- 页 数
- 332
- 作 者
- Peter Harrington
- 译 者
- 李锐 李鹏 曲亚东 王斌
- 定 价
- 69.00元
- 书 名
- 机器学习实战
- 出版时间
- 2013-6
- 出版社
- 人民邮电出版社
- 原作名
- Machine Learning in Action
- ISBN
- 9787115317957
-
Python数据分析与机器学习实战
2017-01-24 10:18:45Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示... -
机器学习实战
2019-03-10 20:09:131.机器学习实战-作者: Peter Harrington 【机器学习实战】【python3版本】【代码讲解】_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili https://www.bilibili.com/video/av36993857 Python3机器学习 - Jack-Cuihttps://blog...1.机器学习实战-作者: Peter Harrington
【机器学习实战】【python3版本】【代码讲解】_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili https://www.bilibili.com/video/av36993857
Python3机器学习 - Jack-Cui https://blog.csdn.net/c406495762/column/info/16415
-
Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)
2017-07-15 16:04:39本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲解。实战实例:电影...**转载请注明作者和出处:**http://blog.csdn.net/c406495762
运行平台: Windows
Python版本: Python3.x
IDE: Sublime text3
个人网站:http://cuijiahua.com
#一 简单k-近邻算法
本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲解。实战实例:电影类别分类、约会网站配对效果判定、手写数字识别。
本文出现的所有代码和数据集,均可在我的github上下载,欢迎Follow、Star:https://github.com/Jack-Cherish/Machine-Learning/tree/master/kNN
更多精彩内容,尽在微信公众号,欢迎您的关注:
1.1 k-近邻法简介
k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
举个简单的例子,我们可以使用k-近邻算法分类一个电影是爱情片还是动作片。
电影名称 打斗镜头 接吻镜头 电影类型 电影1 1 101 爱情片 电影2 5 89 爱情片 电影3 108 5 动作片 电影4 115 8 动作片 表1.1 每部电影的打斗镜头数、接吻镜头数以及电影类型表1.1就是我们已有的数据集合,也就是训练样本集。这个数据集有两个特征,即打斗镜头数和接吻镜头数。除此之外,我们也知道每个电影的所属类型,即分类标签。用肉眼粗略地观察,接吻镜头多的,是爱情片。打斗镜头多的,是动作片。以我们多年的看片经验,这个分类还算合理。如果现在给我一部电影,你告诉我这个电影打斗镜头数和接吻镜头数。不告诉我这个电影类型,我可以根据你给我的信息进行判断,这个电影是属于爱情片还是动作片。而k-近邻算法也可以像我们人一样做到这一点,不同的地方在于,我们的经验更"牛逼",而k-邻近算法是靠已有的数据。比如,你告诉我这个电影打斗镜头数为2,接吻镜头数为102,我的经验会告诉你这个是爱情片,k-近邻算法也会告诉你这个是爱情片。你又告诉我另一个电影打斗镜头数为49,接吻镜头数为51,我"邪恶"的经验可能会告诉你,这有可能是个"爱情动作片",画面太美,我不敢想象。 (如果说,你不知道"爱情动作片"是什么?请评论留言与我联系,我需要你这样像我一样纯洁的朋友。) 但是k-近邻算法不会告诉你这些,因为在它的眼里,电影类型只有爱情片和动作片,它会提取样本集中特征最相似数据(最邻近)的分类标签,得到的结果可能是爱情片,也可能是动作片,但绝不会是"爱情动作片"。当然,这些取决于数据集的大小以及最近邻的判断标准等因素。
1.2 距离度量
我们已经知道k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签。那么,如何进行比较呢?比如,我们还是以表1.1为例,怎么判断红色圆点标记的电影所属的类别呢?如图1.1所示。
图1.1 电影分类我们可以从散点图大致推断,这个红色圆点标记的电影可能属于动作片,因为距离已知的那两个动作片的圆点更近。k-近邻算法用什么方法进行判断呢?没错,就是距离度量。这个电影分类的例子有2个特征,也就是在2维实数向量空间,可以使用我们高中学过的两点距离公式计算距离,如图1.2所示。
图1.2 两点距离公式通过计算,我们可以得到如下结果:
- (101,20)->动作片(108,5)的距离约为16.55
- (101,20)->动作片(115,8)的距离约为18.44
- (101,20)->爱情片(5,89)的距离约为118.22
- (101,20)->爱情片(1,101)的距离约为128.69
通过计算可知,红色圆点标记的电影到动作片 (108,5)的距离最近,为16.55。如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,而非k-近邻算法。那么k-邻近算法是什么呢?k-近邻算法步骤如下:
- 计算已知类别数据集中的点与当前点之间的距离;
- 按照距离递增次序排序;
- 选取与当前点距离最小的k个点;
- 确定前k个点所在类别的出现频率;
- 返回前k个点所出现频率最高的类别作为当前点的预测分类。
比如,现在我这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。这个判别过程就是k-近邻算法。
##1.3 Python3代码实现
我们已经知道了k-近邻算法的原理,那么接下来就是使用Python3实现该算法,依然以电影分类为例。
1.3.1 准备数据集
对于表1.1中的数据,我们可以使用numpy直接创建,代码如下:
# -*- coding: UTF-8 -*- import numpy as np """ 函数说明:创建数据集 Parameters: 无 Returns: group - 数据集 labels - 分类标签 Modify: 2017-07-13 """ def createDataSet(): #四组二维特征 group = np.array([[1,101],[5,89],[108,5],[115,8]]) #四组特征的标签 labels = ['爱情片','爱情片','动作片','动作片'] return group, labels if __name__ == '__main__': #创建数据集 group, labels = createDataSet() #打印数据集 print(group) print(labels)
运行结果,如图1.3所示:
图1.3 运行结果###1.3.2 k-近邻算法
根据两点距离公式,计算距离,选择距离最小的前k个点,并返回分类结果。
# -*- coding: UTF-8 -*- import numpy as np import operator """ 函数说明:kNN算法,分类器 Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 分类标签 k - kNN算法参数,选择距离最小的k个点 Returns: sortedClassCount[0][0] - 分类结果 Modify: 2017-07-13 """ def classify0(inX, dataSet, labels, k): #numpy函数shape[0]返回dataSet的行数 dataSetSize = dataSet.shape[0] #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向) diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #二维特征相减后平方 sqDiffMat = diffMat**2 #sum()所有元素相加,sum(0)列相加,sum(1)行相加 sqDistances = sqDiffMat.sum(axis=1) #开方,计算出距离 distances = sqDistances**0.5 #返回distances中元素从小到大排序后的索引值 sortedDistIndices = distances.argsort() #定一个记录类别次数的字典 classCount = {} for i in range(k): #取出前k个元素的类别 voteIlabel = labels[sortedDistIndices[i]] #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。 #计算类别次数 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #python3中用items()替换python2中的iteritems() #key=operator.itemgetter(1)根据字典的值进行排序 #key=operator.itemgetter(0)根据字典的键进行排序 #reverse降序排序字典 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #返回次数最多的类别,即所要分类的类别 return sortedClassCount[0][0]
###1.3.3 整体代码
这里预测红色圆点标记的电影(101,20)的类别,K-NN的k值为3。创建kNN_test01.py文件,编写代码如下:
# -*- coding: UTF-8 -*- import numpy as np import operator """ 函数说明:创建数据集 Parameters: 无 Returns: group - 数据集 labels - 分类标签 Modify: 2017-07-13 """ def createDataSet(): #四组二维特征 group = np.array([[1,101],[5,89],[108,5],[115,8]]) #四组特征的标签 labels = ['爱情片','爱情片','动作片','动作片'] return group, labels """ 函数说明:kNN算法,分类器 Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 分类标签 k - kNN算法参数,选择距离最小的k个点 Returns: sortedClassCount[0][0] - 分类结果 Modify: 2017-07-13 """ def classify0(inX, dataSet, labels, k): #numpy函数shape[0]返回dataSet的行数 dataSetSize = dataSet.shape[0] #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向) diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #二维特征相减后平方 sqDiffMat = diffMat**2 #sum()所有元素相加,sum(0)列相加,sum(1)行相加 sqDistances = sqDiffMat.sum(axis=1) #开方,计算出距离 distances = sqDistances**0.5 #返回distances中元素从小到大排序后的索引值 sortedDistIndices = distances.argsort() #定一个记录类别次数的字典 classCount = {} for i in range(k): #取出前k个元素的类别 voteIlabel = labels[sortedDistIndices[i]] #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。 #计算类别次数 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #python3中用items()替换python2中的iteritems() #key=operator.itemgetter(1)根据字典的值进行排序 #key=operator.itemgetter(0)根据字典的键进行排序 #reverse降序排序字典 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #返回次数最多的类别,即所要分类的类别 return sortedClassCount[0][0] if __name__ == '__main__': #创建数据集 group, labels = createDataSet() #测试集 test = [101,20] #kNN分类 test_class = classify0(test, group, labels, 3) #打印分类结果 print(test_class)
运行结果,如图1.4所示:
图1.4 运行结果可以看到,分类结果根据我们的"经验",是正确的,尽管这种分类比较耗时,用时1.4s。
到这里,也许有人早已经发现,电影例子中的特征是2维的,这样的距离度量可以用两 点距离公式计算,但是如果是更高维的呢?对,没错。我们可以用欧氏距离(也称欧几里德度量),如图1.5所示。我们高中所学的两点距离公式就是欧氏距离在二维空间上的公式,也就是欧氏距离的n的值为2的情况。
图1.5 欧氏距离公式看到这里,有人可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。不同的算法在不同数据集上的表现可能完全不同。为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率-分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0。同时,我们也不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说k-邻近算法不具有显式的学习过程。
二 k-近邻算法实战之约会网站配对效果判定
上一小结学习了简单的k-近邻算法的实现方法,但是这并不是完整的k-近邻算法流程,k-近邻算法的一般流程:
- 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
- 准备数据:使用Python解析、预处理数据。
- 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
- 测试算法:计算错误率。
- 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。
已经了解了k-近邻算法的一般流程,下面开始进入实战内容。
##2.1 实战背景
海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:
- 不喜欢的人
- 魅力一般的人
- 极具魅力的人
海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。
海伦收集的样本数据主要包含以下3种特征:
- 每年获得的飞行常客里程数
- 玩视频游戏所消耗时间百分比
- 每周消费的冰淇淋公升数
这里不得不吐槽一句,海伦是个小吃货啊,冰淇淋公斤数都影响自己择偶标准。打开txt文本文件,数据格式如图2.1所示。
图2.1 datingTestSet.txt格式##2.2 准备数据:数据解析
在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。分类器接收的数据是什么格式的?从上小结已经知道,要将数据分类两部分,即特征矩阵和对应的分类标签向量。在kNN_test02.py文件中创建名为file2matrix的函数,以此来处理输入格式问题。 将datingTestSet.txt放到与kNN_test02.py相同目录下,编写代码如下:
# -*- coding: UTF-8 -*- import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 Modify: 2017-03-24 """ def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector """ 函数说明:main函数 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ if __name__ == '__main__': #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) print(datingDataMat) print(datingLabels)
运行上述代码,得到的数据解析结果如图2.2所示。
图2.2 数据解析结果可以看到,我们已经顺利导入数据,并对数据进行解析,格式化为分类器需要的数据格式。接着我们需要了解数据的真正含义。可以通过友好、直观的图形化的方式观察数据。
##2.3 分析数据:数据可视化
在kNN_test02.py文件中编写名为showdatas的函数,用来将数据可视化。编写代码如下:
# -*- coding: UTF-8 -*- from matplotlib.font_manager import FontProperties import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 Modify: 2017-03-24 """ def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector """ 函数说明:可视化数据 Parameters: datingDataMat - 特征矩阵 datingLabels - 分类Label Returns: 无 Modify: 2017-03-24 """ def showdatas(datingDataMat, datingLabels): #设置汉字格式 font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) #将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8) #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域 fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8)) numberOfLabels = len(datingLabels) LabelsColors = [] for i in datingLabels: if i == 1: LabelsColors.append('black') if i == 2: LabelsColors.append('orange') if i == 3: LabelsColors.append('red') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5 axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font) axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font) axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font) plt.setp(axs0_title_text, size=9, weight='bold', color='red') plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black') #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font) axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font) axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font) plt.setp(axs1_title_text, size=9, weight='bold', color='red') plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black') #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font) axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font) axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font) plt.setp(axs2_title_text, size=9, weight='bold', color='red') plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black') #设置图例 didntLike = mlines.Line2D([], [], color='black', marker='.', markersize=6, label='didntLike') smallDoses = mlines.Line2D([], [], color='orange', marker='.', markersize=6, label='smallDoses') largeDoses = mlines.Line2D([], [], color='red', marker='.', markersize=6, label='largeDoses') #添加图例 axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses]) axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses]) axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses]) #显示图片 plt.show() """ 函数说明:main函数 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ if __name__ == '__main__': #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) showdatas(datingDataMat, datingLabels)
运行上述代码,可以看到可视化结果如图2.3所示。
图2.3 数据可视化结果 [点击查看大图](https://img-blog.csdn.net/20170715153336117?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYzQwNjQ5NTc2Mg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)通过数据可以很直观的发现数据的规律,比如以玩游戏所消耗时间占比与每年获得的飞行常客里程数,只考虑这二维的特征信息,给我的感觉就是海伦喜欢有生活质量的男人。为什么这么说呢?每年获得的飞行常客里程数表明,海伦喜欢能享受飞行常客奖励计划的男人,但是不能经常坐飞机,疲于奔波,满世界飞。同时,这个男人也要玩视频游戏,并且占一定时间比例。能到处飞,又能经常玩游戏的男人是什么样的男人?很显然,有生活质量,并且生活悠闲的人。我的分析,仅仅是通过可视化的数据总结的个人看法。我想,每个人的感受应该也是不尽相同。
##2.4 准备数据:数据归一化
表2.1给出了四组样本,如果想要计算样本3和样本4之间的距离,可以使用欧拉公式计算。
| 样本 | 玩游戏所耗时间百分比 | 每年获得的飞行常用里程数 | 每周消费的冰淇淋公升数 | 样本分类 |
| :---------: |:---------😐 :---------😐:---------😐
| 1 | 0.8 | 400 | 0.5 | 1 |
| 2 | 12 | 134000 | 0.9 | 3 |
| 3 | 0 | 20000 | 1.1 | 2 |
| 4 | 67 | 32000 | 0.1 | 2 |表2.1 约会网站样本数据计算方法如图2.4所示。
图2.4 计算公式我们很容易发现,上面方程中数字差值最大的属性对计算结果的影响最大,也就是说,每年获取的飞行常客里程数对于计算结果的影响将远远大于表2.1中其他两个特征-玩视频游戏所耗时间占比和每周消费冰淇淋公斤数的影响。而产生这种现象的唯一原因,仅仅是因为飞行常客里程数远大于其他特征值。但海伦认为这三种特征是同等重要的,因此作为三个等权重的特征之一,飞行常客里程数并不应该如此严重地影响到计算结果。
在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值:
newValue = (oldValue - min) / (max - min)
其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。在kNN_test02.py文件中编写名为autoNorm的函数,用该函数自动将数据归一化。代码如下:
