精华内容
下载资源
问答
  • UML详解

    2008-07-03 17:10:31
    UML详解 很详细 很经典
  • uml详解

    2019-08-15 10:32:20
    代码块详解为什么学习superuml图形分析...uml图形分析(大话设计模式) 六种关系详解: 我的图: 常见的基数及含义: 0…1:0 或1 个实例. 0…: 对实例的数目没有限制. 1: 只能有一个实例. 1…: 至少有一...

    uml图形分析(大话设计模式)

    在这里插入图片描述

    六种关系详解:

    我的图:
    在这里插入图片描述
    常见的基数及含义: 0…1:0 或1 个实例.
    0…: 对实例的数目没有限制.
    1: 只能有一个实例.
    1…
    : 至少有一个实例.

    继承#

    指的是一个类(称为子类、子接口)继承另外的一个类(称为父类、父接口)的功能,并可以增加它自己的新功能的能力,继承是类与类或者接口与接口之间最常见的关系;在Java中此类关系通过关键字extends明确标识,在设计时一般没有争议性;

    在这里插入图片描述

    实现#

    指的是一个class类实现interface接口(可以是多个)的功能;实现是类与接口之间最常见的关系;在Java中此类关系通过关键字implements明确标识,在设计时一般没有争议性;
    在这里插入图片描述

    依赖#

    可以简单的理解,就是一个类A使用到了另一个类B,而这种使用关系是具有偶然性的、、临时性的、非常弱的,但是B类的变化会影响到A;比如某人要过河,需要借用一条船,此时人与船之间的关系就是依赖;表现在代码层面,为类B作为参数被类A在某个method方法中使用;
    在这里插入图片描述

    关联#

    他体现的是两个类、或者类与接口之间语义级别的一种强依赖关系,比如我和我的朋友;这种关系比依赖更强、不存在依赖关系的偶然性、关系也不是临时性的,一般是长期性的,而且双方的关系一般是平等的、关联可以是单向、双向的;表现在代码层面,为被关联类B以类属性的形式出现在关联类A中,也可能是关联类A引用了一个类型为被关联类B的全局变量;
    在这里插入图片描述

    聚合#

    聚合是关联关系的一种特例,他体现的是整体与部分、拥有的关系,即has-a的关系,此时整体与部分之间是可分离的,他们可以具有各自的生命周期,部分可以属于多个整体对象,也可以为多个整体对象共享;比如计算机与CPU、公司与员工的关系等;表现在代码层面,和关联关系是一致的,只能从语义级别来区分;
    在这里插入图片描述

    组合 (a拥有b,a没了b也就没了,实心)#

    组合也是关联关系的一种特例,他体现的是一种contains-a的关系,这种关系比聚合更强,也称为强聚合;他同样体现整体与部分间的关系,但此时整体与部分是不可分的,整体的生命周期结束也就意味着部分的生命周期结束;比如你和你的大脑;表现在代码层面,和关联关系是一致的,只能从语义级别来区分;
    在这里插入图片描述

    对于继承、实现这两种关系没多少疑问,他们体现的是一种类与类、或者类与接口间的纵向关系;其他的四者关系则体现的是类与类、或者类与接口间的引用、横向关系,是比较难区分的,有很多事物间的关系要想准备定位是很难的,前面也提到,这几种关系都是语义级别的,所以从代码层面并不能完全区分各种关系;

    但总的来说,后几种关系所表现的强弱程度依次为:组合>聚合>关联>依赖;

    聚合关系图:#
    在这里插入图片描述

    组合关系图:#
    在这里插入图片描述

    展开全文
  • UML 详解

    2013-09-02 11:02:51
    UML图 ...UML图 ...UML-Unified Model Language 统一建模语言,又称标准建模语言。...UML的定义包括UML语义和UML表示法两个元素。 UML是在开发阶段,说明,可视化,构建和书写一个面向对

