精华内容
下载资源
问答
  • 安森美半导体谈自动驾驶 传感器融合是关键.pdf
  • 点上方蓝字人工智能算法与Python大数据获取更多干货在右上方···设为星标★,第一时间获取资源仅做学术分享,如有侵权,联系删除转载于 :Kittcamp自动驾驶学院/导读/随着...

    点上方蓝字人工智能算法与Python大数据获取更多干货

    在右上方 ··· 设为星标 ★,第一时间获取资源

    仅做学术分享,如有侵权,联系删除

    转载于 :Kittcamp自动驾驶学院

    导读 /

    随着机器人技术的不断发展,智能化已成为机器人技术的发展趋势,而传感器技术则是实现智能化的基础之一。

    传感器融合技术

    简单地说,传感器融合就是将多个传感器获取的数据、信息集中在一起综合分析以便更加准确可靠地描述外界环境,从而提高系统决策的正确性。

    传感器各有优劣,难以互相替代,未来要实现自动驾驶,是一定需要多个传感器相互配合共同构成汽车的感知系统的。不同传感器的原理、功能各不相同,在不同的使用场景里可以发挥各自优势。

    多传感器融合是人工智能未来趋势

    多个同类或不同类传感器分别获得不同局部和类别的信息,这些信息之间可能相互补充,也可能存在冗余和矛盾,而控制中心最终只能下达唯一正确的指令,这就要求控制中心必须对多个传感器所得到的信息进行融合,综合判断。

    随着机器人技术的不断发展,智能化已成为机器人技术的发展趋势,而传感器技术则是实现智能化的基础之一。

    多传感器融合技术理念

    由于单一传感器获得的信息有限,且还要受到自身品质和性能的影响,因此智能机器人通常配有数量众多的不同类型的传感器,以满足探测和数据采集的需要。若对各传感器采集的信息进行单独、孤立地处理,不仅会导致信息处理工作量的增加,而且,割断了各传感器信息间的内在联系,丢失了信息经有机组合后可能蕴含的有关环境特征,造成信息资源的浪费,甚至可能导致决策失误。为了解决上述问题人们提出了多传感器融合技术。

    多传感器融合又称多传感器信息融合,有时也称作多传感器数据融合,于1973年在美国国防部资助开发的声纳信号处理系统中被首次提出,它是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。它从多信息的视角进行处理及综合,得到各种信息的内在联系和规律,从而剔除无用的和错误的信息,保留正确的和有用的成分,最终实现信息的优化,也为智能信息处理技术的研究提供了新的观念。

    到底有多精确?

    多传感器融合技术有多精确

    简单的传感器融合不外乎就是每个传感器的数据能大致在空间跟时间上能得到对齐。而整个多传感器融合技术的核心就在于高精度的时间以及空间同步。精度到什么量级呢?

    举个栗子,比如时间上能得到10的-6次方,空间上能得到在一百米外3到5厘米的误差,这是一个典型的技术指标。

    当然,多传感器同步技术的难度与时间和空间的要求是一个指数级的增加。在百米外能得到3cm的空间精度,换算成角度是0.015度左右。

    大家也知道在无人驾驶当中,毫米波雷达、相机、激光雷达和超声波都是完全不同的传感器,让他们在时域跟空域上得到这样的精度是非常难的,需要对机器人技术以及机器学习优化技术有非常深的理解。

    自动泊车、公路巡航控制和自动紧急制动等自动驾驶汽车功能在很大程度上也是依靠传感器来实现的。

    多传感器融合技术使用方式

    重要的不仅仅是传感器的数量或种类,它们的使用方式也同样重要。目前,大多数路面上行驶车辆内的ADAS都是独立工作的,这意味着它们彼此之间几乎不交换信息。只有把多个传感器信息融合起来,才是实现自动驾驶的关键。

    现在路面上的很多汽车,甚至是展厅内的很多新车,内部都配备有基于摄像头、雷达、超声波或LIDAR等不同传感器的先进驾驶员辅助系统(ADAS)

