机器学习实战 订阅
《机器学习实战》是2013年人民邮电出版社出版的图书,作者是Peter Harrington。 [1] 展开全文
《机器学习实战》是2013年人民邮电出版社出版的图书,作者是Peter Harrington。 [1]
信息
页    数
332
作    者
Peter Harrington
译    者
李锐 李鹏 曲亚东  王斌
定    价
69.00元
书    名
机器学习实战
出版时间
2013-6
出版社
人民邮电出版社
原作名
Machine Learning in Action
ISBN
9787115317957
机器学习实战内容简介
机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。
收起全文
精华内容
下载资源
问答
  • Python数据分析与机器学习实战

    万人学习 2017-01-24 10:18:45
    Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示...
  • 机器学习实战中文英文pdf+数据集+代码
  • 机器学习现在已经成为程序员必备技能,学习机器学习实战,让你成为机器学习算法工程师~
  • 机器学习实战,机器学习实战 pdf,Python源码.zip.zip
  • 机器学习实战 源码

    2016-01-24 20:59:06
    机器学习实战 源码 机器学习实战 源码 机器学习实战 源码
  • peter harrington 著 入门机器学习
  • 机器学习实战机器学习实战第2章KNN算法数据集-数据集
  • 机器学习实战机器学习实战第7章集成方法数据集-数据集
  • 机器学习导论,机器学习实战。带你快速入门机器学习
  • 机器学习实战项目聚类,完整的机器学习项目,机器学习实战项目聚类
  • 机器学习实战机器学习实战第5章logistic回归算法数据集-数据集
  • 机器学习实战》学习笔记(一):机器学习基础

    万次阅读 多人点赞 2019-08-19 17:01:32
    【机器学习】《机器学习实战》读书笔记及代码 总目录 https://blog.csdn.net/TeFuirnever/article/details/99701256 ————————————————————————————————————————————...

    欢迎关注WX公众号:【程序员管小亮】

    【机器学习】《机器学习实战》读书笔记及代码 总目录

    GitHub代码地址:

    ——————————————————————————————————————————————————————

    本章内容

    • 机器学习的简单概述
    • 机器学习的主要任务
    • 学习机器学习的原因
    • Python语言的优势

    1、何谓机器学习

    什么是机器学习?书中举了一个很有意思的例子,我们来听一下,就当开胃菜了。

    最近我和一对夫妇共进晚餐,他们问我从事什么职业,我回应道:“机器学习。”妻子回头问丈夫:“亲爱的,什么是机器学习?”她的丈夫答道:“T-800型终结者。”在《终结者》系列电影中,T-800是人工智能技术的反面样板工程。
    在这里插入图片描述

    哈哈,承包了我一天的笑点,极其学习的概念到底是什么,这个我们在很多博客中都又提到过。

    如果你还是不清楚的话,实在是很过分了 😐,在深度学习大火的如今,机器学习也正是出现在人们视野中,现今,机器学习已应用于多个领域,远超出大多数人的想象,比如NLP,再比如推荐系统。
    在这里插入图片描述

    机器学习在日常生活中的应用,从左上角按照顺时针方向依次使用到的机器学习技术分别为:人脸识别、手写数字识别、垃圾邮件过滤和亚马逊公司的产品推荐。

    在本书中,给出的定义是:【简单地说,机器学习就是把无序的数据转换成有用的信息。】

    1. 传感器和海量数据

    虽然已从互联网上获取了大量的人为数据,但最近却涌现了更多的非人为数据。传感器技术并不时髦,已经发展了好多年的传统行业,但是如何将它们接入互联网这确实是新的挑战。地震预测是一个很好的例子,传感器手机了海量的数据,但是如何从这些数据中抽取出有价值的信息是一个非常值得研究的课题。

    1. 机器学习非常重要

    在过去的半个世纪里,发达国家的多数工作岗位都已从体力劳动转化为脑力劳动。过去的工作基本上都有明确的定义,类似于把物品从A处搬到B处,或者在这里打个洞,但是现在这类工作都在逐步消失。现今的情况具有很大的二义性,类似于“最大化利润”,“最小化风险”、“找到最好的市场策略”……诸如此类的任务要求都已成为常态。虽然可从互联网上获取到海量数据,但这并没有简化知识工人的工作难度。针对具体任务搞懂所有相关数据的意义所在,这正成为基本的技能要求。

