形状(使用的指标) K-Means number of ...
  • 当商家得到的数据足够多的时候就可以其进行亲和性分析,以确定哪些商品适合放在一起。 1.什么是亲和性? 亲和性分析是来确定样本之间的相似度。 亲和性运用场景: 1.投放广告 2.推荐商品或电影 3.寻找有亲缘关系.....
  • 将时间序列数据转换为符号表示,其中(欧几里得)距离/相似度是符号空间中距离的下限 符号表示可以被视为时间序列的低维度(聚合)表示 可以使用基于符号的算法,例如后缀树、马尔可夫链来分析时间序列 参考 我们...
  • 潜在语义分析试图从大量的文本数据中发现潜在的话题,以话题向量来表示文本的语义内容,以话题向量的空间度量更准确地表示文本之间的语义相似度。 潜在语义分析使用的是非概率的话题分析模型,具体来说,就是将文本...
  • 我基本套用了网上的gensim教程中求解相似度的程序。问题出在最后求相似度的时候,求大侠指教!!很急!! # ******首先是用于将商品标题分词建成词袋(稀疏矩阵)的程序1,花了2分多,运行结束****** ``` Python ...
  • 基于相似度【能把不同领域的数据相似度的度量融合进去,还可加入核函数】;基于特征【可以直接考虑原始的数据,避免因为度量距离而丢失某些信息】 平坦聚类/分割聚类【直接将样本分割为多个不相交的子集】、层次聚类...
  • 当商家收集到足够多的数据时,就可以其进行亲和性分析,以确定哪些商品适合放在一起出售。 本质:根据样本个体(物体)之间的相似度,确定它们关系的亲疏。 接下来这个实例是5种商品,人们买了其中一种,还会买...
  • 面向文档的存储:将向量与文档一起存储,而无需向量的元数据进行数据库查找。 向量相似度搜索:可以使用向量相似度搜索来搜索向量和丰富的多媒体。 许多流行的AI用例的中坚力量,例如反向图像搜索,推荐,个性化...
  • awesome-python 是 vinta 发起维护的 Python 资源列表,内容包括:Web 框架、网络爬虫、网络内容提取、模板引擎、数据库、数据可视化、图片处理、文本处理、自然语言处理、机器学习、日志、代码分析等。由「开源前哨...
  • 本篇采用Minhash技术,两个文本数据集Amazon News和Google Report,在Google Report数据集中寻找到Amazon News每条记录的最高Jaccard相似度的记录,给出Amazon News数据集中每条记录在Google Report数据集中相似度...
  • 最后,通过大量统计分析和机器学习案例提供实践指南,首先讲解回归分析、区间分布、数据图形化、分布趋势、正态分布、分布拟合等数据分析基础,然后讲解神经网络、统计算法、欧氏距离、余弦相似度、线性与非线性回归...
  • Python开发并与Streamlit一起部署的应用程序,其中包含5个主要联赛球队表现的分析。 在应用程序中,您可以看到: 自定义比赛的团队的自定义雷达图。 根据游戏的方面,自定义或预定义的散点图。 相似度算法...

空空如也

空空如也

1 2 3 4
收藏数 61
精华内容 24
关键字:

python对数据相似度分析

python 订阅