# -*- coding: UTF-8 -*- import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 Modify: 2017-03-24 """ def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector """ 函数说明:对数据进行归一化 Parameters: dataSet - 特征矩阵 Returns: normDataSet - 归一化后的特征矩阵 ranges - 数据范围 minVals - 数据最小值 Modify: 2017-03-24 """ def autoNorm(dataSet): #获得数据的最小值 minVals = dataSet.min(0) maxVals = dataSet.max(0) #最大值和最小值的范围 ranges = maxVals - minVals #shape(dataSet)返回dataSet的矩阵行列数 normDataSet = np.zeros(np.shape(dataSet)) #返回dataSet的行数 m = dataSet.shape[0] #原始值减去最小值 normDataSet = dataSet - np.tile(minVals, (m, 1)) #除以最大和最小值的差,得到归一化数据 normDataSet = normDataSet / np.tile(ranges, (m, 1)) #返回归一化数据结果,数据范围,最小值 return normDataSet, ranges, minVals """ 函数说明:main函数 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ if __name__ == '__main__': #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) normDataSet, ranges, minVals = autoNorm(datingDataMat) print(normDataSet) print(ranges) print(minVals)
运行上述代码,得到结果如图2.5所示。
图2.5 归一化函数运行结果从图2.5的运行结果可以看到,我们已经顺利将数据归一化了,并且求出了数据的取值范围和数据的最小值,这两个值是在分类的时候需要用到的,直接先求解出来,也算是对数据预处理了。
##2.5 测试算法:验证分类器
机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。需要注意的是,10%的测试数据应该是随机选择的,由于海伦提供的数据并没有按照特定目的来排序,所以我么你可以随意选择10%数据而不影响其随机性。
为了测试分类器效果,在kNN_test02.py文件中创建函数datingClassTest,编写代码如下:
# -*- coding: UTF-8 -*- import numpy as np import operator """ 函数说明:kNN算法,分类器 Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 分类标签 k - kNN算法参数,选择距离最小的k个点 Returns: sortedClassCount[0][0] - 分类结果 Modify: 2017-03-24 """ def classify0(inX, dataSet, labels, k): #numpy函数shape[0]返回dataSet的行数 dataSetSize = dataSet.shape[0] #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向) diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #二维特征相减后平方 sqDiffMat = diffMat**2 #sum()所有元素相加,sum(0)列相加,sum(1)行相加 sqDistances = sqDiffMat.sum(axis=1) #开方,计算出距离 distances = sqDistances**0.5 #返回distances中元素从小到大排序后的索引值 sortedDistIndices = distances.argsort() #定一个记录类别次数的字典 classCount = {} for i in range(k): #取出前k个元素的类别 voteIlabel = labels[sortedDistIndices[i]] #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。 #计算类别次数 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #python3中用items()替换python2中的iteritems() #key=operator.itemgetter(1)根据字典的值进行排序 #key=operator.itemgetter(0)根据字典的键进行排序 #reverse降序排序字典 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #返回次数最多的类别,即所要分类的类别 return sortedClassCount[0][0] """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 Modify: 2017-03-24 """ def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector """ 函数说明:对数据进行归一化 Parameters: dataSet - 特征矩阵 Returns: normDataSet - 归一化后的特征矩阵 ranges - 数据范围 minVals - 数据最小值 Modify: 2017-03-24 """ def autoNorm(dataSet): #获得数据的最小值 minVals = dataSet.min(0) maxVals = dataSet.max(0) #最大值和最小值的范围 ranges = maxVals - minVals #shape(dataSet)返回dataSet的矩阵行列数 normDataSet = np.zeros(np.shape(dataSet)) #返回dataSet的行数 m = dataSet.shape[0] #原始值减去最小值 normDataSet = dataSet - np.tile(minVals, (m, 1)) #除以最大和最小值的差,得到归一化数据 normDataSet = normDataSet / np.tile(ranges, (m, 1)) #返回归一化数据结果,数据范围,最小值 return normDataSet, ranges, minVals """ 函数说明:分类器测试函数 Parameters: 无 Returns: normDataSet - 归一化后的特征矩阵 ranges - 数据范围 minVals - 数据最小值 Modify: 2017-03-24 """ def datingClassTest(): #打开的文件名 filename = "datingTestSet.txt" #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中 datingDataMat, datingLabels = file2matrix(filename) #取所有数据的百分之十 hoRatio = 0.10 #数据归一化,返回归一化后的矩阵,数据范围,数据最小值 normMat, ranges, minVals = autoNorm(datingDataMat) #获得normMat的行数 m = normMat.shape[0] #百分之十的测试数据的个数 numTestVecs = int(m * hoRatio) #分类错误计数 errorCount = 0.0 for i in range(numTestVecs): #前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集 classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 4) print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i])) if classifierResult != datingLabels[i]: errorCount += 1.0 print("错误率:%f%%" %(errorCount/float(numTestVecs)*100)) """ 函数说明:main函数 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ if __name__ == '__main__': datingClassTest()
运行上述代码,得到结果如图2.6所示。
图2.6 验证分类器结果从图2.6验证分类器结果中可以看出,错误率是3%,这是一个想当不错的结果。我们可以改变函数datingClassTest内变量hoRatio和分类器k的值,检测错误率是否随着变量值的变化而增加。依赖于分类算法、数据集和程序设置,分类器的输出结果可能有很大的不同。
##2.6 使用算法:构建完整可用系统
我们可以给海伦一个小段程序,通过该程序海伦会在约会网站上找到某个人并输入他的信息。程序会给出她对男方喜欢程度的预测值。
在kNN_test02.py文件中创建函数classifyPerson,代码如下:
# -*- coding: UTF-8 -*- import numpy as np import operator """ 函数说明:kNN算法,分类器 Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 分类标签 k - kNN算法参数,选择距离最小的k个点 Returns: sortedClassCount[0][0] - 分类结果 Modify: 2017-03-24 """ def classify0(inX, dataSet, labels, k): #numpy函数shape[0]返回dataSet的行数 dataSetSize = dataSet.shape[0] #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向) diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #二维特征相减后平方 sqDiffMat = diffMat**2 #sum()所有元素相加,sum(0)列相加,sum(1)行相加 sqDistances = sqDiffMat.sum(axis=1) #开方,计算出距离 distances = sqDistances**0.5 #返回distances中元素从小到大排序后的索引值 sortedDistIndices = distances.argsort() #定一个记录类别次数的字典 classCount = {} for i in range(k): #取出前k个元素的类别 voteIlabel = labels[sortedDistIndices[i]] #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。 #计算类别次数 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #python3中用items()替换python2中的iteritems() #key=operator.itemgetter(1)根据字典的值进行排序 #key=operator.itemgetter(0)根据字典的键进行排序 #reverse降序排序字典 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #返回次数最多的类别,即所要分类的类别 return sortedClassCount[0][0] """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 Modify: 2017-03-24 """ def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ') line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。 