精华内容
下载资源
问答
  • 极大似然估计详解

    万次阅读 多人点赞 2017-05-28 00:55:10
     以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下: 贝叶斯决策  首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:  其中:p(w):...

    极大似然估计

            以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:


    贝叶斯决策

            首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:


            其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。

            我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

            从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。

            设:

            由已知可得:

            男性和女性穿凉鞋相互独立,所以

    (若只考虑分类问题,只需要比较后验概率的大小,的取值并不重要)。

            由贝叶斯公式算出:


    问题引出

            但是在实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率和类条件概率(各类的总体分布)都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。

            先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。

            类条件概率的估计(非常难),原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。当然了,概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值,如果模型都错了,那估计半天的参数,肯定也没啥意义了。


    重要前提

            上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

            重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本


    极大似然估计

            极大似然估计的原理,用一张图片来说明,如下图所示:


            总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

            原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

            由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:


            似然函数(linkehood function):联合概率密度函数称为相对于的θ的似然函数。


            如果是参数空间中能使似然函数最大的θ值,则应该是“最可能”的参数值,那么就是θ的极大似然估计量。它是样本集的函数,记作:



    求解极大似然函数

            ML估计:求使得出现该组样本的概率最大的θ值。


             实际中为了便于分析,定义了对数似然函数:


            1. 未知参数只有一个(θ为标量)

            在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:


            2.未知参数有多个(θ为向量)

            则θ可表示为具有S个分量的未知向量:


             记梯度算子:


             若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。


             方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。


    极大似然估计的例子

            例1:设样本服从正态分布,则似然函数为:


            它的对数:


            求导,得方程组:


            联合解得:


            似然方程有唯一解:,而且它一定是最大值点,这是因为当时,非负函数。于是U的极大似然估计为


            例2:设样本服从均匀分布[a, b]。则X的概率密度函数:


            对样本


            很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于,否则,L(a,b)=0。类似地a不能大过,因此,a和b的极大似然估计:



    总结

            求最大似然估计量的一般步骤:

            (1)写出似然函数;

            (2)对似然函数取对数,并整理;

            (3)求导数;

            (4)解似然方程。

            最大似然估计的特点:

            1.比其他估计方法更加简单;

            2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;

            3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。


    正态分布ML估计的Matlab实例:点击打开链接

    展开全文
  • 极大似然估计

    2019-10-28 16:52:52
    极大似然估计 求解极大似然函数 极大似然估计的例子 数学之美_深入浅入详解的最(极)大似然估计 贝叶斯决策 首先来看贝叶斯分类,我们都知道经典的贝叶斯公式: p(w):为先验概率,表示每种类别分布的...

    目录

    贝叶斯决策

    问题引出

    重要前提

    极大似然估计

    求解极大似然函数

    极大似然估计的例子

    数学之美_深入浅入详解的最(极)大似然估计


    贝叶斯决策

            首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:

     

            p(w):为先验概率,表示每种类别分布的概率

           :类条件概率,表示在某种类别前提下,某事发生的概率;

           为后验概率,表示某事发生了,并且它属于某一类别的概率。有了后验概率就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下

            我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

            【例】从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。

            设:

            由已知可得:

            男性和女性穿凉鞋相互独立,所以

          (若只考虑分类问题,只需要比较后验概率的大小,的取值并不重要)。

            由贝叶斯公式算出:

    问题引出

            实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率和类条件概率(各类的总体分布)都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。

            先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。

            类条件概率的估计(非常难),原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。

            概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值;如果模型都错了,那估计半天的参数,肯定也没啥意义了。

    重要前提

            上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

            重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本。

    极大似然估计

            极大似然估计的原理,用一张图片来说明,如下图所示:

            总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值

            原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

            由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:

            似然函数(linkehood function):联合概率密度函数称为相对于的θ的似然函数。

            如果是参数空间中能使似然函数最大的θ值,则应该是“最可能”的参数值,那么就是θ的极大似然估计量。它是样本集的函数,记作:

     

    求解极大似然函数

            ML估计:求使得出现该组样本的概率最大的θ值。

             实际中为了便于分析,定义了对数似然函数:

            1. 未知参数只有一个(θ为标量)

            在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:

            2.未知参数有多个(θ为向量)

            则θ可表示为具有S个分量的未知向量:

     

             记梯度算子:

     

             若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。

     

             方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

     

    极大似然估计的例子

            例1:设样本服从正态分布,则似然函数为:

     

            它的对数:

            求导,得方程组:

            联合解得:

