精华内容
下载资源
问答
  • P类问题和NP类问题

    2020-10-13 00:07:06
    P类问题:由确定型图灵机在多项式时间内可解的一切判定问题组成的集合; 例如,最大公约数、计算PI值、排序问题、二维匹配问题等 ...所有的P类问题都是NP类问题 是否所有的NP类问题都是P类问题? ...
    1. P类问题:由确定型图灵机在多项式时间内可解的一切判定问题组成的集合;
      例如,最大公约数、计算PI值、排序问题、二维匹配问题等
    2. NP类问题:由非确定型图灵机在多项式时间内可解的一切判定问题组成的集合;
      例如,完全子图问题、图的着色问题、汉密尔顿回路问题、旅行销售员问题等
    3. 所有的P类问题都是NP类问题
    4. 是否所有的NP类问题都是P类问题?
    5. 非确定型图灵机与确定型图灵机的区别是,在给定状态和输入时,图灵机的行为不是唯一确定的。
    展开全文
  • 在讨论算法的时候,常常会说到这个问题的求解是个P类问题、NP类问题、NPC类问题、NP难类问题。 在讲P类问题之前先介绍两个概念:多项式,时间复杂度。 多项式:ax^n^+bx^n-1^+c 在计算机算法求解问题当中,经常用...
       在讨论算法的时候,常常会说到这个问题的求解是个P类问题、NP类问题、NPC类问题、NP难类问题。
       在讲P类问题之前先介绍两个概念:多项式,时间复杂度。
       多项式:ax^n^+bx^n-1^+c
       在计算机算法求解问题当中,经常用时间复杂度和空间复杂度来表示一个算法的运行效率。
       空间复杂度表示一个算法在计算过程当中要占用的内存空间大小。
       时间复杂度则表示这个算法运行得到想要的解所需的计算工作量,他探讨的是当输入值接近无穷时,算法所需工作量的变化快慢程度。
       时间复杂度排序:o(1)<o(n)<o(lgn)<o(n^2^)<o(n^a^)<o(e^n^)(a>2,n表示输入的数据个数,o(1)为常数级别)
    

    1)P类问题:存在多项式时间算法的问题。(P:polynominal,多项式)
    以冒泡排序为例,在排序这个大问题里,是可以找到一种时间复杂度为多项式o(n2)的算法(如冒泡排序法)来求解排序问题的,所以我们说排序问题是一个有多项式时间算法的问题。
    为什么我们要研究这个?因为计算机处理的输入数据达到100万个的时候,时间复杂度为o(n2)和o(en)的算法,所需的运行次数简直是天壤之别,o(en)指数级的可能运行好几天都没法完成任务,所以我们才要研究一个问题是否存在多项式时间算法。而我们也只在乎一个问题是否存在多项式算法,因为一个时间复杂度比多项式算法还要复杂的算法研究起来是没有任何实际意义的。

    2)NP类问题:能在多项式时间内验证得出一个正确解的问题。(NP:Nondeterministic polynominal,非确定性多项式)
    P类问题是NP问题的子集,因为存在多项式时间解法的问题,总能在多项式时间内验证他。
    著名的NP类问题:旅行家推销问题(TSP)。即有一个推销员,要到n个城市推销商品,他要找出一个包含所有n个城市的环路,这个环路路径小于a。我们知道这个问题如果单纯的用枚举法来列举的话会有(n-1)! 种.已经不是多项式时间的算法了,(注:阶乘算法比多项式的复杂)。
    但是,我们可以用猜的,假设猜几次就猜中了一条小于长度a的路径,问题解决了,皆大欢喜。可是,我不可能每次都猜的那么准,也许我要猜完所有种呢?所以我们说,这是一个NP类问题。也就是,我们能在多项式的时间内验证并得出问题的正确解,可是我们却不知道该问题是否存在一个多项式时间的算法,每次都能解决他(注意,这里是不知道,不是不存在)。
    所以这就引出了这类讨论的一个千年问题:是否 NP类问题=P类问题?即,是否所有能在多项式时间内验证得出正确解的问题,都是具有多项式时间算法的问题呢?