listFromLine = line.split('\t') #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == 'didntLike': classLabelVector.append(1) elif listFromLine[-1] == 'smallDoses': classLabelVector.append(2) elif listFromLine[-1] == 'largeDoses': classLabelVector.append(3) index += 1 return returnMat, classLabelVector """ 函数说明:对数据进行归一化 Parameters: dataSet - 特征矩阵 Returns: normDataSet - 归一化后的特征矩阵 ranges - 数据范围 minVals - 数据最小值 Modify: 2017-03-24 """ def autoNorm(dataSet): #获得数据的最小值 minVals = dataSet.min(0) maxVals = dataSet.max(0) #最大值和最小值的范围 ranges = maxVals - minVals #shape(dataSet)返回dataSet的矩阵行列数 normDataSet = np.zeros(np.shape(dataSet)) #返回dataSet的行数 m = dataSet.shape[0] #原始值减去最小值 normDataSet = dataSet - np.tile(minVals, (m, 1)) #除以最大和最小值的差,得到归一化数据 normDataSet = normDataSet / np.tile(ranges, (m, 1)) #返回归一化数据结果,数据范围,最小值 return normDataSet, ranges, minVals """ 函数说明:通过输入一个人的三维特征,进行分类输出 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ def classifyPerson(): #输出结果 resultList = ['讨厌','有些喜欢','非常喜欢'] #三维特征用户输入 precentTats = float(input("玩视频游戏所耗时间百分比:")) ffMiles = float(input("每年获得的飞行常客里程数:")) iceCream = float(input("每周消费的冰激淋公升数:")) #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) #训练集归一化 normMat, ranges, minVals = autoNorm(datingDataMat) #生成NumPy数组,测试集 inArr = np.array([precentTats, ffMiles, iceCream]) #测试集归一化 norminArr = (inArr - minVals) / ranges #返回分类结果 classifierResult = classify0(norminArr, normMat, datingLabels, 3) #打印结果 print("你可能%s这个人" % (resultList[classifierResult-1])) """ 函数说明:main函数 Parameters: 无 Returns: 无 Modify: 2017-03-24 """ if __name__ == '__main__': classifyPerson()
在cmd中,运行程序,并输入数据(12,44000,0.5),预测结果是"你可能有些喜欢这个人",也就是这个人魅力一般。一共有三个档次:讨厌、有些喜欢、非常喜欢,对应着不喜欢的人、魅力一般的人、极具魅力的人。结果如图2.7所示。
图2.7 预测结果
#三 k-近邻算法实战之sklearn手写数字识别
##3.1 实战背景
对于需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素x32像素。尽管采用本文格式存储图像不能有效地利用内存空间,但是为了方便理解,我们将图片转换为文本格式,数字的文本格式如图3.1所示。
图3.1 数字的文本格式与此同时,这些文本格式存储的数字的文件命名也很有特点,格式为:数字的值_该数字的样本序号,如图3.2所示。
图3.2 文本数字的存储格式对于这样已经整理好的文本,我们可以直接使用Python处理,进行数字预测。数据集分为训练集和测试集,使用上小结的方法,自己设计k-近邻算法分类器,可以实现分类。
这里不再讲解自己用Python写的k-邻域分类器的方法,因为这不是本小节的重点。接下来,我们将使用强大的第三方Python科学计算库Sklearn构建手写数字系统。
##3.2 Sklearn简介
Scikit learn 也简称sklearn,是机器学习领域当中最知名的python模块之一。sklearn包含了很多机器学习的方式:
- Classification 分类
- Regression 回归
- Clustering 非监督分类
- Dimensionality reduction 数据降维
- Model Selection 模型选择
- Preprocessing 数据与处理
使用sklearn可以很方便地让我们实现一个机器学习算法。一个复杂度算法的实现,使用sklearn可能只需要调用几行API即可。所以学习sklearn,可以有效减少我们特定任务的实现周期。
##3.3 Sklearn安装
在安装sklearn之前,需要安装两个库,即numpy+mkl和scipy。不要使用pip3直接进行安装,因为pip3默安装的是numpy,而不是numpy+mkl。第三方库下载地址:http://www.lfd.uci.edu/~gohlke/pythonlibs/
这个网站的使用方法,我在之前的文章里有讲过:http://blog.csdn.net/c406495762/article/details/60156205
找到对应python版本的numpy+mkl和scipy,下载安装即可,如图3.1和图3.2所示。
图3.1 numpy+mkl图3.2 scipy使用pip3安装好这两个whl文件后,使用如下指令安装sklearn。
pip3 install -U scikit-learn
##3.4 Sklearn实现k-近邻算法简介
sklearn.neighbors模块实现了k-近邻算法,内容如图3.3所示。
图3.3 sklearn.neighbors我们使用sklearn.neighbors.KNeighborsClassifier就可以是实现上小结,我们实现的k-近邻算法。KNeighborsClassifier函数一共有8个参数,如图3.4所示。
图3.4 KNeighborsClassifierKNneighborsClassifier参数说明:
- n_neighbors:默认为5,就是k-NN的k的值,选取最近的k个点。
- weights:默认是uniform,参数可以是uniform、distance,也可以是用户自己定义的函数。uniform是均等的权重,就说所有的邻近点的权重都是相等的。distance是不均等的权重,距离近的点比距离远的点的影响大。用户自定义的函数,接收距离的数组,返回一组维数相同的权重。
- algorithm:快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。ball tree是为了克服kd树高纬失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。
- leaf_size:默认是30,这个是构造的kd树和ball树的大小。这个值的设置会影响树构建的速度和搜索速度,同样也影响着存储树所需的内存大小。需要根据问题的性质选择最优的大小。
- metric:用于距离度量,默认度量是minkowski,也就是p=2的欧氏距离(欧几里德度量)。
- p:距离度量公式。在上小结,我们使用欧氏距离公式进行距离度量。除此之外,还有其他的度量方法,例如曼哈顿距离。这个参数默认为2,也就是默认使用欧式距离公式进行距离度量。也可以设置为1,使用曼哈顿距离公式进行距离度量。
- metric_params:距离公式的其他关键参数,这个可以不管,使用默认的None即可。
- n_jobs:并行处理设置。默认为1,临近点搜索并行工作数。如果为-1,那么CPU的所有cores都用于并行工作。
KNeighborsClassifier提供了以一些方法供我们使用,如图3.5所示。
图3.5 KNeighborsClassifier的方法由于篇幅原因,每个函数的怎么用,就不具体讲解了。官方手册已经讲解的很详细了,各位可以查看这个手册进行学习,我们直接讲手写数字识别系统的实现。
##3.5 Sklearn小试牛刀
我们知道数字图片是32x32的二进制图像,为了方便计算,我们可以将32x32的二进制图像转换为1x1024的向量。对于sklearn的KNeighborsClassifier输入可以是矩阵,不用一定转换为向量,不过为了跟自己写的k-近邻算法分类器对应上,这里也做了向量化处理。然后构建kNN分类器,利用分类器做预测。创建kNN_test04.py文件,编写代码如下:
# -*- coding: UTF-8 -*- import numpy as np import operator from os import listdir from sklearn.neighbors import KNeighborsClassifier as kNN """ 函数说明:将32x32的二进制图像转换为1x1024向量。 Parameters: filename - 文件名 Returns: returnVect - 返回的二进制图像的1x1024向量 Modify: 2017-07-15 """ def img2vector(filename): #创建1x1024零向量 returnVect = np.zeros((1, 1024)) #打开文件 fr = open(filename) #按行读取 for i in range(32): #读一行数据 lineStr = fr.readline() #每一行的前32个元素依次添加到returnVect中 for j in range(32): returnVect[0, 32*i+j] = int(lineStr[j]) #返回转换后的1x1024向量 return returnVect """ 函数说明:手写数字分类测试 Parameters: 无 Returns: 无 Modify: 2017-07-15 """ def handwritingClassTest(): #测试集的Labels hwLabels = [] #返回trainingDigits目录下的文件名 trainingFileList = listdir('trainingDigits') #返回文件夹下文件的个数 m = len(trainingFileList) #初始化训练的Mat矩阵,测试集 trainingMat = np.zeros((m, 1024)) #从文件名中解析出训练集的类别 for i in range(m): #获得文件的名字 fileNameStr = trainingFileList[i] #获得分类的数字 classNumber = int(fileNameStr.split('_')[0]) #将获得的类别添加到hwLabels中 hwLabels.append(classNumber) #将每一个文件的1x1024数据存储到trainingMat矩阵中 trainingMat[i,:] = img2vector('trainingDigits/%s' % (fileNameStr)) #构建kNN分类器 neigh = kNN(n_neighbors = 3, algorithm = 'auto') #拟合模型, trainingMat为测试矩阵,hwLabels为对应的标签 neigh.fit(trainingMat, hwLabels) #返回testDigits目录下的文件列表 testFileList = listdir('testDigits') #错误检测计数 errorCount = 0.0 #测试数据的数量 mTest = len(testFileList) #从文件中解析出测试集的类别并进行分类测试 for i in range(mTest): #获得文件的名字 fileNameStr = testFileList[i] #获得分类的数字 classNumber = int(fileNameStr.split('_')[0]) #获得测试集的1x1024向量,用于训练 vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr)) #获得预测结果 # classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) classifierResult = neigh.predict(vectorUnderTest) print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumber)) if(classifierResult != classNumber): errorCount += 1.0 print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount/mTest * 100)) """ 函数说明:main函数 Parameters: 无 Returns: 无 Modify: 2017-07-15 """ if __name__ == '__main__': handwritingClassTest()
运行上述代码,得到如图3.6所示的结果。
图3.6 sklearn运行结果上述代码使用的algorithm参数是auto,更改algorithm参数为brute,使用暴力搜索,你会发现,运行时间变长了,变为10s+。更改n_neighbors参数,你会发现,不同的值,检测精度也是不同的。自己可以尝试更改这些参数的设置,加深对其函数的理解。
#四 总结
##4.1 kNN算法的优缺点
优点
- 简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;
- 可用于数值型数据和离散型数据;
- 训练时间复杂度为O(n);无数据输入假定;
- 对异常值不敏感。
缺点:
- 计算复杂性高;空间复杂性高;
- 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
- 一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少,否则容易发生误分。
- 最大的缺点是无法给出数据的内在含义。
##4.2 其他
- 关于algorithm参数kd_tree的原理,可以查看《统计学方法 李航》书中的讲解;
- 关于距离度量的方法还有切比雪夫距离、马氏距离、巴氏距离等;
- 下篇文章将讲解决策树,欢迎各位届时捧场!
- 如有问题,请留言。如有错误,还望指正,谢谢!
PS: 如果觉得本篇本章对您有所帮助,欢迎关注、评论、顶!