    这些系统的数量将会随着新法案的通过而不断增加,例如在美国,就有强制要求安装后视摄像头的法案。此外,诸如车险打折优惠和美国公路交通安全管理局(NHTSA)、欧洲新车安全评鉴协会(Euro-NCAP)等机构做出的汽车安全评级正在使某些系统成为汽车的强制功能;另一方面,这也助长了消费者对它们的需求。

    ADAS如何实现突破限制

    目前,大多数路面上行驶车辆内的ADAS都是独立工作的,这意味着它们彼此之间几乎不交换信息。(没错,某些高端车辆具有非常先进的自动驾驶功能,不过这些功能还未普及)。后视摄像头、环视系统、雷达和前方摄像头都有它们各自的用途。通过将这些独立的系统添加到车辆当中,可以为驾驶员提供更多信息,并且实现自动驾驶功能。不过,你还可以突破限制,实现更多功能——参见图1。

    图1:ADAS以汽车内单个、独立的功能存在

    仅仅通过多次使用相同种类的传感器无法克服每种传感器的缺点。反之,我们需要将来自不同种类传感器的信息组合在一起。工作在可见光谱范围内的摄像头CMOS芯片在浓雾、下雨、刺眼阳光和光照不足的情况下会遇到麻烦。而雷达缺少目前成像传感器所具有的高分辨率。我们可以在每种传感器中找到诸如此类的优缺点。

    “雷达”与“摄像头”

    多传感器融合技术中的“雷达”与“摄像头”

    传感器融合这一想法的伟大之处在于获得不同传感器和传感器种类的输入内容,并且使用组合在一起的信息来更加准确地感知周围的环境。

    相对于独立系统,这样可以做出更好、更安全的决策。雷达也许不具有光传感器所具有的分辨率,不过它在测距和穿透雨、雪和浓雾方面具有很大优势。这些天气条件或光照不足的恶劣情况不利于摄像头发挥作用,不过摄像头能够分辨颜色(可以想一想街道指示牌和路标),并且具有很高的分辨率。

    目前路面上图像传感器的分辨率已经达到1百万像素。在未来几年内,图像传感器的发展趋势将是2百万,甚至4百万像素。

    “雷达”与“摄像头”相互融合

    雷达和摄像头是两项传感器技术完美融合、互为补充的典范。采用这种方法的融合系统所实现的功能要远超这些独立系统能够实现的功能总和。

    使用不同的传感器种类可以在某一种传感器全都出现故障的环境条件下,额外提供一定冗余度。这种错误或故障可能是由自然原因(诸如一团浓雾)或是人为现象(例如对摄像头或雷达的电子干扰或人为干扰)导致。

    即使是在一个传感器失效的情况下,这样的传感器融合系统也可以保持某些基本或紧急的功能。完全借助报警功能,或者让驾驶员时刻做好准备,从而接管对车辆的控制,系统故障也许就不那么严重了。

    然而,高度和完全自动驾驶功能必须提供充足的时间让驾驶员重新获得对车辆的控制。在这段驾驶员接管车辆控制之前的时间范围内,控制系统需要保持对车辆最低限度的控制。

    前融合与后融合

    多传感器融合技术中的前融合、后融合

    后融合算法典型结构

    后融合算法:

    1. 每个传感器各自独立处理生成的目标数据。

    2. 每个传感器都有自己独立的感知,比如激光雷达有激光雷达的感知,摄像头有摄像头的感知,毫米波雷达也会做出自己的感知。

    3. 当所有传感器完成目标数据生成后,再由主处理器进行数据融合。

    前融合算法典型结构

    前融合算法:

    1. 只有一个感知的算法。对融合后的多维综合数据进行感知。

    2. 在原始层把数据都融合在一起,融合好的数据就好比是一个 Super 传感器,而且这个传感器不仅有能力可以看到红外线,还有能力可以看到摄像头或者 RGB,也有能力看到 LiDAR 的三维信息,就好比是一双超级眼睛。在这双超级眼睛上面,开发自己的感知算法,最后会输出一个结果层的物体。

    数据融合的算法

    雷达和摄像头是两项传感器技术完美融合、互为补充的典范。采用这种方法的融合系统所实现的功能要远超这些独立系统能够实现的功能总和。

    使用不同的传感器种类可以在某一种传感器全都出现故障的环境条件下,额外提供一定冗余度。这种错误或故障可能是由自然原因(诸如一团浓雾)或是人为现象(例如对摄像头或雷达的电子干扰或人为干扰)导致。