    2)NPC类:是NP的一个子集,且其中每一个问题均能由NP中的任何问题在多项式时间内转化成。
    很多时候NPC问题是找不到一个多项式时间算法的,更多时候他是一个指数级的算法。
    对于这一类问题,他们满足两个性质,一个就是在多项式时间内可以验证一个解是不是正确的解,另一个性质就是我们可以把任何一个NP问题在多项式的时间内把他的输入转化,使之成为一个NP-complete问题(即规约)。NP-Complete Problem问题在多项式时间内可以互相转换,只要其中一个问题可以在多项式时间内解决,那么其他问题也都将可以在多项式时间内解决。

    3)NPH问题:若问题A不属于NP类,已知某一NPC问题可在多项式时间内转化为问题A,则称A为NPH。
    NP-hard问题至少和NP问题一样难。

    下面贴一张图把四者的关系捋一捋
    在这里插入图片描述

    展开全文
  • P问题、NP问题、NP完全问题和NP问题

    万次阅读 多人点赞 2018-05-24 14:24:38
    在讲P类问题之前先介绍两个个概念:多项式,时间复杂度。(知道这两概念的可以自动跳过这部分)1、多项式:axn-bxn-1+c恩....就是长这个样子的,叫x最高次为n的多项式....咳咳,别嫌我啰嗦。。有些人说不定还真忘了啥...

    在讲P类问题之前先介绍两个个概念:多项式,时间复杂度。(知道这两概念的可以自动跳过这部分)

    1、多项式:axn-bxn-1+c

    恩....就是长这个样子的,叫x最高次为n的多项式....

    咳咳,别嫌我啰嗦。。有些人说不定还真忘了啥是多项式了。。例如第一次看到的鄙人→_→

    2、时间复杂度

    我们知道在计算机算法求解问题当中,经常用时间复杂度和空间复杂度来表示一个算法的运行效率。空间复杂度表示一个算法在计算过程当中要占用的内存空间大小,这里暂不讨论。时间复杂度则表示这个算法运行得到想要的解所需的计算工作量,他探讨的是当输入值接近无穷时,算法所需工作量的变化快慢程度。

    举个例子:冒泡排序。

    在计算机当中,排序问题是最基础的,将输入按照大小或其他规则排好序,有利于后期运用数据进行其他运算。冒泡排序就是其中的一种排序算法。假设手上现在有n个无序的数,利用冒泡排序对其进行排序,

    ①首先比较第1个数和第2个数,如果后者>前者,就对调他们的位置,否则不变

    ②接着比较第2个数和第3个数,如果后者>前者,就对调他们的位置,否则不变

    ③一直向下比较直到第n-1和第n个数比较完,第一轮结束。(这时候最大的数移动到了第n个数的位置)

    ④重复前三步,但是只比较到第n-1个数(将第二大的数移动到第n-1个数位置)

    ⑤持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

    举个实例:5,4,3,2,1,对其进行排序,先是比较5跟4变成4,5,3,2,1,第一轮结束后变成43215,可以计算,当对其排序完正好要经过4+3+2+1=10次比较,当然这是最复杂的情况,即完全反序。可以知道对于n个数,至多要经过1+2+...+n-1即(n^2-n)/2次比较才能排好序。这个式子里n的最高次阶是2,可知道当n→∞时,一次性对其比较次数影响很小,所以我们把这个算法的时间复杂度比作:o(n^2)。取其最高次,可以看出,这是一个时间复杂度为多项式的表示方式。

    时间复杂度排序o(1)<o(n)<o(lgn)<o(n^2)<o(n^a)<o(e^n)(a>2,n表示输入的数据个数,o(1)为常数级别)


    好了,介绍完上面的概念就可以开始讲关于什么叫P类问题了。以上个例子冒泡排序为例,我们知道了,在排序这个大问题里,是可以找到一种时间复杂度为多项式o(n^2)的算法(如冒泡排序法)来求解排序问题的,所以我们说排序问题是一个有多项式时间算法的问题。

