精华内容
下载资源
问答
  • 由图像信息获得现实世界坐标系中的参数,即所谓三维重建,这需要对基于计算机视觉的移动机器人导航系统进行摄像机标定。 鉴于移动机器人识别的引导线在地面上这一限制条件,并且摄像头固定在机器人上,可以选择...

    2.1 直行控制

    如果哈夫变换的检测结果表明是一条直线即机器人视野中只有1条主引导线时,则运行直行模块。实际中有2种情况需要考虑:一是机器人的初始位置不一定正对引导线,二是在机器人的机电配置中,左右轮子的马达运动不会绝对精确和对称。这些会使机器人在运动中出现侧偏。可采用下述方法进行直行控制:根据引导线在图像平面坐标中的位置来判断机器人的偏向。当引导线位于图像平面的左半边,说明摄像头的光轴与引导线不垂直且相对于引导线右偏,则命令机器人左转;当引导线位于图像平面的右半边,说明摄像头的光轴与引导线不垂直且相对于引导线左偏,则命令机器人右转;当引导线在图像平面两边均存在时,则命令机器人不偏转继续直行。机器人在前进过程中,根据图像平面中引导线位置不断调整方位,以一定的转动角度(转动角度尽量小,这样机器人的摆动幅度就会小)在直线路径上行走。

    2.2 转弯控制

    如果哈夫变换的检测结果表明是两条相互垂直的直线,即机器人的视野中出现转弯路口,则开始运行转弯模块。

    机器人需要在距转角合适的距离处开始运行转弯模块,以保证机器人视野中始终具有引导线。如图4所示,AB段表示摄像头的纵向视野范围,C点为转角点,机器人需要知道自身在实际二维平面中相对于转角点C的距离即BC段距离。由图像信息获得现实世界坐标系中的参数,即所谓三维重建,这需要对基于计算机视觉的移动机器人导航系统进行摄像机标定。

    鉴于移动机器人识别的引导线在地面上这一限制条件,并且摄像头固定在机器人上,可以选择机器人坐标系为世界坐标系,即世界坐标系与机器人同步移动。坐标原点为标定模板的左下角标定点的中心,Zw轴垂直地面,XwYw平面即为地面。在该坐标系下地面目标的坐标可以表示为(Xw,Yw,0),标定模板由直径5 mm、相距10 mm共72个圆点构成,如图5所示。

    201041411507988.jpg

    移动机器人的摄像机标定问题,如果忽略因物面与摄像机光轴不垂直造成的非线性,则可归结为在二维世界坐标系中求变换矩阵M。

    201041411507504.jpg

    世界坐标系(Xw,Yw,Zw),Zw轴垂直地面,XwYw平面即为地面,在该坐标系下地面目标的坐标P可以表示为(Xw,Yw,0)。式 (2)中Xi,Yj(其中i=1,2,…,n,j=1,2,…,n)即为地面目标的坐标(Xw,Yw)。只要有4个标定点就可以求解该线性方程组,分别测得其在地面上的坐标(Xw,Yw,0),再根据由图像处理的方法得到的图像坐标系中的像素坐标(ui,vj)(其中i=1,2,…,n,j=1,2,…, n),即可求得变换矩阵M,M=[m11,m12,m14,m21,m22,m24,m31,m32]T,其中m34=1。变换矩阵M的元素取值受到摄像头俯仰角和架设高度的影响。在实验室条件下,本系统选取BC=13 cm时开始运行转弯模块。

    展开全文
  • 机器人想要通过若干幅图像来获取目标的三维坐标,双目视觉技术中更为重要的工作是对图像执行匹配,首先明确物体在左右图像的相互匹配的点,然后获得每一点视差以及深度信息。双目立体视觉有设备简单且价格低廉,精度...