    http://baike.baidu.com/view/1938914.htm

    UML图

    用例图

    用例图(6张)
    UML图
    UML-Unified Model Language 统一建模语言,又称标准建模语言。是用来对软件密集系统进行可视化建模的一种语言。UML的定义包括UML语义和UML表示法两个元素。
    UML是在开发阶段,说明,可视化,构建和书写一个面向对象软件密集系统的制品的开放方法。最佳的应用是工程实践,对大规模,复杂系统进行建模方面,特别是在软件架构层次,已经被验证有效。统一建模语言(UML)是一种模型化语言。模型大多以图表的方式表现出来。一份典型的建模图表通常包含几个块或框,连接线和作为模型附加信息之用的文本。这些虽简单却非常重要,在UML规则中相互联系和扩展。
    UML的主要的模型
    在UML系统开发中有三个主要的模型:
    功能模型: 从用户的角度展示系统的功能,包括用例图
    对象模型: 采用对象,属性,操作,关联等概念展示系统的结构和基础,包括类图、对象图、包图。
    动态模型: 展现系统的内部行为。 包括序列图,活动图状态图
    UML是数据库设计过程中,在E-R图(实体-联系图)的设计后的进一步建模。要了解一下UML设计中有的图例及基本作用。首先对UML中的各个图的功用做一个简单介绍:
    描述角色以及角色与用例之间的连接关系。说明的是谁要使用系统,以及他们使用该系统可以做些什么。一个用例图包含了多个模型元素,如系统、参与者和用例,并且显示了这些元素之间的各种关系,如泛化、关联和依赖。
    2、类图
    类图是描述系统中的类,以及各个类之间的关系的静态视图。能够让我们在正确编写代码以前对系统有一个全面的认识。类图是一种模型类型,确切的说,是一种静态模型类型。类图表示类、接口和它们之间的协作关系。
    3、对象图
    类图极为相似,它是类图的实例,对象图显示类的多个对象实例,而不是实际的类。它描述的不是类之间的关系,而是对象之间的关系。
    4包图
    包图用于描述系统的分层结构,由包或类组成,表示包与包之间的关系。
    描述用例要求所要进行的活动,以及活动间的约束关系,有利于识别并行活动。能够演示出系统中哪些地方存在功能,以及这些功能和系统中其他组件的功能如何共同满足前面使用用例图建模的商务需求。
    描述类的对象所有可能的状态,以及事件发生时状态的转移条件。可以捕获对象、子系统和系统的生命周期。他们可以告知一个对象可以拥有的状态,并且事件(如消息的接收、时间的流逝、错误、条件变为真等)会怎么随着时间的推移来影响这些状态。一个状态图应该连接到所有具有清晰的可标识状态和复杂行为的类;该图可以确定类的行为,以及该行为如何根据当前的状态变化,也可以展示哪些事件将会改变类的对象的状态。状态图是对类图的补充。
    7、序列图 (顺序图
    序列图是用来显示你的参与者如何以一系列顺序的步骤与系统的对象交互的模型。顺序图可以用来展示对象之间是如何进行交互的。顺序图将显示的重点放在消息序列上,即强调消息是如何在对象之间被发送和接收的。
    和序列图相似,显示对象间的动态合作关系。可以看成是类图和顺序图的交集,协作图建模对象或者角色,以及它们彼此之间是如何通信的。如果强调时间和顺序,则使用序列图;如果强调上下级关系,则选择协作图;这两种图合称为交互图。
    9、构件图 (组件图
    描述代码构件物理结构以及各种构建之间的依赖关系。用来建模软件的组件及其相互之间的关系,这些图由构件标记符和构件之间的关系构成。在组件图中,构件软件单个组成部分,它可以是一个文件,产品、可执行文件脚本等。
    10、部署图 (配置图)
    是用来建模系统的物理部署。例如计算机和设备,以及它们之间是如何连接的。部署图的使用者是开发人员、系统集成人员和测试人员。部署图用于表示一组物理结点的集合及结点间的相互关系,从而建立了系统物理层面的模型。
    一:这十种模型图各有侧重,
    1:用例图侧重描述用户需求,
    2:类图侧重描述系统具体实现;
    二:描述的方面都不相同,
    1:类图描述的是系统的结构,
    2:序列图描述的是系统的行为;
    三:抽象的层次也不同,
    1:构件图描述系统的模块结构,抽象层次较高,
    2:类图是描述具体模块的结构,抽象层次一般,
    3:对象图描述了具体的模块实现,抽象层次较低。
    在有的文献书籍中,将这九种模型图分为三大类:
    结构分类、动态行为和模型管理:
    1:结构分类包括用例图类图、对象图、构件图部署图
    2:动态行为包括状态图活动图顺序图和协作图,
    3:模型管理则包
    展开全文
  • Telephony 应用层 UML 详解 Telephony 应用层 UML 详解 Telephony 应用层 UML 详解
  • UML详解2013