    所以我们称,

    P类问题:存在多项式时间算法的问题。(P:polynominal,多项式)


    然后扯个题外话,为什么我们要研究这个?因为计算机处理的输入常常不是那么几十个几千个那么一点点,想象一下,当计算机处理的数据达到100万个的时候,时间复杂度为o(n^2)和o(e^n)的算法,所需的运行次数简直是天壤之别,o(e^n)指数级的可能运行好几天都没法完成任务,所以我们才要研究一个问题是否存在多项式时间算法。而我们也只在乎一个问题是否存在多项式算法,因为一个时间复杂度比多项式算法还要复杂的算法研究起来是没有任何实际意义的。


    好了,接下来我们介绍NP,先给定义,

    NP类问题:能在多项式时间内验证得出一个正确解的问题。(NP:Nondeterministic polynominal,非确定性多项式)

    P类问题是NP问题的子集,因为存在多项式时间解法的问题,总能在多项式时间内验证他。


    注意定义,这里是验证。NP类问题,我用个人的俗话理解就是,不知道这个问题是不是存在多项式时间内的算法,所以叫non-deterministic非确定性,但是我们可以在多项式时间内验证并得出这个问题的一个正确解。举个例子,

    著名的NP类问题:旅行家推销问题(TSP)。即有一个推销员,要到n个城市推销商品,他要找出一个包含所有n个城市的环路,这个环路路径小于a。我们知道这个问题如果单纯的用枚举法来列举的话会有(n-1)! 种,已经不是多项式时间的算法了,(注:阶乘算法比多项式的复杂)。那怎么办呢?我们可以用猜的,假设我人品好,猜几次就猜中了一条小于长度a的路径,我画画画画,好的,我得到了一条路径小于a的环路,问题解决了,皆大欢喜。可是,我不可能每次都猜的那么准,也许我要猜完所有种呢?所以我们说,这是一个NP类问题。也就是,我们能在多项式的时间内验证并得出问题的正确解,可是我们却不知道该问题是否存在一个多项式时间的算法,每次都能解决他(注意,这里是不知道,不是不存在)。

    所以这就引出了这类讨论的一个千年问题:是否 NP类问题=P类问题?

    即,是否所有能在多项式时间内验证得出正确解的问题,都是具有多项式时间算法的问题呢?

    太让人震惊了,要是解决了这个问题,那岂不是所有的NP问题都可以通过计算机来解决?


    圣战的结果是,有的存在,有的不存在。=_=

    在这场圣战中,人们还发现了很多的东东,也就是我们接下来要介绍的NPC问题(啊喂,我不是游戏NPC)和NPH问题。

    (PS :网络上经常有人说,这不是个NP问题吗,其实很多时候他们说的应该是NPC问题,而不是NP问题)

    为了证明这个千古难题,科学家想出了很多办法。其中之一就是问题的约化。所谓问题约化就是,可以用问题B的算法来解决A ,我们就说问题A可以约化成问题B。举个例子,一元一次方程的求解,跟二元一次方程的求解,我们知道,只要能求解二元一次方程,那就可以用二元一次方程的解法来求解一元一次方程,只需要将一元一次方程加上y,并附加一个方程y=0就可以将一元一次方程变形为一个二元一次方程,然后用二元一次方程的解法来求解这个方程。注意,这里二元一次方程的解法会比一元一次的复杂。所以我们说,只需要找到解二元一次方程的规则性解法,那就能用这个规则性解法来求解一元一次方程。从这里也可以看出,约化是具有传递性的,如A约化到B,B约化到C,A就可以约化到C,同时不断约化下去,我们会发现一个很惊人的特性,就是他一定会存在一个最大的问题,而我们只需要解决了这个问题,那其下的所有问题也就解决啦!这就是我们所说的NPC问题的概念!!!