            似然方程有唯一解:,而且它一定是最大值点,这是因为当时,非负函数。于是U和的极大似然估计为

            例2:设样本服从均匀分布[a, b]。则X的概率密度函数:

     

            对样本

     

            很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于,否则,L(a,b)=0。类似地a不能大过,因此,a和b的极大似然估计:

    总结

            求最大似然估计量的一般步骤:

            (1)写出似然函数;

            (2)对似然函数取对数,并整理;

            (3)求导数;

            (4)解似然方程。

            最大似然估计的特点:

            1.比其他估计方法更加简单;

            2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;

            3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。

     

    正态分布ML估计的Matlab实例:点击打开链接

    版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zengxiantao1994/article/details/72787849


    https://www.cnblogs.com/noah0532/p/8495654.html

    数学之美_深入浅入详解的最(极)大似然估计

    1.什么是最大似然估计:分类上来说属于概率论中的点估计方式

    2.概率论和数理统计是互逆的思想过程。概率论可以看成是由因推果,数理统计则是由果溯因。互为逆思考的过程

    3.似然估计,likelihood estimate(LE),意思是可能性。知道一个现象,他可能是由什么因引起的。

    概念性的解释一下:在传统概率学派中假定的是概率分布的参数固定,随机样本。那么我们该如何谈过样本去确定这个概率分布的参数呢?这里就需要用到似然估计的方法了。也就是说,样本出现后,反推模型参数值,而这个参数值有多种可能性(M,最Max,最大的可能性。最大似然估计也叫Max likelihood estimate MLE)

    4.极大似然估计的思想基础:平时人们思维过程中养成的习惯,比如一个得到过奥运金牌打把脱靶性的可能性(概率)大大小于没有打过枪的人的脱靶性。发生可能性大的发生的结果就是事实。这是平时人们思考问题的基础。

    5.极大似然估计的原理:

      如果X~f(x),f(x)为整个样本X的密度函数。

      如果我们做了N次试验,x1,x2,...,xn对应的密度函数就是f(x1),f(x2),...,f(xn)。

      我们就认为:这些所有的密度函数累乘就是最大值。也是做试验最可能发生的结果。这个最大值也叫极大。

      问题:为什么是累乘(连乘)。因为这里不是求每一次概率密度函数的最大值,而是求每一次联合起来的最大值,联合起来就是相乘,然后他们的最大值是乘完之后的最大值,而不是每一个的最大值。

    例1:如果X~b(1,p).X1,X2,...,Xn是来自X的一个样本,试求参数p的最大似然估计量。

            这是一个二项分布,又因为这是个离散型的数据,因此要把每一个点的概率求出来,然后再相乘就是似然估计的p,另外要求极值,我们就要乘积,乘积的求导挺麻烦的,乘积的求导也叫复合函数求导。这里求导不方便,我们就把它对数化就可以把幂拿下来,而且就可做加法了。比如:

      L = p(X1 = x1)*p(X2 = x2)*...*p(Xn = Xn)

      lnL = lnp(X1 = x1) + lnp(X2 = x2)+...+lnp(Xn = Xn)

      我们把它对数化之后,因为对数函数是单调的,所以求p的最大值也就是求lnL的最大值。

      因此一般分两步:第一步是写出似然函数,第二步求导得最大值(最大值也就是等于0)

    例2:在举一个连续型的函数,未知数为两个μ和sigma平方,这里不是求导数,是求偏导的过程,因为这里是偏导。

     

    展开全文
  • 极大似然估计就是最大化对数似然。 假设第c类有K个样本。属性取值为N种,表示为集合X,且取第i个属性值的样本共有kikik_i个,显然有∑i=1Nki=K.∑i=1Nki=K.\sum_{i=1}^N k_i=K. 极大似然估计首先假设P(x|c)=f(x,θ...

    极大似然估计就是最大化对数似然。

    假设第c类有K个样本。属性取值为N种,表示为集合X,且取第i个属性值的样本共有kiki个,显然有

    i=1Nki=K.∑i=1Nki=K.

    极大似然估计首先假设P(x|c)=f(x,θc)P(x|c)=f(x,θc),这个f(x,θc)f(x,θc)是自己设定的,比如对于连续的属性,可以假设ff是高斯概率密度函数。但是这里是离散的情况,所以假设

    f(x,θc)=θxcf(x,θc)=θcx,

    注意,ff是概率密度函数,要满足概率条件,即xXθxc=1∑x∈Xθcx=1。上面已经假设了xx总共有N种情况。

    然后,极大似然估计希望概率分布最大化对数似然:

    LL(θc)=logP(Dc|θc)=xDclogP(x|θc).LL(θc)=log⁡P(Dc|θc)=∑x∈Dclog⁡P(x|θc).