    2013-02-20 13:17:54
    UML详解2013
  • UML详解2

    2007-10-11 14:44:05
    接到UML详解1最后完成的部分
  • uml详解ppt

    2015-05-14 19:53:15
    详细阐述了UML的概念和用途,对具体图的绘制进行分析指导,包含所有图和用例分析。
  • UML详解之五——顺序图和协作图

    千次阅读 2019-02-10 13:41:57
    UML详解之五——顺序图和协作图
                         

    转载请标明出处:http://blog.csdn.net/xx326664162/article/details/50833740   文章出自:薛瑄的博客

    你也可以查看我的其他同类文章,也会让你有一定的收货!

    在面向对象动态建模,用于建立行为的实体间行为的四种交互图状态图(Stage Diagram),序列图(Sequence Diagram),协作图(Communication Diagram),活动图(Activity Diagram)

    顺序图协作图表述的是相似的消息。

    时序图(面向时间的)


    别称:顺序图、序列图
    序列图(Sequence Diagram)强调的消息时间顺序的交互图,描述类系统中类与类之间的交互,它将这些交互建模成消息互换,换句话说,顺序图描述了类与类之间之间相互交换以完成期望行为的消息。顺序图的特点是清晰,一个设计很好地顺序图从左到右、从上到下可以很好地表示出系统数据的流向,为接下来的系统设计做好铺垫。

    这里写图片描述
    时序图用于描述对象之间的传递消息的时间顺序, 即用例中的行为顺序.

    当执行一个用例时, 时序图中的每条消息对应了一个类操作或者引起转换的触发事件.

    在 UML 中, 时序图表示为一个二维的关系图, 其中, 纵轴是时间轴, 时间延竖线向下延伸. 横轴代表在协作中各个独立的对象. 当对象存在时, 生命线用一条虚线表示, 消息用从一个对象的生命线到另一个对象的生命线的箭头表示. 箭头以时间的顺序在图中上下排列.

    ATM 用户成功登陆的时序图
    这里写图片描述
    时序图中的基本概念:

    对象的创建和销毁:

    • 在时序图中, 对象的默认位置是在图的顶部. 这说明对象在交互开始之前就已经存在了.
    • 对象是在交互过程中创建的, 那么就应该将对象放到中间部分.
    • 要撤销一个对象, 在其生命线终止点处放置 “ X” 符号.

    生命线: 生命线是一条垂直的虚线. 表示时序图中的对象在一段生命周期内存在. 每个对象底部中心的位置都带有生命线.

    消息: 两个对象之间的单路通信. 从发送方指向接收方. 在时序图中很少使用返回消息.

    激活: 时序图可以描述对象的激活钝化.

    • 激活表示该对象被占用以完成某个任务.
    • 钝化指对象处于空闲状态, 等待消息.

    在 UML 中, 对象激活时将对象的生命线拓宽为矩形来表示的. 矩形称为计划条或控制期. 对象就是在激活条的顶部被激活的. 对象在完成自己的工作后被钝化.

    练习:孙中山的……
    这里写图片描述

    协作图(面向消息的)


    协作图(Collaboration Diagram /Communication Diagram,也叫合作图)是一种交互图(interaction diagram),强调的是发送和接收消息的对象之间的组织结构。一个协作图显示了一系列的对象和在这些对象之间的联系以及对象间发送和接收的消息。对象通常是命名或匿名的类的实例,也可以代表其他事物的实例,例如协作、组件和节点。使用协作图来说明系统的动态情况。

    这里写图片描述

    示例:
    这里写图片描述

    时序图主要侧重于对象间消息传递在时间上的先后关系, 
    而协作图表达对象间的交互过程及对象间的关联关系,或者说为空间上的关系
    (ROSE中,协作图和时序图转换快捷键 :F5)

    参考:http://blog.csdn.net/lishehe/article/details/8243806
    http://www.cnblogs.com/langtianya/p/4531228.html

     

    关注我的公众号,轻松了解和学习更多技术
      这里写图片描述

               

    再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow

    展开全文
  • Java UML详解

    2016-09-02 15:08:05
    UML 2.0的13种图形中,类图是使用频率最高的UML图之一。Martin Fowler在其著作《UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition》(《UML精粹:标准对象建模语言简明指南...