    算法一:深度信息提取

    其原理是使用两个平行的相机,对空间中的每个点三角定位。通过匹配左右两个相机中成像点的位置,来计算对应三维点在空间中的距离。

    机器人想要通过若干幅图像来获取目标的三维坐标,双目视觉技术中更为重要的工作是对图像执行匹配,首先明确物体在左右图像的相互匹配的点,然后获得每一点视差以及深度信息。

    双目立体视觉有设备简单且价格低廉,精度高且速度快,无需接触物体即可计算距离和深度信息等优点,其在无人机电力线巡检以及工业建筑机器人中都有重要的应用。

    算法二:定位导航

    机器人导航是一个比较复杂的系统,涉及技术如下:视觉里程计VO;

    建图,利用VO和深度图;

    重定位,从已知地图中识别当前的位置;

    闭环检测,消除VO的闭环误差;

    全局导航;

    视觉避障;

    Scene tagging,识别房间中物体加上tag。

    简单说来就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。

    这种被称为SLAM (Simultaneous Localization And Mapping)的方法,是移动机器人智能水平的最好体现,是否具备同步建图与定位的能力被普遍认为是机器人能否实现自主的关键前提条件。

    目前常用的SLAM技术主要分为两类,一类是基于视觉传感器的VSLAM,另一类是基于激光传感器的激光SLAM。

    视觉SLAM专指利用摄像机、Kinect等深度像机来做室内导航和探索;到目前为止,室内的视觉SLAM仍处于研究阶段,远未到实际应用的程度;而激光SLAM技术已较为成熟,也是目前最稳定、可靠的高性能SLAM方式。

    算法三:避障

    导航解决的问题是引导机器人接近目标。当机器人没有地图的时候,接近目标的方法称为视觉避障技术。避障算法解决的问题是根据视觉传感器的数据,对静态障碍物、动态障碍物实现躲避,但仍维持向目标方向运动,实时自主导航。

    避障算法有很多,传统的导航避障方法如可视图法、栅格法、自由空间法等算法对障碍物信息己知时的避障问题处理尚可,但当障碍信息未知或者障碍是可移动的时候,传统的导航方法一般不能很好的解决避障问题或者根本不能避障。

    而实际生活中,绝大多数的情况下,机器人所处的环境都是动态的、可变的、未知的,为了解决上述问题,人们引入了计算机和人工智能等领域的一些算法。

    同时得益于处理器计算能力的提高及传感器技术的发展,在移动机器人的平台上进行一些复杂算法的运算也变得轻松,由此产生了一系列智能避障方法,比较热门的有:遗传算法、神经网络算法、模糊算法等。

    展开全文
  • VIO-SLAMVisual-Inertial Odometry(VIO)即视觉惯性里程计,有时也叫视觉惯性系统(VINS,visual-inertial system),是融合相机和IM...

    VIO-SLAM

    Visual-Inertial Odometry(VIO)即视觉惯性里程计,有时也叫视觉惯性系统(VINS,visual-inertial system),是融合相机和IMU数据实现SLAM的算法,根据融合框架的不同又分为松耦合紧耦合

    其中VO(visual odometry)指仅视觉的里程计,T表示位置和姿态。松耦合中视觉运动估计和惯导运动估计系统是两个独立的模块,将每个模块的输出结果进行融合。

    紧耦合则是使用两个传感器的原始数据共同估计一组变量,传感器噪声也是相互影响的。紧耦合算法比较复杂,但充分利用了传感器数据,可以实现更好的效果,是目前研究的重点。

    相机和IMU的缺点及互补性

    相机和IMU融合有很好的互补性。首先通过将IMU 估计的位姿序列和相机估计的位姿序列对齐可以估计出相机轨迹的真实尺度,而且IMU 可以很好地预测出图像帧的位姿以及上一时刻特征点在下帧图像的位置,提高特征跟踪算法匹配速度和应对快速旋转的算法鲁棒性,最后IMU 中加速度计提供的重力向量可以将估计的位置转为实际导航需要的世界坐标系中。

    随着MEMS器件的快速发展,智能手机等移动终端可以便捷地获取IMU数据和摄像头拍摄数据,融合IMU 和视觉信息的VINS 算法可以很大程度地提高单目SLAM 算法性能,是一种低成本高性能的导航方案,在机器人、AR/VR 领域得到了很大的关注。

     算法流程

    整个流程图可以分解为五部分:数据预处理、初始化、局部非线性优化、回环检测和全局优化。

    各个模块的主要作用是:

    图像和IMU数据预处理:对于图像,提取特征点,利用KLT金字塔进行光流跟踪,为后面仅视觉初始化求解相机位姿做准备。对于IMU,将IMU数据进行预积分,得到当前时刻的位姿、速度、旋转角,同时计算在后端优化中将要用到的相邻帧间的预积分增量,及预积分的协方差矩阵和雅可比矩阵。

    初始化:初始化中,首先进行仅视觉的初始化,解算出相机的相对位姿;然后再与IMU预积分进行对齐求解初始化参数。

    局部非线性优化:对应流程图中滑动窗口的视觉惯导非线性优化,即将视觉约束、IMU约束放在一个大目标函数中进行优化,这里的局部优化也就是只优化当前帧及之前的n帧的窗口中的变量,局部非线性优化输出较为精确的位姿。

    回环检测:回环检测是将前面检测的图像关键帧保存起来,当再回到原来经过的同一个地方,通过特征点的匹配关系,判断是否已经来过这里。前面提到的关键帧就是筛选出来的能够记下但又避免冗余的相机帧(关键帧的选择标准是当前帧和上一帧之间的位移超过一定阈值或匹配的特征点数小于一定阈值)。

    全局优化:全局优化是在发生回环检测时,利用相机约束和IMU约束,再加上回环检测的约束,进行非线性优化。全局优化在局部优化的基础上进行,输出更为精确的位姿。

    算法核心

    局部优化会用到边缘化,仅用局部优化精度低,全局一致性差,但是速度快,IMU利用率高;仅用全局优化精度高,全局一致性好,但是速度慢,IMU利用率低;两者侧重点不同,所以将两者结合,可以优势互补。

    因此小编设计实验采用局部优化和全局优化融合的方法

    局部优化是滑动窗口内相机帧的优化,全局优化是所有关键帧的优化,两者结合会产生边缘帧冲突的问题,因为局部优化会固定滑动窗口边缘帧,而全局优化发生回环检测的时候则会固定回环起点的帧。这里的改进就是采用相对的位姿边缘化,即边缘化以后的点是相对于它上一时刻关键帧的位姿而不是全局的位姿,这样局部优化边缘化相对位姿(关键帧),扔给全局优化整体优化。局部边缘化和全局边缘化的结合部分是关键帧。

    相对边缘化可以具体解释为,相对边缘化的参考坐标系不再是世界坐标系,而是与当前帧共视且距离最近的一个关键帧的相机系(设为第k0帧)。视觉约束可以表示为:

    区别于绝对边缘化的视觉约束


    实验结果与总结

    实验一:无人机数据集上的实验

    数据集采用了欧盟机器人挑战数据集(EuRoC)。EuRoC 数据集使用 Asctec  Firefly 六旋翼飞行器在仓库和房间采集数据,数据集中包括以20Hz采集的相机图像和200Hz的IMU数据,以及运动真值

    实验结果如下:


    实验结果可见,融合优化的轨迹和真实轨迹很接近,而仅使用局部优化的定位结果误差不断累积。

    实验二:车载数据上的实验

    该车载数据是在北京市朝阳区某小区采集的,在数据采集阶段,车辆以5km/h 到 30km/h 的速度行驶,一共行驶2271m。

    实验结果如下:

    实验结果可见,融合优化后的定位结果明显优于仅使用局部优化的定位结果,融合优化中误差得到及时修正。

    参考文献

    1. J. Delmerico. A Benchmark Comparison of Monocular Visual-Inertial OdometryAlgorithms for Flying Robots. 2018. ICRA

    2. T. Qin. VINS-Mono: A robust and versatile monocular visual-inertial state estimator. arXivpreprint arXiv: 1708.03852, 2017.