    即使是在一个传感器失效的情况下,这样的传感器融合系统也可以保持某些基本或紧急的功能。完全借助报警功能,或者让驾驶员时刻做好准备,从而接管对车辆的控制,系统故障也许就不那么严重了。

    然而,高度和完全自动驾驶功能必须提供充足的时间让驾驶员重新获得对车辆的控制。在这段驾驶员接管车辆控制之前的时间范围内,控制系统需要保持对车辆最低限度的控制。

    ---------♥---------

    声明:本内容来源网络,版权属于原作者

    图片来源网络,不代表本公众号立场。如有侵权,联系删除

    AI博士私人微信,还有少量空位

    如何画出漂亮的深度学习模型图?

    如何画出漂亮的神经网络图?

    一文读懂深度学习中的各种卷积

    点个在看支持一下吧

    展开全文
  • (一)卡尔曼滤波的原理 ...(二)GPS和惯性传感器IMU的融合 GPS的缺点是更新频率低,无法满足实时性计算的要求。惯性传感器IMU是高频传感器,在短时间内可以提供稳定的实时位置更新,但是其定位误差随着运行时间增加.

    (一)卡尔曼滤波的原理

    关于卡尔曼滤波的原理,可以参考Bzarg所写的《How a Kalman filter works, in pictures》,卡尔曼滤波总体框图如下所示。

    Kalman filter information flow diagram

     

    我自己总结卡尔曼滤波主要有以下两个步骤:

    1)根据估算值得到预测值

    2)根据测量值对预测值进行更新,得到新的估算值

    (二)GPS和惯性传感器IMU的融合

    GPS的缺点是更新频率低,无法满足实时性计算的要求。惯性传感器IMU是高频传感器,在短时间内可以提供稳定的实时位置更新,但是其定位误差随着运行时间增加。所以需要融合这两种传感器的优点,才能得到实时和精准的定位。

    如下图所示,使用卡尔曼滤波器对惯性传感器IMU与GPS数据进行融合。首先,我们在上一次位置估算的基础上使用惯性传感器IMU对当前的位置进行实时预测在得到新的GPS数据之前,我们只能通过积分惯性传感器IMU的数据预测当前位置。惯性传感器IMU的定位误差会随着运行时间增长,所以当接收到新的GPS数据时,由于GPS的数据比较精准,我们可以使用GPS数据对当前的位置预测进行更新。通过不断地执行这两个步骤,可以取两者所长,对无人车进行准确的实时定位。假设惯性传感器的频率是1kHz,而GPS的频率是10Hz,那么每两次GPS更新之间会使用100个惯性传感器数据点进行位置预测。

    参考:

    1)How a Kalman filter works, in pictures,Bzarg

    2)第一本无人驾驶技术书,刘少山等著,北京:电子工业出版社,2017.6

     

     

    展开全文
  • 自动驾驶传感器融合问题讨论.pdf
  • 只有把多个传感器信息融合起来,才是实现自动驾驶的关键。”现在路面上的很多汽车,甚至是展厅内的很多新车,内部都配备有基于摄像头、雷达、超声波或LIDAR等不同传感器的先进驾驶员辅助系统(ADAS)。这些系统的...
  • 传感器融合标定算法,另外还包含了自动驾驶学习资料 涵盖感知,规划和控制,ADAS,传感器; 1. apollo相关的技术教程和文档; 2.adas(高级辅助驾驶)算法设计(例如AEB,ACC,LKA等) 3.自动驾驶鼻祖mobileye的论文和...
  • 自动驾驶传感器融合技术,另外还包含了自动驾驶学习资料 涵盖感知,规划和控制,ADAS,传感器; 1. apollo相关的技术教程和文档; 2.adas(高级辅助驾驶)算法设计(例如AEB,ACC,LKA等) 3.自动驾驶鼻祖mobileye的...
  • 自动驾驶传感器融合