    引到NP问题里就是,对于同一类的所有的NP类问题,若他们都可以在多项式时间内约化成最难的一个NP类问题,(我们直观的认为,被约化成的问题应具有比前一个问题更复杂的时间复杂度)当我们针对这个时间复杂度最高的超级NP问题要是能找到他的多项式时间算法的话,那就等于变向的证明了其下的所有问题都是存在多项式算法的,即NP=P!!!!给出NPC问题定义。

    (3)NPC类问题(Nondeterminism Polynomial complete):存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。其定义要满足2个条件: 

    首先,它得是一个NP问题;

    然后,所有的NP问题都可以约化到它。

    要证明npc问题的思路就是: 

    先证明它至少是一个NP问题,再证明其中一个已知的NPC问题能约化到它。

    (4)NP难问题(NP-hard问题):

        NP-Hard问题是这样一种问题,它满足NPC问题定义的第二条但不一定要满足第一条(就是说,NP-Hard问题要比 NPC问题的范围广,NP-Hard问题没有限定属于NP),即所有的NP问题都能约化到它,但是他不一定是一个NP问题。

        NP-Hard问题同样难以找到多项式的算法,但它不列入我们的研究范围,因为它不一定是NP问题。即使NPC问题发现了多项式级的算法,NP-Hard问题有可能仍然无法得到多项式级的算法。事实上,由于NP-Hard放宽了限定条件,它将有可能比所有的NPC问题的时间复杂度更高从而更难以解决。

    以上四个问题他们之间的关系可以用下图来表示: 
    这里写图片描述


    展开全文
  • P类问题、NP类问题与NPC类问题

    千次阅读 多人点赞 2018-10-08 18:51:09
    你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题...

          (转载自作者 “Matrix67原创” 的文章,链接为:http://www.matrix67.com/blog/archives/105

         你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题并不是那种“只有搜才行”的问题,NPC问题才是。好,行了,基本上这个误解已经被澄清了。下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。接下来你可以看到,把NP问题当成是 NPC问题是一个多大的错误。

         还是先用几句话简单说明一下时间复杂度。时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。我们也说,O(n^100)的复杂度小于O(1.01^n)的复杂度。
        容易看出,前面的几类复杂度被分为两种级别,其中后者的复杂度无论如何都远远大于前者:一种是O(1),O(log(n)),O(n^a)等,我们把它叫做多项式级的复杂度,因为它的规模n出现在底数的位置;另一种是O(a^n)和O(n!)型复杂度,它是非多项式级的,其复杂度计算机往往不能承受。当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。

           自然地,人们会想到一个问题:会不会所有的问题都可以找到复杂度为多项式级的算法呢?很遗憾,答案是否定的。有些问题甚至根本不可能找到一个正确的算法来,这称之为“不可解问题”(Undecidable Decision Problem)。The Halting Problem就是一个著名的不可解问题,在我的Blog上有过专门的介绍和证明。再比如,输出从1到n这n个数的全排列。不管你用什么方法,你的复杂度都是阶乘级,因为你总得用阶乘级的时间打印出结果来。有人说,这样的“问题”不是一个“正规”的问题,正规的问题是让程序解决一个问题,输出一个“YES”或“NO”(这被称为判定性问题),或者一个什么什么的最优值(这被称为最优化问题)。那么,根据这个定义,我也能举出一个不大可能会有多项式级算法的问题来:Hamilton回路。问题是这样的:给你一个图,问你能否找到一条经过每个顶点一次且恰好一次(不遗漏也不重复)最后又走回来的路(满足这个条件的路径叫做Hamilton回路)。这个问题现在还没有找到多项式级的算法。事实上,这个问题就是我们后面要说的NPC问题。