-
零基础Python机器学习实战
2019-07-17 15:25:05本课程从Python基础编程到机器学习实战,面向零基础学员,你可以不会Python,因为从环境搭建、helloworld一直讲到了机器学习库,你可以不会机器学习,因为从机器学习的概念分类一直讲到了分类和聚类实战案例, ... -
《机器学习实战》学习笔记(一):机器学习基础
2019-08-19 17:01:32【机器学习】《机器学习实战》读书笔记及代码 总目录 https://blog.csdn.net/TeFuirnever/article/details/99701256 ————————————————————————————————————————————...欢迎关注WX公众号:【程序员管小亮】
【机器学习】《机器学习实战》读书笔记及代码 总目录
GitHub代码地址:
——————————————————————————————————————————————————————
目录
本章内容
- 机器学习的简单概述
- 机器学习的主要任务
- 学习机器学习的原因
- Python语言的优势
1、何谓机器学习
什么是机器学习?书中举了一个很有意思的例子,我们来听一下,就当开胃菜了。
最近我和一对夫妇共进晚餐,他们问我从事什么职业,我回应道:“机器学习。”妻子回头问丈夫:“亲爱的,什么是机器学习?”她的丈夫答道:“T-800型终结者。”在《终结者》系列电影中,T-800是人工智能技术的反面样板工程。
哈哈,承包了我一天的笑点,极其学习的概念到底是什么,这个我们在很多博客中都又提到过。
- 【机器学习】林轩田《机器学习基石》课程学习笔记:第1章 - The Learning Problem中说到【那么什么是机器学习?就是让计算机拥有学习的能力,也就是根据数据积累/计算经验等训练,获得分析解决问题的能力。】
- 【机器学习】《机器学习》周志华西瓜书读书笔记:第1章 - 绪论中说到【正如我们根据过去的经验来判断明天的天气,吃货们希望从购买经验中挑选一个好瓜,那能不能让计算机帮助人类来实现这个呢?机器学习正是这样的一门学科,人的“经验”对应计算机中的“数据”,让计算机来学习这些经验数据,生成一个算法模型,在面对新的情况中,计算机便能作出有效的判断,这便是机器学习。】
- 【深度学习】一篇文章看懂人工智能(Artificial Intelligence)、机器学习(Machine Learning)、深度学习(Deep Learning)中说到【机器学习是实现人工智能的一种方法。大体来讲,机器学习就是用算法真正解析数据,不断学习,然后对世界中发生的事做出判断和预测。此时,研究人员不会亲手编写软件、确定特殊指令集、然后让程序完成特殊任务,相反,研究人员会用大量数据和算法“训练”机器,让机器学会如何执行任务。】
如果你还是不清楚的话,实在是很过分了 😐,在深度学习大火的如今,机器学习也正是出现在人们视野中,现今,机器学习已应用于多个领域,远超出大多数人的想象,比如NLP,再比如推荐系统。
机器学习在日常生活中的应用,从左上角按照顺时针方向依次使用到的机器学习技术分别为:人脸识别、手写数字识别、垃圾邮件过滤和亚马逊公司的产品推荐。
在本书中,给出的定义是:【简单地说,机器学习就是把无序的数据转换成有用的信息。】
- 传感器和海量数据
虽然已从互联网上获取了大量的人为数据,但最近却涌现了更多的非人为数据。传感器技术并不时髦,已经发展了好多年的传统行业,但是如何将它们接入互联网这确实是新的挑战。地震预测是一个很好的例子,传感器手机了海量的数据,但是如何从这些数据中抽取出有价值的信息是一个非常值得研究的课题。
- 机器学习非常重要
在过去的半个世纪里,发达国家的多数工作岗位都已从体力劳动转化为脑力劳动。过去的工作基本上都有明确的定义,类似于把物品从A处搬到B处,或者在这里打个洞,但是现在这类工作都在逐步消失。现今的情况具有很大的二义性,类似于“最大化利润”,“最小化风险”、“找到最好的市场策略”……诸如此类的任务要求都已成为常态。虽然可从互联网上获取到海量数据,但这并没有简化知识工人的工作难度。针对具体任务搞懂所有相关数据的意义所在,这正成为基本的技能要求。
2、关键术语
通过构建下面的鸟类分类系统,来对机器学习领域的常用术语进行一个总结。
机器学习的主要任务就是 分类。如何判断飞入进食器的鸟是不是象牙喙啄木鸟呢?(任何发现活的象牙喙啄木鸟的人都可以得到5万美元的奖励。)这个任务就是 分类,有很多机器学习算法非常善于 分类。本例中的类别就是鸟的物种,更具体地说,就是区分是否为象牙喙啄木鸟。我们决定使用某个机器学习算法进行 分类,首先需要做的是算法训练,即学习如何 分类。通常我们为算法输入大量已分类数据作为算法的 训练集。训练集 是用于训练机器学习算法的数据样本集合,表1-1是包含六个训练样本的训练集,每个训练样本有4种 特征(体重、翼展、脚蹼和后背颜色)、一个 目标变量(种属),目标变量 是机器学习算法的预测结果,在 分类 算法中目标变量的类型通常是标称型的,而在 回归 算法中通常是连续型的。训练样本集必须确定知道 目标变量 的值,以便机器学习算法可以发现 特征 和 目标变量 之间的关系。正如前文所述,这里的目标变量 是种属,也可以简化为标称型的数值。我们通常将分类问题中的目标变量称为 类别,并假定分类问题只存在有限个数的 类别。
为了测试机器学习算法的效果,通常使用两套独立的样本集:训练数据 和 测试数据。当机器学习程序开始运行时,使用 训练样本集 作为算法的输入,训练完成之后输入 测试样本。输入 测试样本 时并不提供 测试样本 的 目标变量,由程序决定样本属于哪个类别。比较 测试样本 预测的 目标变量 值与 实际样本类别 之间的差别,就可以得出算法的实际精确度。
假定这个鸟类分类程序,经过测试满足精确度要求,是否我们就可以看到机器已经学会了如何区分不同的鸟类了呢?这部分工作称之为 知识表示,某些算法可以产生很容易理解的知识表示,而某些算法的知识表示也许只能为计算机所理解。知识表示 可以采用规则集的形式,也可以采用概率分布的形式,甚至可以是训练样本集中的一个实例。在某些场合中,人们可能并不想建立一个专家系统,而仅仅对机器学习算法获取的信息感兴趣。此时,采用何种方式 表示知识 就显得非常重要了。
3、机器学习的主要任务
分类问题的主要任务是将实例数据划分到合适的分类中;回归问题的主要任务是预测数值型数据。分类和回归属于监督学习,之所以称之为 监督学习,是因为这类算法必须知道预测什么,即 目标变量的分类信息,也就是label。
与 监督学习 相对应的是 无监督学习,此时数据没有 类别信息,也不会给定 目标值。在 无监督学习 中,将数据集合分成由类似的对象组成的多个类的过程被称为 聚类;将寻找描述数据统计值的过程称之为 密度估计。此外,无监督学习 还可以减少数据特征的维度,以便我们可以使用二维或三维图形更加直观地展示数据信息。
4、如何选择合适的算法
从上面的表格中可以看出,如果我们能确定算法的目的,想要算法完成何种任务,再加上确定需要分析或手机的数据是什么,就能大概确定哪一个算法更适合了。
首先考虑使用机器学习算法的目的。
- 如果想要预测目标变量的值,则可以选择监督学习算法
- 如果目标变量是离散型,则可以选择分类器算法
- 如果目标变量是连续型的数值,则需要选择回归算法
- 如果不想预测目标变量的值,则可以选择无监督学习算法
- 进一步分析是否需要将数据划分为离散的组。如果这是唯一的需求,则使用聚类算法;
- 如果还需要估计数据与每个分组的相似程度,则需要使用密度估计算法。
其次需要考虑的是数据问题。主要应该了解数据的以下特性:特征值是离散型变量还是连续型变量,特征值中是否存在缺失的值,何种原因造成缺失值,数据中是否存在异常值,某个特征发生的频率如何(是否罕见得如同海底捞针),等等。
一般说来发现最好算法的关键环节是反复试错的迭代过程。
5、开发机器学习应用程序的步骤
机器学习算法开发应用程序通常遵循以下的步骤。
(1) 收集数据
(2) 准备输入数据
(3) 分析输入数据
(4) 训练算法
(5) 测试算法
(6) 使用算法6、Python 语言的优势
选择Python作为实现机器学习算法的编程语言的原因:
(1) Python的语法清晰;
(2) 易于操作纯文本文件;
(3) 使用广泛,存在大量的开发文档。7、NumPy 函数库基础
机器学习算法涉及很多线性代数知识,因此在使用Python语言构造机器学习应用时,会经常使用NumPy函数库。如果不熟悉线性代数也不用着急,这里用到线性代数只是为了简化不同的数据点上执行的相同数学运算。将数据表示为矩阵形式,只需要执行简单的矩阵运算而不需要复杂的循环操作。
8、总结
尽管现在引起很多人的注意,但是机器学习算法其实还是一个专业的学科,很多人都是道听途说,仍然有很长的路要走。随着每天我们需要处理的数据在不断地增加,能够深入理解数据背后的真实含义,是数据驱动产业必须具备的基本技能。如果你想走这个方向,就要下定决心,走到黑,加油,共勉。
下一章我们将介绍第一个分类算法——k-近邻算法。
参考文章
- 《机器学习实战》
-
Python3《机器学习实战》学习笔记(二):决策树基础篇之让我们从相亲说起
2017-07-21 16:44:27有读者反映,说我上篇文章Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文),太长了。一看那么长,读的欲望都降低了。既然如此,决策树的内容,我就分开讲好了。本篇讨论决策树的原理和决策树的...转载请注明作者和出处: http://blog.csdn.net/c406495762
运行平台: Windows
Python版本: Python3.x
IDE: Sublime text3
个人网站:https://cuijiahua.com文章目录
一 前言
有读者反映,说我上篇文章Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文),太长了。一看那么长,读的欲望都降低了。既然如此,决策树的内容,我就分开讲好了。本篇讨论决策树的原理和决策树构建的准备工作,完整实例内容会在下一篇文章进行讲解。
本文出现的所有代码,均可在我的github上下载,欢迎Follow、Star:https://github.com/Jack-Cherish/Machine-Learning/tree/master/Decision Tree
二 决策树