    万次阅读 2018-01-02 10:01:50
    简单地说,Pandora指的是一套以激光雷达、环视摄像头模组、多传感器融合和感知识别算法为一体的自动驾驶开发者套件,它实际上是一种新型的“多传感器融合”技术。 通常,业界所说的“多传感器
    12月28日,百度Apollo平台携手国内激光雷达公司禾赛科技扔下一颗名为Pandora的重磅炸弹,此举将极大地加快无人驾驶落地的进程,却也会让不少自动驾驶初创公司陷入无比尴尬的境地。
    简单地说,Pandora指的是一套以激光雷达、环视摄像头模组、多传感器融合和感知识别算法为一体的自动驾驶开发者套件,它实际上是一种新型的“多传感器融合”技术。
    图片
    通常,业界所说的“多传感器融合”,都是指对摄像头、激光雷达、毫米波雷达、超声波雷达等多种传感器各自分别收集到的数据所做的“数据融合”,而Pandora的做法则是“硬件层面的融合”,即在硬件层面就将摄像头、激光雷达集成到一起,然后再将采集到的数据统一输送到计算平台。
    图片
    图片
    在Pandora的开发过程中,禾赛主要负责硬件产品的设计和制造,而百度Apollo负责整体系统的定义和算法的适配。但目前尚不清楚,Pandora中采用的激光雷达,是不是禾赛的混合固态Pandar40。
    为什么要做Pandora,它能解决什么问题呢?
    禾赛方面认为,对大多数涉足自动驾驶的公司来说,搞定一套传感器方案,这个看似简单的工作,却往往需要耗费一个小团队至少6-8个月的宝贵研发时间,才能勉强做到“不拖后腿”,而这又仅仅是“重复发明轮子”的一个过程。Pandora就是为了解决这样的研发痛点而生。
    做“硬件层面的多传感器融合”,Pandora并不是第一家,硅谷激光雷达公司AEye早在2013年成立之初就这么干了;《建约车评》在12月18日报道的硅谷激光雷达初创公司Innovusion也采取了激光雷达和摄像头在硬件层面融合的方案。
    禾赛科技CEO李一帆和百度Apollo主任研发架构师王亮都在这次Pandora的发布会上详细解释了硬件层面的多传感器融合对整个行业的积极意义,随后,《建约车评》也采访了地平线创始人余凯、驭势科技创始人吴甘沙、主线科技创始人张天雷、智行者科技创始人张德兆等多位业内人士,多位受访者一致认为,像Pandora这种多传感器融合方案,是“大势所趋”。
    总的来说,Innovusion和禾赛这种硬件层面的多传感器融合方案,最明显的好处有以下几点:
    1.提高了探测的可靠性
    我们大家理解的“点云”,其实并不是激光雷达的原始数据。点云只是原始数据经过“过滤”后形成的产物,真正的原始数据可能比点云的数据多1000倍,也就是说,超过点云数据900倍的原始数据,都在传感器里“藏着掖着”,没有被输送到中央计算系统——这些数据如果被充分利用起来的话,会有助于提高系统对外部环境的感知能力。
    据Innovusion创始人鲍君威介绍,硬件端的融合,恰好可以充分利用起这些数据,再加上激光雷达和摄像头分辨率的自然匹配,极大地提高了三维空间重构以及物体探测的可靠性。
    2.解决了数据同步的问题
    在常见的那种“数据融合”下,来自于不同的传感器并经过汇总的数据在软件层融合的过程,往往需要几十毫秒、上百毫秒的延迟——如果不同厂商做的传感器没有同步的机制,还需要额外花很大力气做同步;同步不好的话,同一个物体会由于运动造成不同传感器探测到的空间位置的不一致,给后续融合造成额外的困扰 。而在硬件层面的融合,则不会存在这种问题。
    3.节省计算量,降低功耗
    硬件端的融合还减少了对计算量的要求,提高了运算处理的效率。
    站在摄像头的角度看,跟激光雷达在硬件端融合,检测到的信息就直接是三维的,不像之前那样只能检测到二维信息,然后第三维“靠猜”了;站在激光雷达的角度,跟摄像头的融合,检测到的信息直接带有颜色,可以分类,不需要后端再处理一次了。
    从产品性能的角度,节省结算量,就是提高效率;而站在用户的角度,节省计算量,就可以降低功耗、降低对硬件端的性能要求,进而降低成本。
    4.帮用户节省时间
    Pandora不是激光雷达和摄像头的机械式拼凑,而是一个匹配了算法和处理器的有机系统,用户可以“拿走即用”,而不是像以前那样从不同的供应商处拿到不同的传感器后还得再花个大半年时间进行匹配、调试。这就会帮用户节省很多时间,让他们把时间投入到自己更擅长、也更有价值的事情上面。