    在UML 2.0的13种图形中,类图是使用频率最高的UML图之一。Martin Fowler在其著作《UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition》(《UML精粹:标准对象建模语言简明指南(第3版)》)中有这么一段:“If someone were to come up to you in a dark alley and say, 'Psst, wanna see a UML diagram?' that diagram would probably be a class diagram. The majority of UML diagrams I see are class diagrams.”(“如果有人在黑暗的小巷中向你走来并对你说:‘嘿,想不想看一张UML图?’那么这张图很有可能就是一张类图,我所见过的大部分的UML图都是类图”),由此可见类图的重要性。

    类图用于描述系统中所包含的类以及它们之间的相互关系,帮助人们简化对系统的理解,它是系统分析和设计阶段的重要产物,也是系统编码和测试的重要模型依据。

    1. 类

    类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相同属性、操作、关系的对象集合的总称。在系统中,每个类都具有一定的职责,职责指的是类要完成什么样的功能,要承担什么样的义务。一个类可以有多种职责,设计得好的类一般只有一种职责。在定义类的时候,将类的职责分解成为类的属性和操作(即方法)。类的属性即类的数据职责,类的操作即类的行为职责。设计类是面向对象设计中最重要的组成部分,也是最复杂和最耗时的部分。

    在软件系统运行时,类将被实例化成对象(Object),对象对应于某个具体的事物,是类的实例(Instance)。

    类图(Class Diagram)使用出现在系统中的不同类来描述系统的静态结构,它用来描述不同的类以及它们之间的关系。

    在系统分析与设计阶段,类通常可以分为三种,分别是实体类(Entity Class)、控制类(Control Class)和边界类(Boundary Class),下面对这三种类加以简要说明:

    (1) 实体类:实体类对应系统需求中的每个实体,它们通常需要保存在永久存储体中,一般使用数据库表或文件来记录,实体类既包括存储和传递数据的类,还包括操作数据的类。实体类来源于需求说明中的名词,如学生、商品等。

    (2) 控制类:控制类用于体现应用程序的执行逻辑,提供相应的业务操作,将控制类抽象出来可以降低界面和数据库之间的耦合度。控制类一般是由动宾结构的短语(动词+名词)转化来的名词,如增加商品对应有一个商品增加类,注册对应有一个用户注册类等

    (3) 边界类:边界类用于对外部用户与系统之间的交互对象进行抽象,主要包括界面类,如对话框、窗口、菜单等。

    在面向对象分析和设计的初级阶段,通常首先识别出实体类,绘制初始类图,此时的类图也可称为领域模型,包括实体类及其它们之间的相互关系。

    2. 类的UML图示

    在UML中,类使用包含类名、属性和操作且带有分隔线的长方形来表示,如定义一个Employee类,它包含属性name、age和email,以及操作modifyInfo(),在UML类图中该类如图1所示:

    图1 类的UML图示

    图1对应的Java代码片段如下:

    public class Employee {
    	private String name;
    	private int age;
    	private String email;
    	
    	public void modifyInfo() {
    		......
    	}
    }

    在UML类图中,类一般由三部分组成:

    (1) 第一部分是类名:每个类都必须有一个名字,类名是一个字符串。

    (2) 第二部分是类的属性(Attributes):属性是指类的性质,即类的成员变量。一个类可以有任意多个属性,也可以没有属性

    UML规定属性的表示方式为:

    可见性 名称:类型 [ = 缺省值 ]

    其中:

    • “可见性”表示该属性对于类外的元素而言是否可见,包括公有(public)、私有(private)和受保护(protected)三种,在类图中分别用符号+、-和#表示。
    • “名称”表示属性名,用一个字符串表示。
    • “类型”表示属性的数据类型,可以是基本数据类型,也可以是用户自定义类型。
    • “缺省值”是一个可选项,即属性的初始值。

    (3) 第三部分是类的操作(Operations):操作是类的任意一个实例对象都可以使用的行为,是类的成员方法。

    UML规定操作的表示方式为:

    可见性 名称(参数列表) [ : 返回类型]

    其中:

    • “可见性”的定义与属性的可见性定义相同。
    • “名称”即方法名,用一个字符串表示。
    • “参数列表”表示方法的参数,其语法与属性的定义相似,参数个数是任意的,多个参数之间用逗号“,”隔开。
    • “返回类型”是一个可选项,表示方法的返回值类型,依赖于具体的编程语言,可以是基本数据类型,也可以是用户自定义类型,还可以是空类型(void),如果是构造方法,则无返回类型。