决策树是什么?决策树(decision tree)是一种基本的分类与回归方法。举个通俗易懂的例子,如下图所示的流程图就是一个决策树,长方形代表判断模块(decision block),椭圆形成代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作为分支(branch),它可以达到另一个判断模块或者终止模块。我们还可以这样理解,分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。结点有两种类型:内部结点(internal node)和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类。蒙圈没??如下图所示的决策树,长方形和椭圆形都是结点。长方形的结点属于内部结点,椭圆形的结点属于叶结点,从结点引出的左右箭头就是有向边。而最上面的结点就是决策树的根结点(root node)。这样,结点说法就与模块说法对应上了,理解就好。
我们回到这个流程图,对,你没看错,这就是一个假想的相亲对象分类系统。它首先检测相亲对方是否有房。如果有房,则对于这个相亲对象可以考虑进一步接触。如果没有房,则观察相亲对象是否有上进心,如果没有,直接Say Goodbye,此时可以说:"你人很好,但是我们不合适。"如果有,则可以把这个相亲对象列入候选名单,好听点叫候选名单,有点瑕疵地讲,那就是备胎。
不过这只是个简单的相亲对象分类系统,只是做了简单的分类。真实情况可能要复杂得多,考虑因素也可以是五花八门。脾气好吗?会做饭吗?愿意做家务吗?家里几个孩子?父母是干什么的?天啊,我不想再说下去了,想想都可怕。
我们可以把决策树看成一个if-then规则的集合,将决策树转换成if-then规则的过程是这样的:由决策树的根结点(root node)到叶结点(leaf node)的每一条路径构建一条规则;路径上内部结点的特征对应着规则的条件,而叶结点的类对应着规则的结论。决策树的路径或其对应的if-then规则集合具有一个重要的性质:互斥并且完备。这就是说,每一个实例都被一条路径或一条规则所覆盖,而且只被一条路径或一条规则所覆盖。这里所覆盖是指实例的特征与路径上的特征一致或实例满足规则的条件。
使用决策树做预测需要以下过程:
- 收集数据:可以使用任何方法。比如想构建一个相亲系统,我们可以从媒婆那里,或者通过参访相亲对象获取数据。根据他们考虑的因素和最终的选择结果,就可以得到一些供我们利用的数据了。
- 准备数据:收集完的数据,我们要进行整理,将这些所有收集的信息按照一定规则整理出来,并排版,方便我们进行后续处理。
- 分析数据:可以使用任何方法,决策树构造完成之后,我们可以检查决策树图形是否符合预期。
- 训练算法:这个过程也就是构造决策树,同样也可以说是决策树学习,就是构造一个决策树的数据结构。
- 测试算法:使用经验树计算错误率。当错误率达到了可接收范围,这个决策树就可以投放使用了。
- 使用算法:此步骤可以使用适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。
三 决策树构建的准备工作
使用决策树做预测的每一步骤都很重要,数据收集不到位,将会导致没有足够的特征让我们构建错误率低的决策树。数据特征充足,但是不知道用哪些特征好,将会导致无法构建出分类效果好的决策树模型。从算法方面看,决策树的构建是我们的核心内容。
决策树要如何构建呢?通常,这一过程可以概括为3个步骤:特征选择、决策树的生成和决策树的修剪。
3.1 特征选择
特征选择在于选取对训练数据具有分类能力的特征。这样可以提高决策树学习的效率,如果利用一个特征进行分类的结果与随机分类的结果没有很大差别,则称这个特征是没有分类能力的。经验上扔掉这样的特征对决策树学习的精度影响不大。通常特征选择的标准是信息增益(information gain)或信息增益比,为了简单,本文章使用信息增益作为选择特征的标准。那么,什么是信息增益?在讲解信息增益之前,让我们看一组实例,贷款申请样本数据表。
ID 年龄 有工作 有自己的房子 信贷情况 类别(是否个给贷款) 1 青年 否 否 一般 否 2 青年 否 否 好 否 3 青年 是 否 好 是 4 青年 是 是 一般 是 5 青年 否 否 一般 否 6 中年 否 否 一般 否 7 中年 否 否 好 否 8 中年 是 是 好 是 9 中年 否 是 非常好 是 10 中年 否 是 非常好 是 11 老年 否 是 非常好 是 12 老年 否 是 好 是 13 老年 是 否 好 是 14 老年 是 否 非常好 是 15 老年 否 否 一般 否 希望通过所给的训练数据学习一个贷款申请的决策树,用以对未来的贷款申请进行分类,即当新的客户提出贷款申请时,根据申请人的特征利用决策树决定是否批准贷款申请。
特征选择就是决定用哪个特征来划分特征空间。比如,我们通过上述数据表得到两个可能的决策树,分别由两个不同特征的根结点构成。
图(a)所示的根结点的特征是年龄,有3个取值,对应于不同的取值有不同的子结点。图(b)所示的根节点的特征是工作,有2个取值,对应于不同的取值有不同的子结点。两个决策树都可以从此延续下去。问题是:究竟选择哪个特征更好些?这就要求确定选择特征的准则。直观上,如果一个特征具有更好的分类能力,或者说,按照这一特征将训练数据集分割成子集,使得各个子集在当前条件下有最好的分类,那么就更应该选择这个特征。信息增益就能够很好地表示这一直观的准则。
什么是信息增益呢?在划分数据集之前之后信息发生的变化成为信息增益,知道如何计算信息增益,我们就可以计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。
3.1.1 香农熵
在可以评测哪个数据划分方式是最好的数据划分之前,我们必须学习如何计算信息增益。集合信息的度量方式成为香农熵或者简称为熵(entropy),这个名字来源于信息论之父克劳德·香农。
如果看不明白什么是信息增益和熵,请不要着急,因为他们自诞生的那一天起,就注定会令世人十分费解。克劳德·香农写完信息论之后,约翰·冯·诺依曼建议使用"熵"这个术语,因为大家都不知道它是什么意思。
熵定义为信息的期望值。在信息论与概率统计中,熵是表示随机变量不确定性的度量。如果待分类的事务可能划分在多个分类之中,则符号xi的信息定义为
其中p(xi)是选择该分类的概率。有人可能会问,信息为啥这样定义啊?答曰:前辈得出的结论。这就跟1+1等于2一样,记住并且会用即可。上述式中的对数以2为底,也可以e为底(自然对数)。
通过上式,我们可以得到所有类别的信息。为了计算熵,我们需要计算所有类别所有可能值包含的信息期望值(数学期望),通过下面的公式得到:
期中n是分类的数目。熵越大,随机变量的不确定性就越大。
当熵中的概率由数据估计(特别是最大似然估计)得到时,所对应的熵称为经验熵(empirical entropy)。什么叫由数据估计?比如有10个数据,一共有两个类别,A类和B类。其中有7个数据属于A类,则该A类的概率即为十分之七。其中有3个数据属于B类,则该B类的概率即为十分之三。浅显的解释就是,这概率是我们根据数据数出来的。我们定义贷款申请样本数据表中的数据为训练数据集D,则训练数据集D的经验熵为H(D),|D|表示其样本容量,及样本个数。设有K个类Ck,k = 1,2,3,···,K,|Ck|为属于类Ck的样本个数,这经验熵公式可以写为:
根据此公式计算经验熵H(D),分析贷款申请样本数据表中的数据。最终分类结果只有两类,即放贷和不放贷。根据表中的数据统计可知,在15个数据中,9个数据的结果为放贷,6个数据的结果为不放贷。所以数据集D的经验熵H(D)为:
经过计算可知,数据集D的经验熵H(D)的值为0.971。
3.1.2 编写代码计算经验熵
在编写代码之前,我们先对数据集进行属性标注。
- 年龄:0代表青年,1代表中年,2代表老年;
- 有工作:0代表否,1代表是;
- 有自己的房子:0代表否,1代表是;
- 信贷情况:0代表一般,1代表好,2代表非常好;
- 类别(是否给贷款):no代表否,yes代表是。
确定这些之后,我们就可以创建数据集,并计算经验熵了,代码编写如下:
# -*- coding: UTF-8 -*- from math import log """ 函数说明:创建测试数据集 Parameters: 无 Returns: dataSet - 数据集 labels - 分类属性 Author: Jack Cui Modify: 2017-07-20 """ def createDataSet(): dataSet = [[0, 0, 0, 0, 'no'], #数据集 [0, 0, 0, 1, 'no'], [0, 1, 0, 1, 'yes'], [0, 1, 1, 0, 'yes'], [0, 0, 0, 0, 'no'], [1, 0, 0, 0, 'no'], [1, 0, 0, 1, 'no'], [1, 1, 1, 1, 'yes'], [1, 0, 1, 2, 'yes'], [1, 0, 1, 2, 'yes'], [2, 0, 1, 2, 'yes'], [2, 0, 1, 1, 'yes'], [2, 1, 0, 1, 'yes'], [2, 1, 0, 2, 'yes'], [2, 0, 0, 0, 'no']] labels = ['年龄', '有工作', '有自己的房子', '信贷情况'] #分类属性 return dataSet, labels #返回数据集和分类属性 """ 函数说明:计算给定数据集的经验熵(香农熵) Parameters: dataSet - 数据集 Returns: shannonEnt - 经验熵(香农熵) Author: Jack Cui Modify: 2017-03-29 """ def calcShannonEnt(dataSet): numEntires = len(dataSet) #返回数据集的行数 labelCounts = {} #保存每个标签(Label)出现次数的字典 for featVec in dataSet: #对每组特征向量进行统计 currentLabel = featVec[-1] #提取标签(Label)信息 if currentLabel not in labelCounts.keys(): #如果标签(Label)没有放入统计次数的字典,添加进去 labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 #Label计数 shannonEnt = 0.0 #经验熵(香农熵) for key in labelCounts: #计算香农熵 prob = float(labelCounts[key]) / numEntires #选择该标签(Label)的概率 shannonEnt -= prob * log(prob, 2) #利用公式计算 return shannonEnt #返回经验熵(香农熵) if __name__ == '__main__': dataSet, features = createDataSet() print(dataSet) print(calcShannonEnt(dataSet))
代码运行结果如下图所示,代码是先打印训练数据集,然后打印计算的经验熵H(D),程序计算的结果与我们统计计算的结果是一致的,程序没有问题。