    5. 降低集成难度
    激光雷达和多个摄像头的一体化机械设计,使总体积明显变小,布线也简单多了,更方便主机厂的集成安装。
    图片
    吴甘沙认为,Pandora所提供的前融合方案,会是一个大方向,只是当前因为激光雷达的价格太高,还不能成为主流,但2-3年后,一旦激光雷达的成本降低到1000美元以下,跟摄像头融合起来就很厉害了。
    Pandora将优先为Apollo联盟成员提供技术支持和产品信息,并且,Apollo成员还可享受最佳供货期和最优购买价。这个重磅的推出,可能会吸引更多的主机厂及Tier,甚至是无人驾驶初创公司加入Apollo生态。
    但并非是“你好,我好,大家好”。一旦Pandor的各种“用户体验”经过验证,将会有不少原本采用“别人家的激光雷达”的用户“倒戈”,这个时候,那些“体验不佳”的方案将会受到极大冲击。
    起初,一些激光雷达公司也许会有一点危机感,但他们可能很快就发现,激光雷达和摄像头在硬件端的融合,难度并不大,他们自己也可以做。然后,相关的Tier 1也会跟进。再然后呢?
    “多传感器融合”(数据融合),一直是Momenta、pony.ai及Roadstar 等诸多无人驾驶初创公司的主要技术方案,现在,激光雷达厂商和Tier 1都来做“多传感器融合”,并且,把融合“前置”到硬件层,不仅使用更方面,而且性能也更好,这......看到这样的消息,一些“多传感器融合“的技术方案供应商可能“整个人都不好了”。
    左边,是来自原来的“潜在客户”Tier 1们的“降维打击”;右边,是来自那些原先只能做它的供应商的激光雷达厂商的“升维打击”,技术方案供应商,处境将无比尴尬。
    让这些初创公司去投靠禾赛这样的激光雷达公司,它们当然不会甘心;相比之下,投入Tier 1的怀抱,为Tier 1做“多传感器融合”——不是它们自己那老一套的融合方案,而是类似于Pandora这种融合,可能已是“最好的结局”。
    一点补充:
    不过,并非所有人都对Pandora及其所代表的新技术盲目乐观。主要有以下几种声音——
    1.余凯认为,Pandora这样的标品打包方案,应该会有很多无人驾驶企业感兴趣,但“估计离车规级量产版本还有很长距离”。
    2.某激光雷达企业COO认为,在硬件端就将摄像头和激光雷达融合,最大的弊端在于,灵活性不足。有的用户,可能就希望摄像头和激光雷达安装在不同的地方,就希望用某一个款特定的摄像头,而“硬件层的融合”却杜绝了这种可能性。最终结果可能是,只有那些技术实力不强、没有能力自己做融合的技术会采用Pandora,而融合能力强的用户还是会自己研究传感器方案。
    3.吴甘沙虽然也看好Pandora这个方向,但他也有一些疑虑。“以前的一些融合产品,如德尔福曾在2013年推出将雷达和摄像头集成到一起的驾驶辅助系统RACam, 大陆也在2015年推出过一款将单线激光雷达和摄像头融合在一起的‘多功能摄像头激光雷达’(MFL)中,但也并没有做得有风生水起。”
    4. 在Roadstar创始人佟显侨看来,Pandora在本质上就是个Super Sensor,和Depth Camera”没多大区别。佟显侨还是对Roadstar所采用的多传感器融合技术更有信心。
    Roadstar的多传感器融合技术,既不同于Pandora的“在硬件层次融合”,也跟其他无人驾驶初创公司的“数据融合”有很大的不同——通常的“数据融合”,都是先等各传感器收集到的原始数据再经过计算处理后再融合,而Roadstar则使用独创的算法DeepFusion,对各种传感器获得的原始数据进行深度融合。
    这种深度融合数据算法使深度学习所需要的训练数据大幅度减少,用4000个数据就能超过传统非深度融合学习算法15万个数据的效果。并且,由于传感器的物理特性互补,导致很多LiDAR和Camera下的Corner sense都可以别识别,导致Corner Sense降低到传统算法下的1%。如此一来,就降低了对路测里程的要求。
    展开全文
  • 传感器融合 为了使车辆能够自动驾驶,必须借助传感器来感知周围环境:摄像头、雷达、超声波和LiDAR传感器等。 传感器如何实现自动驾驶 大众甲壳虫看上去很美,但它并不能识别周围的环境。对于汽车实现自动驾驶...