    3. N. Trawny. Indirect KalmanFilter for 3D Attitude Estimation. 2005.

    4. Sola. Quaternion kinematics for error-state kalmanfilter. 2017.

    5. K. Eckenhoff. Decoupled, Consistent Node Removal and Edge sparsificationfor graph-based SLAM. 2016.

    6. G. Sibley. Sliding window filter with application to planetary landing.  2010.

    7. S. Leutenegger. Keyframe-Based Visual-Inertial SLAM Using Nonlinear Optimization. 2015.

    8. H. Liu. ICE-BA: Incremental, consistenand efficient bundle adjustment for visual-inertial slam. 2018. CVPR.

    9. H. Liu. Robust keyframe-based dense SLAM with an RGB-D camera. 2017.

     End 

    声明:部分内容来源于网络,仅供读者学术交流之目的。文章版权归原作者所有。如有不妥,请联系删除。

    本文仅做学术分享,如有侵权,请联系删文。

    下载1

    在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

    下载2

    「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

    下载3

    「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

    重磅!3DCVer-学术论文写作投稿 交流群已成立

    扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

    同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

    一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

    ▲长按加微信群或投稿

    ▲长按关注公众号

    3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近3000星球成员为创造更好的AI世界共同进步,知识星球入口:

    学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

     圈里有高质量教程资料、可答疑解惑、助你高效解决问题

    觉得有用,麻烦给个赞和在看~  

    展开全文
  • 点击上方“3D视觉工坊”,选择“星标”干货第一时间送达有什么用?微软2010年发布了消费级RGB-D(RGB+depth)相机Kinect1,此后涌现了大量基于RGB-D相机的研究工作,比...

    点击上方“3D视觉工坊”,选择“星标”

    干货第一时间送达

    有什么用?

    微软2010年发布了消费级RGB-D(RGB+depth)相机Kinect1,此后涌现了大量基于RGB-D相机的研究工作,比如用RGB-D相机来进行室内三维重建,比较有名的是KinectFusion、Kintinuous,ElasticFusion,InfiniTAM,BundleFusion等。此外,RGB-D相机还大量用于物体及人脸的三维建模、自动驾驶、增强现实、三维打印等。

    目前主流的RGB-D相机有微软的Kinect系列,Intel的realsense系列,structure sensor(需结合iPad使用)等。关于RGB-D相机更详细的介绍可以查看公众号里 深度相机系列。去年iPhone X前置结构光深度相机(depth)面世后,更是激发了手机产业链深度相机的热潮,目前小米、OPPO、Vivo等手机大厂都在积极推动深度相机在手机上的应用。

    虽然RGB-D相机前景无限,但是受制于物理硬件的限制,目前深度相机输出的depth图还有很多问题,比如对于光滑物体表面反射、半/透明物体、深色物体、超出量程等都会造成深度图缺失。而且很多深度相机是大片的深度值缺失,这对于算法工程师来说非常头疼。

    因此,深度图补全一直是一个非常有用的研究方向,之前的文献大都只能补全比较小范围的深度缺失,对于较大深度值缺失的情况无能无力,本文介绍的是2018 CVPR 最新的一项研究deep depth completion,不受RGB-D相机类型的限制,只需要输入一张RGB加一张depth图,可以补全任意形式深度图的缺失。对于算法工程师来说真的是喜大普奔啊,目前主要针对的是室内环境。

    什么原理?

    Deep depth completion算法流程如下,其输入是RGB-D相机拍摄的一张RGB图像和对应的深度图,然后根据分别训练好的两个网络(一个是针对RGB图表面法线的深度学习网络,一个是针对物体边缘遮挡的深度学习网络),预测该彩色图像中所有平面的表面法线和物体边缘遮挡。最后用深度图作为正则化,求解一个全局线性优化问题,最终得到补全的深度图。

    一切看起来顺理成章,但是,做深度学习的小伙伴们纷纷举起了小手,开始提问:我的训练集怎么搞?我去哪里找大量的高精度已经补全的深度图?

    的确,这是个大问题,消费级深度相机拍摄的深度图本身就是缺失的,没办法作为深度图的groundtruth,但是现有的RGB-D数据集几乎都是基于消费级深度相机的。而使用高精度的深度相机不仅设备费用成本高,时间成本也非常高,give up吧。

    这里要夸一下本文的作者,聪明又勤奋,还乐于奉献。他们之间提供了一个已经补全好深度图的RGB-D数据集,包含105,432幅RGB-D图,而且给你都对齐了的。那他们是怎么做到的?