3.1.3 信息增益
在上面,我们已经说过,如何选择特征,需要看信息增益。也就是说,信息增益是相对于特征而言的,信息增益越大,特征对最终的分类结果影响也就越大,我们就应该选择对最终分类结果影响最大的那个特征作为我们的分类特征。
在讲解信息增益定义之前,我们还需要明确一个概念,条件熵。
熵我们知道是什么,条件熵又是个什么鬼?条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性,随机变量X给定的条件下随机变量Y的条件熵(conditional entropy) H(Y|X),定义X给定条件下Y的条件概率分布的熵对X的数学期望:
这里,
同理,当条件熵中的概率由数据估计(特别是极大似然估计)得到时,所对应的条件熵成为条件经验熵(empirical conditional entropy)。
明确了条件熵和经验条件熵的概念。接下来,让我们说说信息增益。前面也提到了,信息增益是相对于特征而言的。所以,特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即
一般地,熵H(D)与条件熵H(D|A)之差成为互信息(mutual information)。决策树学习中的信息增益等价于训练数据集中类与特征的互信息。
设特征A有n个不同的取值{a1,a2,···,an},根据特征A的取值将D划分为n个子集D1,D2,···,Dn,|Di|为Di的样本个数。记子集Di中属于Ck的样本的集合为Dik,即Dik = Di ∩ Ck,|Dik|为Dik的样本个数。于是经验条件熵的公式可以些为:
说了这么多概念性的东西,没有听懂也没有关系,举几个例子,再回来看一下概念,就懂了。
以贷款申请样本数据表为例进行说明。看下年龄这一列的数据,也就是特征A1,一共有三个类别,分别是:青年、中年和老年。我们只看年龄是青年的数据,年龄是青年的数据一共有5个,所以年龄是青年的数据在训练数据集出现的概率是十五分之五,也就是三分之一。同理,年龄是中年和老年的数据在训练数据集出现的概率也都是三分之一。现在我们只看年龄是青年的数据的最终得到贷款的概率为五分之二,因为在五个数据中,只有两个数据显示拿到了最终的贷款,同理,年龄是中年和老年的数据最终得到贷款的概率分别为五分之三、五分之四。所以计算年龄的信息增益,过程如下:
同理,计算其余特征的信息增益g(D,A2)、g(D,A3)和g(D,A4)。分别为:
最后,比较特征的信息增益,由于特征A3(有自己的房子)的信息增益值最大,所以选择A3作为最优特征。
3.1.4 编写代码计算信息增益
我们已经学会了通过公式计算信息增益,接下来编写代码,计算信息增益,选择最优特征。
# -*- coding: UTF-8 -*- from math import log """ 函数说明:计算给定数据集的经验熵(香农熵) Parameters: dataSet - 数据集 Returns: shannonEnt - 经验熵(香农熵) Author: Jack Cui Modify: 2017-03-29 """ def calcShannonEnt(dataSet): numEntires = len(dataSet) #返回数据集的行数 labelCounts = {} #保存每个标签(Label)出现次数的字典 for featVec in dataSet: #对每组特征向量进行统计 currentLabel = featVec[-1] #提取标签(Label)信息 if currentLabel not in labelCounts.keys(): #如果标签(Label)没有放入统计次数的字典,添加进去 labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 #Label计数 shannonEnt = 0.0 #经验熵(香农熵) for key in labelCounts: #计算香农熵 prob = float(labelCounts[key]) / numEntires #选择该标签(Label)的概率 shannonEnt -= prob * log(prob, 2) #利用公式计算 return shannonEnt #返回经验熵(香农熵) """ 函数说明:创建测试数据集 Parameters: 无 Returns: dataSet - 数据集 labels - 分类属性 Author: Jack Cui Modify: 2017-07-20 """ def createDataSet(): dataSet = [[0, 0, 0, 0, 'no'], #数据集 [0, 0, 0, 1, 'no'], [0, 1, 0, 1, 'yes'], [0, 1, 1, 0, 'yes'], [0, 0, 0, 0, 'no'], [1, 0, 0, 0, 'no'], [1, 0, 0, 1, 'no'], [1, 1, 1, 1, 'yes'], [1, 0, 1, 2, 'yes'], [1, 0, 1, 2, 'yes'], [2, 0, 1, 2, 'yes'], [2, 0, 1, 1, 'yes'], [2, 1, 0, 1, 'yes'], [2, 1, 0, 2, 'yes'], [2, 0, 0, 0, 'no']] labels = ['年龄', '有工作', '有自己的房子', '信贷情况'] #分类属性 return dataSet, labels #返回数据集和分类属性 """ 函数说明:按照给定特征划分数据集 Parameters: dataSet - 待划分的数据集 axis - 划分数据集的特征 value - 需要返回的特征的值 Returns: 无 Author: Jack Cui Modify: 2017-03-30 """ def splitDataSet(dataSet, axis, value): retDataSet = [] #创建返回的数据集列表 for featVec in dataSet: #遍历数据集 if featVec[axis] == value: reducedFeatVec = featVec[:axis] #去掉axis特征 reducedFeatVec.extend(featVec[axis+1:]) #将符合条件的添加到返回的数据集 retDataSet.append(reducedFeatVec) return retDataSet #返回划分后的数据集 """ 函数说明:选择最优特征 Parameters: dataSet - 数据集 Returns: bestFeature - 信息增益最大的(最优)特征的索引值 Author: Jack Cui Modify: 2017-03-30 """ def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 #特征数量 baseEntropy = calcShannonEnt(dataSet) #计算数据集的香农熵 bestInfoGain = 0.0 #信息增益 bestFeature = -1 #最优特征的索引值 for i in range(numFeatures): #遍历所有特征 #获取dataSet的第i个所有特征 featList = [example[i] for example in dataSet] uniqueVals = set(featList) #创建set集合{},元素不可重复 newEntropy = 0.0 #经验条件熵 for value in uniqueVals: #计算信息增益 subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集 prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率 newEntropy += prob * calcShannonEnt(subDataSet) #根据公式计算经验条件熵 infoGain = baseEntropy - newEntropy #信息增益 print("第%d个特征的增益为%.3f" % (i, infoGain)) #打印每个特征的信息增益 if (infoGain > bestInfoGain): #计算信息增益 bestInfoGain = infoGain #更新信息增益,找到最大的信息增益 bestFeature = i #记录信息增益最大的特征的索引值 return bestFeature #返回信息增益最大的特征的索引值 if __name__ == '__main__': dataSet, features = createDataSet() print("最优特征索引值:" + str(chooseBestFeatureToSplit(dataSet)))
splitDataSet函数是用来选择各个特征的子集的,比如选择年龄(第0个特征)的青年(用0代表)的自己,我们可以调用splitDataSet(dataSet,0,0)这样返回的子集就是年龄为青年的5个数据集。chooseBestFeatureToSplit是选择选择最优特征的函数。运行代码结果如下:
对比我们自己计算的结果,发现结果完全正确!最优特征的索引值为2,也就是特征A3(有自己的房子)。
3.2 决策树生成和修剪
我们已经学习了从数据集构造决策树算法所需要的子功能模块,包括经验熵的计算和最优特征的选择,其工作原理如下:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分。第一次划分之后,数据集被向下传递到树的分支的下一个结点。在这个结点上,我们可以再次划分数据。因此我们可以采用递归的原则处理数据集。
构建决策树的算法有很多,比如C4.5、ID3和CART,这些算法在运行时并不总是在每次划分数据分组时都会消耗特征。由于特征数目并不是每次划分数据分组时都减少,因此这些算法在实际使用时可能引起一定的问题。目前我们并不需要考虑这个问题,只需要在算法开始运行前计算列的数目,查看算法是否使用了所有属性即可。
决策树生成算法递归地产生决策树,直到不能继续下去未为止。这样产生的树往往对训练数据的分类很准确,但对未知的测试数据的分类却没有那么准确,即出现过拟合现象。过拟合的原因在于学习时过多地考虑如何提高对训练数据的正确分类,从而构建出过于复杂的决策树。解决这个问题的办法是考虑决策树的复杂度,对已生成的决策树进行简化。
四 总结
本篇文章讲解了如何计算数据集的经验熵和如何选择最优特征作为分类特征。决策树如何生成、修剪、可视化,以及整体实例练习,会在后续的文章中进行讲解。
- 下篇文章将讲解决策树的生成、修剪、可视化,以及整体实例练习,欢迎届时前来捧场!