    图片

    传感器融合

    为了使车辆能够自动驾驶,必须借助传感器来感知周围环境:摄像头、雷达、超声波和LiDAR传感器等。

    传感器如何实现自动驾驶

    图片

    大众甲壳虫看上去很美,但它并不能识别周围的环境。对于汽车实现自动驾驶来说,感知环境就像人类利用感官一样至关重要。因此,现代车辆配备了各种各样的传感器,可以帮助他们检测周围环境,从而为驾驶员提供支持。

    感知环境最重要的车辆传感器是摄像头,雷达,超声波和LiDAR传感器。除摄像头外,它们均基于飞行时间原理。

    所有这些感知技术有何不同?它们的优缺点是什么?哪种距离传感器最适合自动驾驶?激光雷达与雷达?未来的自动驾驶汽车会借助单一传感器,还是会依赖传感器融合技术?

    飞行时间原理简述:

    飞行时间基于信号撞击物体并反射回来所花费的时间间接测量距离和速度。该原理可以在动物界找到,也称为回声定位,海豚和蝙蝠应用这种原理来定向。

    图片

    借助摄像头感知彩色视觉

     

    图片

    摄像头已经是新生产车辆不可或缺的一部分:它们让驾驶员操纵行驶和停车变得更加容易。此外,诸如自适应巡航控制或车道偏离警告之类的系统都离不开摄像头。除了安装在车外,摄像机还将在不久的将来用于车内。他们将检测驾驶员是否分心,不系安全带或疲倦状态检测。这对于自动驾驶的下一阶段开发尤其重要。

    摄像机采集的图像生动地感知了周围环境。除了颜色之外,它们还可以提供纹理和对比度数据。能够可靠地识别道路标记或交通标志,精确检测、识别静止物体和运动物体。由于摄像头只有周围环境亮度足够的情况下才能检测到物体,因此,在恶劣的环境条件下(如雪或雾)以及在黑暗中,照相机的可靠性受到限制。此外,相机不提供距离信息(如果不加入算法)。为了获得3D图像,至少需要两个摄像头,就像立体相机或图像识别软件一样,这需要很高的计算性能。

     

    深入探讨:普通摄像头和立体摄像头

    两种不同的摄像头,它们之间有什么区别?

    普通摄像头(一只“眼睛”)具有一个相机镜头和一个图像传感器,提供2D图像。这些图像是行车助手、识别交通标志的基础。但是,无法进行距离测量。距离只能使用复杂的,学习算法来计算。

    立体摄像头(两只“眼睛”)更昂贵,体积更大。它主要由两个摄像头和两个图像传感器组成。立体摄像头同时从不同角度拍摄两个图像。通过标定它们来创建3D图像,可以计算距离和速度。立体摄像头已经在某些量产车中使用,为驾驶员辅助系统提供信息,例如自适应巡航控制和紧急制动辅助系统。

     

    雷达——内置距离传感器

    得益于所谓的“雷达陷阱”,雷达传感器(无线电测距)获得了广泛的声誉。近几十年来,它们也已安装在车辆中以测量距离,或应用于紧急制动辅助等系统以提供可靠数据,而不受天气条件的影响。

    图片

    雷达传感器如何测量距离?雷达技术基于飞行时间原理。传感器以电磁波(无线电波)的形式发出短脉冲,这些短脉冲几乎以光速传播。波浪撞击物体后,它们就会被反射并反射回传感器。发送和接收之间的时间间隔越短,对象越近。