    2、关键术语

    通过构建下面的鸟类分类系统,来对机器学习领域的常用术语进行一个总结。
    在这里插入图片描述
    机器学习的主要任务就是 分类。如何判断飞入进食器的鸟是不是象牙喙啄木鸟呢?(任何发现活的象牙喙啄木鸟的人都可以得到5万美元的奖励。)这个任务就是 分类,有很多机器学习算法非常善于 分类。本例中的类别就是鸟的物种,更具体地说,就是区分是否为象牙喙啄木鸟。

    我们决定使用某个机器学习算法进行 分类,首先需要做的是算法训练,即学习如何 分类。通常我们为算法输入大量已分类数据作为算法的 训练集训练集 是用于训练机器学习算法的数据样本集合,表1-1是包含六个训练样本的训练集,每个训练样本有4种 特征(体重、翼展、脚蹼和后背颜色)、一个 目标变量(种属),目标变量 是机器学习算法的预测结果,在 分类 算法中目标变量的类型通常是标称型的,而在 回归 算法中通常是连续型的。训练样本集必须确定知道 目标变量 的值,以便机器学习算法可以发现 特征目标变量 之间的关系。正如前文所述,这里的目标变量 是种属,也可以简化为标称型的数值。我们通常将分类问题中的目标变量称为 类别,并假定分类问题只存在有限个数的 类别

    为了测试机器学习算法的效果,通常使用两套独立的样本集:训练数据测试数据。当机器学习程序开始运行时,使用 训练样本集 作为算法的输入,训练完成之后输入 测试样本。输入 测试样本 时并不提供 测试样本目标变量,由程序决定样本属于哪个类别。比较 测试样本 预测的 目标变量 值与 实际样本类别 之间的差别,就可以得出算法的实际精确度。

    假定这个鸟类分类程序,经过测试满足精确度要求,是否我们就可以看到机器已经学会了如何区分不同的鸟类了呢?这部分工作称之为 知识表示,某些算法可以产生很容易理解的知识表示,而某些算法的知识表示也许只能为计算机所理解。知识表示 可以采用规则集的形式,也可以采用概率分布的形式,甚至可以是训练样本集中的一个实例。在某些场合中,人们可能并不想建立一个专家系统,而仅仅对机器学习算法获取的信息感兴趣。此时,采用何种方式 表示知识 就显得非常重要了。

    3、机器学习的主要任务

    分类问题的主要任务是将实例数据划分到合适的分类中;回归问题的主要任务是预测数值型数据。分类和回归属于监督学习,之所以称之为 监督学习,是因为这类算法必须知道预测什么,即 目标变量的分类信息,也就是label。

    监督学习 相对应的是 无监督学习,此时数据没有 类别信息,也不会给定 目标值。在 无监督学习 中,将数据集合分成由类似的对象组成的多个类的过程被称为 聚类;将寻找描述数据统计值的过程称之为 密度估计。此外,无监督学习 还可以减少数据特征的维度,以便我们可以使用二维或三维图形更加直观地展示数据信息。

    在这里插入图片描述

    4、如何选择合适的算法

    从上面的表格中可以看出,如果我们能确定算法的目的,想要算法完成何种任务,再加上确定需要分析或手机的数据是什么,就能大概确定哪一个算法更适合了。

    首先考虑使用机器学习算法的目的。

    • 如果想要预测目标变量的值,则可以选择监督学习算法
      • 如果目标变量是离散型,则可以选择分类器算法
      • 如果目标变量是连续型的数值,则需要选择回归算法
    • 如果不想预测目标变量的值,则可以选择无监督学习算法
      • 进一步分析是否需要将数据划分为离散的组。如果这是唯一的需求,则使用聚类算法;
      • 如果还需要估计数据与每个分组的相似程度,则需要使用密度估计算法。

    其次需要考虑的是数据问题。主要应该了解数据的以下特性:特征值是离散型变量还是连续型变量,特征值中是否存在缺失的值,何种原因造成缺失值,数据中是否存在异常值,某个特征发生的频率如何(是否罕见得如同海底捞针),等等。