    主要是因为他们聪明。对,你没看错!他们利用现有的消费级RGB-D相机拍摄的数据集(Matterport3D、ScanNet、SUN3D、SceneNN)先进行稠密的三维重建,然后再进行优化和渲染。虽然单一视角的深度图可能会有因为不同原因引起的缺失,但是经过多个不同视角的重建和优化,这些缺失的地方都被填补了。然后将其深度结果反投影回到输入深度图。最后得到的深度图就是groundtruth啦,简直完美!省时省力省钱,还顺带学习了稠密三维重建,就是这么棒!看看下面的图,还是比较形象的,黄色代表不同视点的图,红色是当前视点渲染后的深度图。

    效果怎么样?

    亲自测试,效果杠杠滴!具体的量化比较就不放了,可以查看论文,目前效果是该领域最好的,我这里只放几张比较直观的视觉效果的比较结果。

    首先是和联合双边滤波的inpainting方法进行比较,如下所示,可以明显看出边缘信息保存的很好,噪点也很少。

    再看一下和深度神经网络深度估计方法的对比,如下图所示。不仅深度值更准确,大尺度的几何结构也更准确。

    来看一下点云结果对比吧,原始的RGB-D生成的点云结果如下:

    经过深度图补全后生成的点云结果如下:

    运行速度怎么样?

    学术界对运行速度不是特别关注,但是产业界就是死死的盯住运行速度不放,因为这直接关系到能否直接用在嵌入式设备上。

    他的运行速度是这样的:

    实验环境:对于一幅320x256的RGB-D输入图来说,用NVIDIA TITAN X GPU预测表面法线和边界遮挡需要0.3s。在Intel Xeon 2.4GHz CPU上求解线性方程需要1.5秒。

    虽然慢了点,但是也给算法优化的同志们留了一个不大不小的挑战,不是吗?

    有什么参考资料?

    良心的作者不仅给了数据集,还开源了代码,还给了训练好了结果,如此良心负责人的作者必须给个大大的点赞!

    项目地址:

    http://deepcompletion.cs.princeton.edu/

    开源代码地址:

    https://github.com/yindaz/DeepCompletionRelease

    本文仅做学术分享,如有侵权,请联系删文。

    下载1

    在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

    下载2

    「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

    下载3

    「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

    重磅!3DCVer-学术论文写作投稿 交流群已成立

    扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

    同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

    一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

    ▲长按加微信群或投稿

    ▲长按关注公众号

    3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定orb-slam3等视频课程)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