    因此,基于波的传播速度,可以计算到物体的距离,从而可以高精度地确定距离。通过将几个测量结果串联在一起,车辆传感器还可以确定速度。该技术可以使用驾驶员辅助系统,例如自适应巡航控制和自动刹车辅助系统等。

    雷达传感器坚固耐用,价格便宜,即使在不利的天气条件下,通常也能提供可靠的数据。但是,距离传感器在识别和区分物体方面有更大的困难。其原因是雷达数据的分辨率低,这意味着可以检测到物体但不能对其进行分类。

    深入探讨: 近距离雷达与远距离雷达

    如今,大多数使用两种不同的雷达系统来覆盖近距离和远距离。

    近距离雷达:近程(最多30米)由近距离雷达检测,通常基于24 GHz频谱中的一个频段。它结构紧凑,干扰问题少,价格较便宜。近距离雷达有助于停车操作,监视盲点并警告驾驶员碰撞。

    远距离雷达:远距离雷达用于检测距离不超过250米的物体和车辆,并测量其速度。该技术使用76 GHz至77 GHz之间的频率,具有更高的性能。但是,由于分辨率低,距离较远的物体不能总是可靠地被选中。由于远程雷达能够实现紧急制动辅助和自适应巡航控制(即使在高速行驶时),因此在实现下一步自动驾驶方面(例如高速公路驾驶)起着重要作用。

    超声波——近距离专家

     

    如今,大多数的车辆都配备停车辅助装置。例如,如果车辆驶近停车柱,则在车载计算机上显示彩条并发出警告音。给我们提供有关柱子在受监视区域中的确切位置以及车辆附近的信息。该辅助系统可以通过几个超声波传感器实现,这些传感器通常安装在车辆周围的保险杠中。

    图片

    超声波也是基于飞行时间原理,发射人耳听不到的20,000 Hz频率声波,检测车辆附近障碍物距离。除了停车辅助,超声波传感器还用于监视盲区和紧急制动辅助系统等。

    超声波传感器坚固耐用,可在夜间和雾天中提供可靠的距离数据。不管物体材料或颜色如何,都能够检测出来。但是,这些车辆传感器的探测范围小于10米,这意味着该技术只能在近距离使用。

    深入探讨:声纳

    声纳一词通常与超声结合使用,即超声波在海事领域的应用。

    声纳(声音导航与测距):声纳是一种使用声波(通常是超声波)进行定位的测量技术。它主要用于水下,因为声音的传播(尤其是在高频下)的损耗要比空气中的损耗小得多。可以根据水下声速和物体反射时间计算距离。

     

    LiDAR——扫描3D点云数据

    与超声波传感器相比,LiDAR(光检测和测距)传感器适用于短距离和远距离使用。虽然激光雷达已经存在很多年,但直到本世纪初才越来越多地应用于汽车上,激光雷达被认为是实现更高自主性驾驶的关键部分。

    图片

    关键技术LiDAR:避免碰撞是实现下一级别自动驾驶的重要前提。这项技术需要可靠的高分辨率3D数据。只有LiDAR才能在汽车高速行驶的情况下为我们提供长距离范围的环境信息。

    激光雷达传感器也基于飞行时间原理。但是,它们发射的并不是无线电波或超声波,而是发射激光脉冲,物体反射后被光电探测器接收。激光雷达每秒发射高达100万个激光脉冲,捕获高分辨率3D点云数据。

    这些所谓的点云非常详细,不仅可以识别对象,还可以对其进行分类。例如,可以将行人与骑自行车的人区分开。LiDAR传感器具有远距离,坚固耐用的特点,因此可以提供可靠的数据,而这些数据几乎不受环境因素的影响,从而使车辆能够做出正确的驾驶决策。然而,在过去激光雷达传感器非常昂贵,这主要是由于机械旋转装置的复杂设计。但是,由于它们的固态设计日益普及,因此高分辨率3D传感器的成本已大大降低。

     