    于是我们得到离散属性情况下的优化目标:

    minθcs.t.xDclogP(x|θc)=xiXkilogP(xi|θc)=xiXkiθxicxiXθxic=1(3)(4)(3)minθc−∑x∈Dclog⁡P(x|θc)=−∑xi∈Xkilog⁡P(xi|θc)=−∑xi∈Xkiθcxi(4)s.t.∑xi∈Xθcxi=1

    解这个优化问题,得到最优解为

    θxic=kiK,θcxi=kiK,

    也就是在离散情况下,极大似然估计得到的概率就是频率。

    对于高斯分布,同样的方法进行推理,只是ff的形式不同而已。

    展开全文
  • 极大似然估计详解,写的太好了!

    万次阅读 多人点赞 2018-08-18 15:42:08
    极大似然估计  以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:   贝叶斯决策  首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:...

    极大似然估计

            以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:

     

    贝叶斯决策

            首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:

     

            其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。

            我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

            从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。

            设:

            由已知可得:

     

            男性和女性穿凉鞋相互独立,所以

    (若只考虑分类问题,只需要比较后验概率的大小,的取值并不重要)。

            由贝叶斯公式算出:

     

     

     

    问题引出

            但是在实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率和类条件概率(各类的总体分布)都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。

            先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。

            类条件概率的估计(非常难),原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。当然了,概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值,如果模型都错了,那估计半天的参数,肯定也没啥意义了。

     

    重要前提

            上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

            重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本。

     

    极大似然估计

            极大似然估计的原理,用一张图片来说明,如下图所示:

     

            总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

            原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

            由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:

     

            似然函数(linkehood function):联合概率密度函数称为相对于的θ的似然函数。

     

            如果是参数空间中能使似然函数最大的θ值,则应该是“最可能”的参数值,那么就是θ的极大似然估计量。它是样本集的函数,记作:

     

    求解极大似然函数

            ML估计:求使得出现该组样本的概率最大的θ值。

     

             实际中为了便于分析,定义了对数似然函数:

            1. 未知参数只有一个(θ为标量)

            在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:

            2.未知参数有多个(θ为向量)

            则θ可表示为具有S个分量的未知向量:

     

             记梯度算子:

     

             若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。

     

             方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

     

    极大似然估计的例子

            例1:设样本服从正态分布,则似然函数为:

     

            它的对数:

     

            求导,得方程组:

     

     

            联合解得:

     

            似然方程有唯一解:,而且它一定是最大值点,这是因为当时,非负函数。于是U和的极大似然估计为

     

            例2:设样本服从均匀分布[a, b]。则X的概率密度函数:

     

            对样本

     

            很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于,否则,L(a,b)=0。类似地a不能大过,因此,a和b的极大似然估计:

     

     

     

    总结

            求最大似然估计量的一般步骤:

            (1)写出似然函数;

            (2)对似然函数取对数,并整理;

            (3)求导数;

            (4)解似然方程。

            最大似然估计的特点:

            1.比其他估计方法更加简单;

            2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;

            3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。

     

    正态分布ML估计的Matlab实例:点击打开链接

    版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zengxiantao1994/article/details/72787849

    展开全文
  • 1、极大似然估计是一种目前仍然得到广泛应用的方法。它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是:一个随机试验如有若干个可能的结果A,B,C,…。若在一次试验中,结果A出现,则一般...
  • 深入浅出极大似然估计

    万次阅读 2020-10-15 16:38:31
    在理解极大似然估计之前我们首先要了解概率和似然,概率是事件未发生前预测事件发生的概率,当事件发生时这个概率就已经确定,不在改变,而似然是事实已经发生去推测发生的条件,当事件与条件一一对应时似然值大小...
  • 贝叶斯估计和极大似然估计到底有何区别

    万次阅读 多人点赞 2017-03-12 21:28:00
    在开始接触最大似然估计和贝叶斯估计时,大家都会有个疑问:最大似然估计和贝叶斯估计二者很相似,到底有何区别?本文便来说说二者的不同之处以及推导二者使用时的数学模型!预热知识必知如何求类条件概率密度: ...
  • 极大似然估计与EM算法理解 什么是极大似然估计(MLE)? ​ 极大似然估计是建立在极大似然原理上的一种参数估计方法。其目的是利用已知的样本结果,反推最有可能导致这样结果的参数值。 通俗地说,就是通过若干次试验...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 641
精华内容 256
关键字:

条件极大似然估计