           下面引入P类问题的概念:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题。P是英文单词多项式的第一个字母。哪些问题是P类问题呢?通常NOI和NOIP不会出不属于P类问题的题目。我们常见到的一些信息奥赛的题目都是P问题。道理很简单,一个用穷举换来的非多项式级时间的超时程序不会涵盖任何有价值的算法。
           接下来引入NP问题的概念。这个就有点难理解了,或者说容易理解错误。在这里强调(回到我竭力想澄清的误区上),NP问题不是非P类问题。NP问题是指可以在多项式的时间里验证一个解的问题。NP问题的另一个定义是,可以在多项式的时间里猜出一个解的问题。比方说,我RP很好,在程序中需要枚举时,我可以一猜一个准。现在某人拿到了一个求最短路径的问题,问从起点到终点是否有一条小于100个单位长度的路线。它根据数据画好了图,但怎么也算不出来,于是来问我:你看怎么选条路走得最少?我说,我RP很好,肯定能随便给你指条很短的路出来。然后我就胡乱画了几条线,说就这条吧。那人按我指的这条把权值加起来一看,嘿,神了,路径长度98,比100小。于是答案出来了,存在比100小的路径。别人会问他这题怎么做出来的,他就可以说,因为我找到了一个比100 小的解。在这个题中,找一个解很困难,但验证一个解很容易。验证一个解只需要O(n)的时间复杂度,也就是说我可以花O(n)的时间把我猜的路径的长度加出来。那么,只要我RP好,猜得准,我一定能在多项式的时间里解决这个问题。我猜到的方案总是最优的,不满足题意的方案也不会来骗我去选它。这就是NP问题。当然有不是NP问题的问题,即你猜到了解但是没用,因为你不能在多项式的时间里去验证它。下面我要举的例子是一个经典的例子,它指出了一个目前还没有办法在多项式的时间里验证一个解的问题。很显然,前面所说的Hamilton回路是NP问题,因为验证一条路是否恰好经过了每一个顶点非常容易。但我要把问题换成这样:试问一个图中是否不存在Hamilton回路。这样问题就没法在多项式的时间里进行验证了,因为除非你试过所有的路,否则你不敢断定它“没有Hamilton回路”。
           之所以要定义NP问题,是因为通常只有NP问题才可能找到多项式的算法。我们不会指望一个连多项式地验证一个解都不行的问题存在一个解决它的多项式级的算法。相信读者很快明白,信息学中的号称最困难的问题——“NP问题”,实际上是在探讨NP问题与P类问题的关系。

           很显然,所有的P类问题都是NP问题。也就是说,能多项式地解决一个问题,必然能多项式地验证一个问题的解——既然正解都出来了,验证任意给定的解也只需要比较一下就可以了。关键是,人们想知道,是否所有的NP问题都是P类问题。我们可以再用集合的观点来说明。如果把所有P类问题归为一个集合P中,把所有 NP问题划进另一个集合NP中,那么,显然有P属于NP。现在,所有对NP问题的研究都集中在一个问题上,即究竟是否有P=NP?通常所谓的“NP问题”,其实就一句话:证明或推翻P=NP。
           NP问题一直都是信息学的巅峰。巅峰,意即很引人注目但难以解决。在信息学研究中,这是一个耗费了很多时间和精力也没有解决的终极问
    题,好比物理学中的大统一和数学中的歌德巴赫猜想等。
           目前为止这个问题还“啃不动”。但是,一个总的趋势、一个大方向是有的。人们普遍认为,P=NP不成立,也就是说,多数人相信,存在至少一个不可能有多项式级复杂度的算法的NP问题。人们如此坚信P≠NP是有原因的,就是在研究NP问题的过程中找出了一类非常特殊的NP问题叫做NP-完全问题,也即所谓的 NPC问题。C是英文单词“完全”的第一个字母。正是NPC问题的存在,使人们相信P≠NP。下文将花大量篇幅介绍NPC问题,你从中可以体会到NPC问题使P=NP变得多么不可思议。