    深入探究:机械式激光雷达与固态式激光雷达

    最受欢迎的两种激光雷达是机械式激光雷达和固态式激光雷达。

    机械式激光雷达:通过电动机和齿轮旋转激光二极管,从而将激光脉冲引导到整个环境中,旋转实现高达360°的视场。但是,手动设置很复杂且成本很高。因此,即使是大量生产,单价对于批量生产的车辆来说也过于昂贵。

    固态式激光雷达:该设计基于半导体技术,没有任何机械运动部件。因此,系统更简单,更紧凑且无需维护。它们也更便宜,并且可以更好地批量生产。它们可用于所有级别的批量生产车辆中,在未来自动驾驶研究中,将发挥决定性的作用。

     

    通过传感器融合发挥优势

    图片

    安全是自动驾驶的重中之重,因此车辆必须始终精确感知其周围环境。为了实现这一点,摄像头,雷达,超声波和LiDAR传感器可以作为辅助技术相互协助。主要目的是利用各种车辆传感器的优势来弥补其他传感器的劣势,最终通过传感器融合实现安全的自动驾驶。

     

    图片

     

    展开全文
  • 文章转自公众号:计算机视觉之路原文链接:头条 | 自动驾驶传感器融合技术浅析​mp.weixin.qq.com自动驾驶车上使用了多种多样的传感器,不同类型的传感器间在功用上互相补充,提高自动驾驶系统的安全系数。...
  • 无人驾驶传感器融合技术 多传感器融合 多传感器融合要求: 1 )硬件层面:数量要足够,也就是不同种类的传感器都要配备,才能够保证信息获取充分且有冗余; 2 )软件层面:算法要足够优化,数据处理速度要够快,且...
  • 在simulink中搭建的基于相机和毫米波雷达的障碍物检测,检测前方车辆并进行ACC的整套模型。已在实车中进行验证。
  • 自动驾驶中的多传感器融合

    千次阅读 2020-11-24 07:00:00
    点击上方“3D视觉工坊”,选择“星标”干货第一时间送达来源 |清研车联编辑|焉知自动驾驶传感器融合面临的主要挑战是如何将收集来的大量数据集中在一起,并做出正确决策。多传感器融合多...
  • 自动驾驶系列报告之四_传感器篇_多传感器融合.pdf
  • 可靠的自动驾驶要靠“传感器融合”来实现.pdf
  • 上篇文章我们一起研究了自动驾驶涉及到的SLAM自主建图技术,相信你对自动驾驶的了解更进了一步,这次,我们继续来探索自动驾驶涉及到的另一个技术——多传感器融合技术(微缩智能车配有多种传感器,彼此融合形成智能...
  • 传感器融合 为了使车辆能够自动驾驶,必须借助传感器来感知周围环境:摄像头、雷达、超声波和LiDAR传感器等。 传感器如何实现自动驾驶 大众甲壳虫看上去很美,但它并不能识别周围的环境。对于汽车实现自动驾驶来说...
  • 在 L3 及以上自动驾驶传感器解决方案中,激光雷达至少需要 1 个。 相比于激光雷达,毫米波雷达技术已经非常成熟,从上世纪 90 年代开始应用于自适应巡航,2012 年英飞凌推出 24GHz 单片雷达方案,陆续拓展到 ADAS 的...
  • 汽车行业自动驾驶系列报告之四:传感器篇,多传感器融合-180904
  • 自动驾驶工具箱 嵌入式编码器 模型预测控制工具箱 Simulink控制设计 Simulink 开放式 此示例显示了如何使用传感器融合为在弯路上行驶的车辆实现基于传感器融合的汽车自适应巡航控制器。 在此示例中,您:...
  • 20180904-国金证券-自动驾驶系列报告之四:传感器篇:多传感器融合.pdf
  • 不同的传感器都有其优势和缺陷,无法在单传感器的情况下完成对无人驾驶功能性与安全性的全面覆盖,这显示了多传感器融合的必要性。因此,各个传感器之间借助各自所长相互融合、功能互补、互为备份、互为辅助才是完备...
  • 传感器融合自动驾驶(下)
  • 传感器融合自动驾驶(上)

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 9,319
精华内容 3,727
关键字:

自动驾驶传感器融合