    在类图2中,操作method1的可见性为public(+),带入了一个Object类型的参数par,返回值为空(void);操作method2的可见性为protected(#),无参数,返回值为String类型;操作method3的可见性为private(-),包含两个参数,其中一个参数为int类型,另一个为int[]类型,返回值为int类型。

    图2 类图操作说明示意图

    由于在Java语言中允许出现内部类,因此可能会出现包含四个部分的类图,如图3所示:

    图3 包含内部类的类图

    类与类之间的关系(1)

    在软件系统中,类并不是孤立存在的,类与类之间存在各种关系,对于不同类型的关系,UML提供了不同的表示方式。

    1. 关联关系

    关联(Association)关系是类与类之间最常用的一种关系,它是一种结构化关系,用于表示一类对象与另一类对象之间有联系,如汽车和轮胎、师傅和徒弟、班级和学生等等。在UML类图中,用实线连接有关联关系的对象所对应的类,在使用Java、C#和C++等编程语言实现关联关系时,通常将一个类的对象作为另一个类的成员变量。在使用类图表示关联关系时可以在关联线上标注角色名,一般使用一个表示两者之间关系的动词或者名词表示角色名(有时该名词为实例对象名),关系的两端代表两种不同的角色,因此在一个关联关系中可以包含两个角色名,角色名不是必须的,可以根据需要增加,其目的是使类之间的关系更加明确。

    如在一个登录界面类LoginForm中包含一个JButton类型的注册按钮loginButton,它们之间可以表示为关联关系,代码实现时可以在LoginForm中定义一个名为loginButton的属性对象,其类型为JButton。如图1所示:

    图1 关联关系实例

    图1对应的Java代码片段如下:

    public class LoginForm {
    private JButton loginButton; //定义为成员变量
    ……
    }
    
    public class JButton {
        ……
    }

    在UML中,关联关系通常又包含如下几种形式:

    (1) 双向关联

    默认情况下,关联是双向的。例如:顾客(Customer)购买商品(Product)并拥有商品,反之,卖出的商品总有某个顾客与之相关联。因此,Customer类和Product类之间具有双向关联关系,如图2所示:

    图2 双向关联实例

    图2对应的Java代码片段如下:

    public class Customer {
    private Product[] products;
    ……
    }
    
    public class Product {
    private Customer customer;
    ……
    }

    (2) 单向关联

    类的关联关系也可以是单向的,单向关联用带箭头的实线表示。例如:顾客(Customer)拥有地址(Address),则Customer类与Address类具有单向关联关系,如图3所示:

    图3 单向关联实例

    图3对应的Java代码片段如下:

    public class Customer {
    private Address address;
    ……
    }
    
    public class Address {
    ……
    }

    (3) 自关联

    在系统中可能会存在一些类的属性对象类型为该类本身,这种特殊的关联关系称为自关联。例如:一个节点类(Node)的成员又是节点Node类型的对象,如图4所示:

    图4 自关联实例

    图4对应的Java代码片段如下:

    public class Node {
    private Node subNode;
    ……
    }

    (4) 多重性关联

    多重性关联关系又称为重数性(Multiplicity)关联关系,表示两个关联对象在数量上的对应关系。在UML中,对象之间的多重性可以直接在关联直线上用一个数字或一个数字范围表示。

    对象之间可以存在多种多重性关联关系,常见的多重性表示方式如表1所示:

    表1 多重性表示方式列表

    表示方式
    多重性说明
    1..1
    表示另一个类的一个对象只与该类的一个对象有关系
    0..*
    表示另一个类的一个对象与该类的零个或多个对象有关系
    1..*
    表示另一个类的一个对象与该类的一个或多个对象有关系
    0..1
    表示另一个类的一个对象没有或只与该类的一个对象有关系
    m..n
    表示另一个类的一个对象与该类最少m,最多n个对象有关系 (m≤n)

    例如:一个界面(Form)可以拥有零个或多个按钮(Button),但是一个按钮只能属于一个界面,因此,一个Form类的对象可以与零个或多个Button类的对象相关联,但一个Button类的对象只能与一个Form类的对象关联,如图5所示:

    图5 多重性关联实例

    图5对应的Java代码片段如下:

    public class Form {
    private Button[] buttons; //定义一个集合对象
    ……
    }
    
    public class Button {
    ……
    }

    (5) 聚合关系

    聚合(Aggregation)关系表示整体与部分的关系。在聚合关系中,成员对象是整体对象的一部分,但是成员对象可以脱离整体对象独立存在。在UML中,聚合关系用带空心菱形的直线表示。例如:汽车发动机(Engine)是汽车(Car)的组成部分,但是汽车发动机可以独立存在,因此,汽车和发动机是聚合关系,如图6所示:

    图6 聚合关系实例

    在代码实现聚合关系时,成员对象通常作为构造方法、Setter方法或业务方法的参数注入到整体对象中,图6对应的Java代码片段如下:

    public class Car {
    	private Engine engine;
    
        //构造注入
    	public Car(Engine engine) {
    		this.engine = engine;
    	}
        
        //设值注入
    public void setEngine(Engine engine) {
        this.engine = engine;
    }
    ……
    }
    
    public class Engine {
    	……
    } 

    (6) 组合关系

    组合(Composition)关系也表示类之间整体和部分的关系,但是在组合关系中整体对象可以控制成员对象的生命周期,一旦整体对象不存在,成员对象也将不存在,成员对象与整体对象之间具有同生共死的关系。在UML中,组合关系用带实心菱形的直线表示。例如:人的头(Head)与嘴巴(Mouth),嘴巴是头的组成部分之一,而且如果头没了,嘴巴也就没了,因此头和嘴巴是组合关系,如图7所示:

    图7 组合关系实例

    在代码实现组合关系时,通常在整体类的构造方法中直接实例化成员类,图7对应的Java代码片段如下:

    public class Head {
    	private Mouth mouth;
    
    	public Head() {
    		mouth = new Mouth(); //实例化成员类
    	}
    ……
    }
    
    public class Mouth {
    	……
    } 

    类与类之间的关系(2)

    2. 依赖关系

    依赖(Dependency)关系是一种使用关系,特定事物的改变有可能会影响到使用该事物的其他事物,在需要表示一个事物使用另一个事物时使用依赖关系。大多数情况下,依赖关系体现在某个类的方法使用另一个类的对象作为参数。在UML中,依赖关系用带箭头的虚线表示,由依赖的一方指向被依赖的一方。例如:驾驶员开车,在Driver类的drive()方法中将Car类型的对象car作为一个参数传递,以便在drive()方法中能够调用car的move()方法,且驾驶员的drive()方法依赖车的move()方法,因此类Driver依赖类Car,如图1所示:

    图1 依赖关系实例

    在系统实施阶段,依赖关系通常通过三种方式来实现,第一种也是最常用的一种方式是如图1所示的将一个类的对象作为另一个类中方法的参数,第二种方式是在一个类的方法中将另一个类的对象作为其局部变量,第三种方式是在一个类的方法中调用另一个类的静态方法。图1对应的Java代码片段如下:

    public class Driver {
    	public void drive(Car car) {
    		car.move();
    	}
        ……
    }
    
    public class Car {
    	public void move() {
    		......
    	}
        ……
    }  

    3. 泛化关系

    泛化(Generalization)关系也就是继承关系,用于描述父类与子类之间的关系,父类又称作基类或超类,子类又称作派生类。在UML中,泛化关系用带空心三角形的直线来表示。在代码实现时,我们使用面向对象的继承机制来实现泛化关系,如在Java语言中使用extends关键字、在C++/C#中使用冒号“:”来实现。例如:Student类和Teacher类都是Person类的子类,Student类和Teacher类继承了Person类的属性和方法,Person类的属性包含姓名(name)和年龄(age),每一个Student和Teacher也都具有这两个属性,另外Student类增加了属性学号(studentNo),Teacher类增加了属性教师编号(teacherNo),Person类的方法包括行走move()和说话say(),Student类和Teacher类继承了这两个方法,而且Student类还新增方法study(),Teacher类还新增方法teach()。如图2所示:

    图2 泛化关系实例

    图2对应的Java代码片段如下:

    //父类
    public class Person {
    protected String name;
    protected int age;
    
    public void move() {
            ……
    }
    
        public void say() {
        ……
        }
    }
    
    //子类
    public class Student extends Person {
    private String studentNo;
    
    public void study() {
        ……
        }
    }
    
    //子类
    public class Teacher extends Person {
    private String teacherNo;
    
    public void teach() {
        ……
        }
    }

    4. 接口与实现关系

    在很多面向对象语言中都引入了接口的概念,如Java、C#等,在接口中,通常没有属性,而且所有的操作都是抽象的,只有操作的声明,没有操作的实现。UML中用与类的表示法类似的方式表示接口,如图3所示:

    图3 接口的UML图示

    接口之间也可以有与类之间关系类似的继承关系和依赖关系,但是接口和类之间还存在一种实现(Realization)关系,在这种关系中,类实现了接口,类中的操作实现了接口中所声明的操作。在UML中,类与接口之间的实现关系用带空心三角形的虚线来表示。例如:定义了一个交通工具接口Vehicle,包含一个抽象操作move(),在类Ship和类Car中都实现了该move()操作,不过具体的实现细节将会不一样,如图4所示:

    图4 实现关系实例

    实现关系在编程实现时,不同的面向对象语言也提供了不同的语法,如在Java语言中使用implements关键字,而在C++/C#中使用冒号“:”来实现。图4对应的Java代码片段如下:

    public interface Vehicle {
    public void move();
    }
    
    public class Ship implements Vehicle {
    public void move() {
        ……
        }
    }
    
    public class Car implements Vehicle {
    public void move() {
        ……
        }
    }

    实例分析1——登录模块

    某基于C/S的即时聊天系统登录模块功能描述如下:

    用户通过登录界面(LoginForm)输入账号和密码,系统将输入的账号和密码与存储在数据库(User)表中的用户信息进行比较,验证用户输入是否正确,如果输入正确则进入主界面(MainForm),否则提示“输入错误”。

    根据以上描述绘制初始类图。

    参考解决方案:

    参考类图如下:

    考虑到系统扩展性,在本实例中引入了抽象数据访问接口IUserDAO,再将具体数据访问对象注入到业务逻辑对象中,可通过配置文件(如XML文件)等方式来实现,将具体的数据访问类类名存储在配置文件中,如果需要更换新的具体数据访问对象,只需修改配置文件即可,原有程序代码无须做任何修改。

    类说明:

    类 名
    说 明
    LoginForm 登录窗口,省略界面组件和按钮事件处理方法(边界类)
    LoginBO 登录业务逻辑类,封装实现登录功能的业务逻辑(控制类)
    IUserDAO 抽象数据访问类接口,声明对User表的数据操作方法,省略除查询外的其他方法(实体类)
    UserDAO 具体数据访问类,实现对User表的数据操作方法,省略除查询外的其他方法(实体类)
    MainForm 主窗口(边界类)

    方法说明:

    方法名
    说 明
    LoginForm类的LoginForm()方法 LoginForm构造函数,初始化实例成员
    LoginForm类的validate()方法 界面类的验证方法,通过调用业务逻辑类LoginBO的validate()方法实现对用户输入信息的验证
    LoginBO类的validate()方法 业务逻辑类的验证方法,通过调用数据访问类的findUserByAccAndPwd()方法验证用户输入信息的合法性
    LoginBO类的setIUserDAO()方法 Setter方法,在业务逻辑对象中注入数据访问对象(注意:此处针对抽象数据访问类编程
    IUserDAO接口的findUserByAccAndPwd()方法 业务方法声明,通过用户账号和密码在数据库中查询用户信息,判断该用户身份的合法性
    UserDAO类的findUserByAccAndPwd()方法 业务方法实现,实现在IUserDAO接口中声明的数据访问方法

    实例分析2——注册模块

    某基于Java语言的C/S软件需要提供注册功能,该功能简要描述如下:

    用户通过注册界面(RegisterForm)输入个人信息,用户点击“注册”按钮后将输入的信息通过一个封装用户输入数据的对象(UserDTO)传递给操作数据库的数据访问类,为了提高系统的扩展性,针对不同的数据库可能需要提供不同的数据访问类,因此提供了数据访问类接口,如IUserDAO,每一个具体数据访问类都是某一个数据访问类接口的实现类,如OracleUserDAO就是一个专门用于访问Oracle数据库的数据访问类。

    根据以上描述绘制类图。为了简化类图,个人信息仅包括账号(userAccount)和密码(userPassword),且界面类无需涉及界面细节元素。

    参考解决方案:

    在以上功能说明中,可以分析出该系统包括三个类和一个接口,这三个类分别是注册界面类RegisterForm、用户数据传输类UserDTO、Oracle用户数据访问类OracleUserDAO,接口是抽象用户数据访问接口IUserDAO。它们之间的关系如下:

    (1) 在RegisterForm中需要使用UserDTO类传输数据且需要使用数据访问类来操作数据库,因此RegisterForm与UserDTO和IUserDAO之间存在关联关系,在RegisterForm中可以直接实例化UserDTO,因此它们之间可以使用组合关联。

    (2) 由于数据库类型需要灵活更换,因此在RegisterForm中不能直接实例化IUserDAO的子类,可以针对接口IUserDAO编程,再通过注入的方式传入一个IUserDAO接口的子类对象(在本书后续章节中将学习如何具体实现),因此RegisterForm和IUserDAO之间具有聚合关联关系。

    (3) OracleUserDAO是实现了IUserDAO接口的子类,因此它们之间具有类与接口的实现关系。

    (4) 在声明IUserDAO接口的增加用户信息方法addUser()时,需要将在界面类中实例化的UserDTO对象作为参数传递进来,然后取出封装在UserDTO对象中的数据插入数据库,因此addUser()方法的函数原型可以定义为:public boolean addUser(UserDTO user),在IUserDAO的方法addUser()中将UserDTO类型的对象作为参数,故IUserDAO与UserDTO存在依赖关系。

    通过以上分析,该实例参考类图如图1所示:

    图1 注册功能参考类图

    注意:在绘制类图或其他UML图形时,可以通过注释(Comment)来对图中的符号或元素进行一些附加说明,如果需要详细说明类图中的某一方法的功能或者实现过程,可以使用如图2所示表示方式:

    图2 类图注释实例

    实例分析3——售票机控制程序

    某运输公司决定为新的售票机开发车票销售的控制软件。图I给出了售票机的面板示意图以及相关的控制部件。

    图I 售票机面板示意图

    售票机相关部件的作用如下所述:

    (1) 目的地键盘用来输入行程目的地的代码(例如,200表示总站)。

    (2) 乘客可以通过车票键盘选择车票种类(单程票、多次往返票和座席种类)。

    (3) 继续/取消键盘上的取消按钮用于取消购票过程,继续按钮允许乘客连续购买多张票。

    (4) 显示屏显示所有的系统输出和用户提示信息。

    (5) 插卡口接受MCard(现金卡),硬币口和纸币槽接受现金。

    (6) 打印机用于输出车票。

    (7) 所有部件均可实现自检并恢复到初始状态。

    现采用面向对象方法开发该系统,使用UML进行建模,绘制该系统的初始类图。

    参考解决方案:

    参考类图如下:

    类说明:

    类 名
    说 明
    Component 抽象部件类,所有部件类的父类
    Keyboard 抽象键盘类
    ActionKeyboard 继续/取消键盘类
    TicketKindKeyboard 车票种类键盘类
    DestinationKeyboard 目的地键盘类
    Screen 显示屏类
    CardDriver 卡驱动器类
    CashSlot 现金(硬币/纸币)槽类
    Printer 打印机类
    TicketSoldSystem 售票系统类

    方法说明:

    方法名
    说 明
    Component 的init()方法 初始化部件
    Component 的doSeltTest()方法 自检
    Keyboard的getSelectedKey()方法 获取按键值
    ActionKeyboard的getAction()方法 继续/取消键盘事件处理
    TicketKindKeyboard的getTicketKind()方法 车票种类键盘事件处理
    DestinationKeyboard的getDestinationCode()方法 目的地键盘事件处理
    Screen的showText()方法 显示信息
    CardDriver的getCredit()方法 获取金额
    CardDriver的debitFare()方法 更新卡余额
    CardDriver的ejectMCard()方法 退卡
    CashSlot的getCredit()方法 获取金额
    Printer的printTicket()方法 打印车票
    Printer的ejectTicket()方法 出票
    TicketSoldSystem的verifyCredit()方法 验证金额
    TicketSoldSystem的calculateFare()方法 计算费用
    展开全文
  • UML详解,详细介绍

    2019-03-08 10:48:20
    UML概念: UML-Unified Model Language 统一建模语言,又称标准建模语言。是用来对软件密集系统进行可视化建模的一种语言。UML的定义包括UML语义和UML表示法两个元素 UML是由一堆图组成的,包括:用例图、类图、对象...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,847
精华内容 738
关键字:

uml详解