           为了说明NPC问题,我们先引入一个概念——约化(Reducibility,有的资料上叫“归约”)。
           简单地说,一个问题A可以约化为问题B的含义即是,可以用问题B的解法解决问题A,或者说,问题A可以“变成”问题B。《算法导论》上举了这么一个例子。比如说,现在有两个问题:求解一个一元一次方程和求解一个一元二次方程。那么我们说,前者可以约化为后者,意即知道如何解一个一元二次方程那么一定能解出一元一次方程。我们可以写出两个程序分别对应两个问题,那么我们能找到一个“规则”,按照这个规则把解一元一次方程程序的输入数据变一下,用在解一元二次方程的程序上,两个程序总能得到一样的结果。这个规则即是:两个方程的对应项系数不变,一元二次方程的二次项系数为0。按照这个规则把前一个问题转换成后一个问题,两个问题就等价了。同样地,我们可以说,Hamilton回路可以约化为TSP问题(Travelling Salesman Problem,旅行商问题):在Hamilton回路问题中,两点相连即这两点距离为0,两点不直接相连则令其距离为1,于是问题转化为在TSP问题中,是否存在一条长为0的路径。Hamilton回路存在当且仅当TSP问题中存在长为0的回路。
          “问题A可约化为问题B”有一个重要的直观意义:B的时间复杂度高于或者等于A的时间复杂度。也就是说,问题A不比问题B难。这很容易理解。既然问题A能用问题B来解决,倘若B的时间复杂度比A的时间复杂度还低了,那A的算法就可以改进为B的算法,两者的时间复杂度还是相同。正如解一元二次方程比解一元一次方程难,因为解决前者的方法可以用来解决后者。
          很显然,约化具有一项重要的性质:约化具有传递性。如果问题A可约化为问题B,问题B可约化为问题C,则问题A一定可约化为问题C。这个道理非常简单,就不必阐述了。
          现在再来说一下约化的标准概念就不难理解了:如果能找到这样一个变化法则,对任意一个程序A的输入,都能按这个法则变换成程序B的输入,使两程序的输出相同,那么我们说,问题A可约化为问题B。
          当然,我们所说的“可约化”是指的可“多项式地”约化(Polynomial-time Reducible),即变换输入的方法是能在多项式的时间里完成的。约化的过程只有用多项式的时间完成才有意义。

          好了,从约化的定义中我们看到,一个问题约化为另一个问题,时间复杂度增加了,问题的应用范围也增大了。通过对某些问题的不断约化,我们能够不断寻找复杂度更高,但应用范围更广的算法来代替复杂度虽然低,但只能用于很小的一类问题的算法。再回想前面讲的P和NP问题,联想起约化的传递性,自然地,我们会想问,如果不断地约化上去,不断找到能“通吃”若干小NP问题的一个稍复杂的大NP问题,那么最后是否有可能找到一个时间复杂度最高,并且能“通吃”所有的 NP问题的这样一个超级NP问题?答案居然是肯定的。也就是说,存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。这种问题的存在难以置信,并且更加不可思议的是,这种问题不只一个,它有很多个,它是一类问题。这一类问题就是传说中的NPC 问题,也就是NP-完全问题。NPC问题的出现使整个NP问题的研究得到了飞跃式的发展。我们有理由相信,NPC问题是最复杂的问题。再次回到全文开头,我们可以看到,人们想表达一个问题不存在多项式的高效算法时应该说它“属于NPC问题”。此时,我的目的终于达到了,我已经把NP问题和NPC问题区别开了。到此为止,本文已经写了近5000字了,我佩服你还能看到这里来,同时也佩服一下自己能写到这里来。

          NPC问题的定义非常简单。同时满足下面两个条件的问题就是NPC问题。首先,它得是一个NP问题;然后,所有的NP问题都可以约化到它。证明一个问题是 NPC问题也很简单。先证明它至少是一个NP问题,再证明其中一个已知的NPC问题能约化到它(由约化的传递性,则NPC问题定义的第二条也得以满足;至于第一个NPC问题是怎么来的,下文将介绍),这样就可以说它是NPC问题了。
          既然所有的NP问题都能约化成NPC问题,那么只要任意一个NPC问题找到了一个多项式的算法,那么所有的NP问题都能用这个算法解决了,NP也就等于P 了。因此,给NPC找一个多项式算法太不可思议了。因此,前文才说,“正是NPC问题的存在,使人们相信P≠NP”。我们可以就此直观地理解,NPC问题目前没有多项式的有效算法,只能用指数级甚至阶乘级复杂度的搜索。