    学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

     圈里有高质量教程资料、可答疑解惑、助你高效解决问题

    觉得有用,麻烦给个赞和在看~  

    展开全文
  • 另一种宏观角度,则借鉴了传统的取证技术的思路,从视频的整体内容上进行检测,比如语音信息和人像结合,人物形象和背景融合等方向来寻找线索。周文柏介绍,他们团队的思路则介于微观和宏观之间,将 Deepfake 检测...
  • 点击上方“3D视觉工坊”,选择“星标”干货第一时间送达计算机视觉方向算法实习生职位描述:1、研究和开发图像、视频、文字识别领域的算法,并将算法落地应用;2、跟进前沿的图像识别技术,应用解决...
  • 图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。课程内容分为三篇,包括...
  • 图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。课程内容分为三篇,包括...
  • 图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。课程内容分为三篇,包括...
  • 计算机视觉哪个领域更有市场前景和就业前景,更可能出论文专利成果?本人在一所大学的视觉实验室学习,面临方向选择,有语义分割,显著性检测,slam,医学图像,希望大佬们能…在计算机视觉论文中benchmark和...
  • 图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。课程内容分为三篇,包括...
  • 本人刚刚保研结束,计算机视觉方向直博,对计算机视觉很感兴趣,想踏踏实实研究一番。基本掌握pyhton和c++等编程语言,不精通;对于深度学习的框架也只是有些了解,基础比较薄弱。目前有这样几个困惑:(1)如何提升...
  • 第一章、绪论在现实生活中凡是从事艺术设计工作的专业人员基本上都参加过艺考(中考、高考),艺术设计专业属于美术学院的艺术学科或学院,主要包含:环境设计专业方向、平面设计专业方向视觉传达专业方向,产品设计...
  • 近几年计算机视觉非常火热,学术界论文发表数量呈指数增长,其中ICCV 2019共收获 4328 篇论文,较上一届 2143 篇,数量多出了将近一倍(数据来自雷锋网);落地上,已广泛应用于安...
  • 腾讯/字节/华为/旷视 2022届实习面经—计算机视觉方向作为2022届3月毕业的学生,现在开始找实习,主要目的是为之后的秋招积累一些面试经验和工作经验,如果能通过实习转正也算是为秋招找到...
  • 点击上方“3D视觉工坊”,选择“星标”干货第一时间送达前言:在计算机视觉方向,数据增强的本质是人为地引入人视觉上的先验知识,可以很好地提升模型的性能,目前基本成为模型的标配。最近几年逐渐出...
  • 有三AI专注于AI领域原创知识的分享,尤其是在深度学习与计算机视觉领域输出了大量的免费和付费内容,其中免费内容以公众号的各类技术专栏为代表,而付费内容以有三AI的CV季划为代表,本周末白...
  • 满意答案虚拟现实有两大类,一类是对真实世界的模拟,如数字化地球,数字化城市或社区、虚拟故宫;...虚拟现实所利用的不只是人的视觉,它把计算机处理出来的数据转化成视觉、听觉和触觉信号,再...
  • 作者:谢凌曦,清华大学CS博士,现就职于华为,擅长计算机视觉、自动机器学习。回答:按照规矩,先问是不是,再问为什么。叫衰CV的声音已经持续很长时间了。在我刚入行(2009年)的时候,整个领域处于深度学习爆发的...
  • 遥感专业女生就业方向 遥感专业毕业生可以从事哪些工作2021-04-27 09:14:43文/李傲遥感专业的就业前景还是不错的,这一专业的女生在就业方面可以从事的工作有很多,下面是小编整理的就业方向,欢迎大家查阅参考。...
  • 点击上方“3D视觉工坊”,选择“星标”干货第一时间送达在这篇文章中,将尝试解释Computer Vision和OpenCV库的工作原理。在整篇文章中,将介绍:什么是计算机视觉计算机视觉如...
  • 计算机视觉新手指南

    千次阅读 2020-04-23 12:39:44
    使计算机或手机等机器看到周围环境的现象称为计算机视觉。机器仿生人眼的研究工作可以追溯到50年代,从那时起,我们已经走了很长一段路。计算机视觉技术已经通过不同的电子商务领域以及相机应用程序进入了我们的手机...
  • 遥感科学与技术专业就业方向有哪些,就业前景怎么样,学生毕业后好找工作吗?以下是高三网小编整理的《遥感科学与技术专业就业方向及就业前景分析》,仅供参考。遥感科学与技术专业就业情况遥感科学与技术专业就业...
  • 编辑:Amusihttps://www.zhihu.com/question/293700785本文仅作为学术分享,如果侵权,会删文处理计算机视觉(CV)方向今年招聘情况...
  • 计算机视觉及OpenCV入门简介

    千次阅读 多人点赞 2019-02-23 23:43:14
    计算机视觉及OpenCV入门简介 这是一篇实验室培训过后写的感悟,附带授课大佬及实验室GitHub地址: 大佬:https://github.com/shentibeitaokongle 实验室:https://github.com/android-nuc 计算机视觉 什么是计算机...
  • 核心课程:绘画基础(素描、色彩)、字体设计、平面构成、色彩构成、立体构成、装饰形象、版式设计、标志设计、包装设计、广告设计、印刷工艺、展式设计、CI设计、广告摄影、广告设计、策划执行训练、计算机辅助设计、...
  • 点击上方“3D视觉工坊”,选择“星标”干货第一时间送达整理:3D视觉工坊 | 来源:知乎https://www.zhihu.com/question/330153893/answer/1...
  • 点击上方“3D视觉工坊”,选择“星标”干货第一时间送达编辑丨机器视觉课堂计算机视觉在智能制造工业检测中发挥着检测识别和定位分析的重要作用,为提高工业检测的检测速率和准确率以及智能自动化程度...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 4,066
精华内容 1,626
关键字:

计算机视觉就业方向