- 如有问题,请留言。如有错误,还望指正,谢谢!
PS: 如果觉得本篇本章对您有所帮助,欢迎关注、评论、顶!Github给个Star就更完美了_!
-
《机器学习实战》学习笔记 总目录
2019-08-18 09:24:41【机器学习】《机器学习实战》读书笔记及代码 总目录 —————————————————————————————————————————————————————— 好好看书,好好写博客,好好码代码,好好搞... -
机器学习实战学习提纲
2017-02-08 12:27:13机器学习实战学习提纲 -
机器学习实战——学习之路
2019-07-25 10:45:27本篇博客意在记录学习机器学习实战中算法的过程,首先申明一下,博主是一个小白,刚开始接触机器学习,所以每学完一个算法,就会进行一次总结,写一篇博客。每篇博客仅是个人理解而写,如有错误,不足之处,欢迎指出... -
《机器学习实战》学习
2017-07-08 23:57:21《机器学习实战》学习笔记-[1]-K近邻_第一个分类器《机器学习实战》学习笔记-[2]-K近邻_网站约会实例《机器学习实战》学习笔记-[3]-决策树_1_基础《机器学习实战》学习笔记-[3]-决策树_2_构建测试决策树《机器学习... -
机器学习实战 KNN实战
2018-10-02 19:37:58KNN实战1、KNN算法的一般流程1、搜集数据:可以使用任何方法2、准备数据:距离计算所需要的数值,最好是结构化的数据格式3、分析数据:可以使用任何方法4、训练算法:此...学习《机器学习实战》 1、KNN算法的一般... -
机器学习机器学习实战-kmeans
2018-01-11 23:50:14机器学习机器学习实战-kmeans 简介: 聚类算法是一种无监督学习,它将相似的对象归类到同一簇中。聚类的方法可以应用所有的对象,簇内的对象越相似,聚类效果也就越好。 聚类和分类的最大不同之处在于,分类的... -
机器学习实战(三)——决策树
2018-03-13 22:23:50(声明:本文内容来自机器学习实战和统计学习方法,是两者的整合,并非来自单个书籍) 决策树(decision tree) :是一种基本的分类与回归方法,此处主要讨论分类的决策树。 在分类问题中,表示基于特征对实例... -
机器学习实战笔记(Python实现)-01-机器学习实战
2015-11-09 09:34:15机器学习实战 本博客来自于CSDN:http://blog.csdn.net/niuwei22007/article/details/49663977 本系列博客源自于读《机器学习实战—中文版》这本书的学习笔记,用于日后翻阅、查看资料用。 机器学习算法越来越受... -
Python数据分析与机器学习实战集锦
2019-05-02 00:04:20Python数据分析与机器学习实战课程使用当下最主流的工具包结合真实数据集进行分析与建模任务,全程实战演练,旨在用最接地气的方式带领大家熟悉数据分析与建模常规套路与实战流程。针对具体任务,进行详细探索性... -
《机器学习实战》
2019-06-20 10:20:24万事需要实践。...《机器学习实战》第一章:机器学习基础 《机器学习实战》 Peter HarringtonPeter \, HarringtonPeterHarrington 李锐 / 李鹏 / 曲亚东 / 王斌 2013.06 人民邮电出版社 ... -
Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM
2017-09-23 17:50:18转载请注明作者和出处: https://zhuanlan.zhihu.com/ml-jack 机器学习知乎专栏:https://zhuanlan.zhihu.com/ml-jack CSDN博客专栏:http://blog.csdn.net/column/details/16415.html Github代码获取:... -
机器学习实战源码
2018-03-11 17:09:21机器学习实战源码人民邮电出版社GitHub上源码,这个是链接https://github.com/yinchuandong/MachineLearningInAction -
Python 《机器学习实战》学习笔记(一)——机器学习基础
2017-11-15 22:14:06基于Python《机器学习实战》学习笔记第一章之机器学习基础 -
【机器学习】《机器学习实战》笔记
2015-06-17 19:12:52《机器学习实战》笔记 -
菜鸟起飞——机器学习实战第一篇:总体介绍
2017-08-14 19:54:29前言终于开始了自己的...《机器学习实战》全书学习;2.python网络爬虫收集网络数据;3.深度学习;4.python进一步学习(小甲鱼视频)。本类文章主要针对第一部分,其他部分有时间我也会总结上传,有兴趣的童鞋可以相互 -
《机器学习实战》python3完美运行代码
2018-12-17 08:38:11这是楼主自己学习过程中整理的机器学习实战全书的全部源代码,书上的代码有很多不能运行的,楼主把全部代码重新进行的书写,所有代码在python3上均通过运行,没有任何bug。全网唯一一个可以在python3下完美运行的... -
机器学习实战笔记
2015-03-12 11:32:04机器学习实战笔记 机器学习的概念: 引用Andrew Ng在机器学习课程中说过的一句话“机器学习实际上就是使用一个学习型算法,让机器学习起来”。机器学习能让我们自数据集中受到启发,换句话说,我们会利用计算机来... -
机器学习实战 笔记文章链接
2017-02-09 14:30:39声明《机器学习实战》读书笔记系列是我对在读此书过程中遇到的各种问题、及解决方法的记录和总结。 另外我修改了部分源代码,并添加了注释,希望能够帮助到大家。 文章列表《机器学习实战》读书笔记1:NumPy的安装及... -
菊安酱的机器学习实战
2020-04-14 16:39:32菊安酱的机器学习实战机器学习实战百度网盘 机器学习实战 01.第1章 k-近邻算法 02.第2章 决策树 03.第3章 朴素贝叶斯 04.第4章 Logistic 回归 05.第5章 支持向量机 06.第6章 AdaBoost算法 07.第7章 线性回归 08.第8... -
机器学习实战笔记6—AdaBoost
2018-11-12 18:20:22注:此系列文章里的部分算法和深度学习笔记系列里的内容有重合的地方,深度学习笔记里是看教学视频做的笔记,此处文章是看《机器学习实战》这本书所做的笔记,虽然算法相同,但示例代码有所不同,多敲一遍没有坏处,... -
book_机器学习实战_脑图
2018-08-20 21:34:29机器学习实战_脑图 主要是根据《机器学习实战machine learning in action》撰写的,有些内容参考了《机器学习》等。 -
机器学习实战读书总结
2017-05-02 14:26:10机器学习实战读书总结 蒟蒻退役ACMer 1403mashaonan终于读完了新买的Machine Learning in Action(机器学习实战) 立的年前读完这本书的flag没有完成(主要是19-25号水了个美赛然后一周没读,不然应该能完成任务...