    展开全文
  • 简单了解一下P类问题、NP类问题和NP完全问题 P 类问题 一个问题可以在多项式时间(polynimal time)内解决,就是P类问题,时间复杂度为O(n),O(n^2)…多项式时间求解 NP类问题(nondeterministic polynomial) 一个...
  • P类问题NP问题

    2021-01-10 19:43:27
    NP类问题:答案可以在多项式时间内验证,问题不知道能否在多项式时间内求解。 NP-C类问题(NP完全问题):一个问题属于一个NP大类,如果大类的子类问题多项式时间可解,大类NP中所有问题多项式时间可解。 NP=?P ...
  • P和NP问题

    2020-09-25 18:20:56
    P:polynomial,多项式 P类问题:存在多项式时间算法的问题 我们只在乎一个问题是否存在多项式算法,因为一个时间复杂度比多项式算法还要...P类问题NP问题的子集,因为存在多项式时间解法的问题,总能在多项式时间内
  • P类、NP类、NPC类 在介绍P、NPNPC问题之间的联系区别之前,简单介绍一下复杂性理论中基本概念是十分必要的。 时间复杂度:时间复杂度并不表示一个程序/算法解决一个问题所花费的时间,而是当问题的规模扩大后...
  • P类、NP类、NPC类问题

    千次阅读 2018-01-16 17:04:28
     你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题...
  • 非&quot;正规&quot;问题 不可解问题:不存在解决算法的问题 例子:停机问题 ...不可能有复杂度O(多项式)问题 ...例子:输出从1到n这n个数的全排列(因为把...P类问题:存在多项式时间算法的问题。 算法程序(...
  • 为了避免对这四个问题有一定理解基础的人看的很烦...P类问题:存在多项式时间算法的问题。(P:polynominal,多项式)。 我们为什么要研究这个P类问题呢?当计算机处理的数据达到100万个的时候,时间复杂度分别为 O(n2)O
  • 算法中的P问题、NP问题、NP完全问题和NP问题

    万次阅读 多人点赞 2017-11-11 09:42:32
    在讨论算法的时候,常常会说到这个问题的求解是个P类问题,或者是NP难问题等等,于是我特地搜了这方面的资料,自己总结了下,估计研究算法的大家应该都知道,要是我总结的哪里不对,欢迎一起探讨~ 在讲P类...
  • 如果一个判定性问题的复杂度是该问题的一个实例的规模n的多项式函数,则我们说这种可以在多项式时间内解决的判定性问题属于P类问题P类问题就是所有复杂度为多项式时间的问题的集合。 NP是一个判定问题类,这些...
  • P和NP问题总结.docx

    2019-09-18 19:33:35
    本文档从定义入手介绍了P问题,NP问题,NPC问题,并举例来说明属于哪类问题,还有分析了它们之间的关系。
  • 一、P类问题 P问题是指的存在多项式时间复杂度算法去求解的问题,当然这都是对于计算机来说的。通常对于普通的问题,我们力求时间复杂度能控制在O(n^2)这样类似的多项式时间复杂度内,若是一个问题求解的时间复杂度...
  • 简析P和NP问题的概念

    2019-09-28 17:31:15
    简析P和NP问题的概念 本文系作者学习笔记,内容均来源于网络,如有侵权,请联系删除 P类问题:所有能用多项式时间算法计算得到结果的问题,称为多项式问题,也就是P(polynomial)。 多项式时间举例: NP类问题(Non-...
  • 为了方便大家自己查看,特将此上传到CSDN博文中, 源文件已经上传到我的资源中,有需要的可以去看看, 我主页中的思维导图中内容大多从我的笔记中整理而来,相应技巧可在笔记中查找原题, 有兴趣的可以去 我的主页了解...
  • NP类问题是指一类能够用不确定性算法在多项式时间内求解的判定问题。   P类问题和NP问题记忆简单。下面的NPC问题和NP-hard问题用集合的形式可能会更好理解与记忆,请对照集合关系看可能较容易理解。   3.NPC...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 431
精华内容 172
关键字:

p和np类问题