    一般说来发现最好算法的关键环节是反复试错的迭代过程。

    5、开发机器学习应用程序的步骤

    机器学习算法开发应用程序通常遵循以下的步骤。
    (1) 收集数据
    (2) 准备输入数据
    (3) 分析输入数据
    (4) 训练算法
    (5) 测试算法
    (6) 使用算法

    6、Python 语言的优势

    选择Python作为实现机器学习算法的编程语言的原因:
    (1) Python的语法清晰;
    (2) 易于操作纯文本文件;
    (3) 使用广泛,存在大量的开发文档。

    7、NumPy 函数库基础

    机器学习算法涉及很多线性代数知识,因此在使用Python语言构造机器学习应用时,会经常使用NumPy函数库。如果不熟悉线性代数也不用着急,这里用到线性代数只是为了简化不同的数据点上执行的相同数学运算。将数据表示为矩阵形式,只需要执行简单的矩阵运算而不需要复杂的循环操作。

    8、总结

    尽管现在引起很多人的注意,但是机器学习算法其实还是一个专业的学科,很多人都是道听途说,仍然有很长的路要走。随着每天我们需要处理的数据在不断地增加,能够深入理解数据背后的真实含义,是数据驱动产业必须具备的基本技能。如果你想走这个方向,就要下定决心,走到黑,加油,共勉。

    下一章我们将介绍第一个分类算法——k-近邻算法。

    参考文章

    • 《机器学习实战》
    展开全文
  • 机器学习实战源码解析及课件,机器学习基本思想及入门项目实战。机器学习实战学习资料之决策树源码解析及实战
  • 机器学习实战源码.zip

    2021-02-28 12:15:25
    机器学习实战源码,书籍配套资料
  • 机器学习实战——加州房价
  • 机器学习实战附件代码+数据 机器学习实战附件代码+数据 机器学习实战附件代码+数据 机器学习实战附件代码+数据 机器学习实战附件代码+数据
  • 机器学习实战数据集

    2018-10-21 20:13:23
    机器学习实战数据集
  • 机器学习实战资源库

    2018-11-30 17:26:10
    机器学习实战 约会资源库 datingTestSet2.txt 文件 验证版资源
  • 机器学习实战第6章支持向量机算法数据集
  • 机器学习实战数据

    2015-08-17 22:29:25
    这是《机器学习实战》这本书中所用的数据。
  • 机器学习实战之knn算法pandas,供大家参考,具体内容如下 开始学习机器学习实战这本书,打算看完了再回头看 周志华的 机器学习。机器学习实战的代码都是用numpy写的,有些麻烦,所以考虑用pandas来实现代码,也能...
  • 机器学习实战数据集.rar
  • 本课程从Python基础编程到机器学习实战,面向零基础学员,你可以不会Python,因为从环境搭建、helloworld一直讲到了机器学习库,你可以不会机器学习,因为从机器学习的概念分类一直讲到了分类和聚类实战案例,当你...
  • 机器学习实战》学习笔记 总目录

    万次阅读 多人点赞 2019-08-18 09:24:41
    【机器学习】《机器学习实战》读书笔记及代码 总目录 —————————————————————————————————————————————————————— 好好看书,好好写博客,好好码代码,好好搞...

    欢迎关注WX公众号:【程序员管小亮】

    【机器学习】《机器学习实战》读书笔记及代码 总目录

    GitHub代码地址:

    ——————————————————————————————————————————————————————

    好好看书,好好写博客,好好码代码,好好搞深度学习,好好搞机器学习,希望能坚持下去 😃

    目录

    第1章 - 机器学习基础

    第2章 - k-近邻算法

    第3章 - 决策树

    第4章 - 基于概率论的分类方法:朴素贝叶斯

    第5章 - Logistic 回归

    第6章 - 支持向量机

    第7章 - 利用AdaBoost 元算法提高分类性能

    第8章 - 预测数值型数据:回归

    第9章 - 树回归

    第10章 - 利用K-均值聚类算法对未标注数据分组

    • 读书笔记

    第11章 - 使用Apriori 算法进行关联分析

    • 读书笔记

    第12章 - 使用FP-growth 算法来高效发现频繁项集

    • 读书笔记

    第13章 - 利用PCA 来简化数据

    • 读书笔记

    第14章 - 利用SVD 简化数据

    • 读书笔记

    第15章 - 大数据与MapReduce

    • 读书笔记

    参考文章

    • 《机器学习实战》
    展开全文
  • 配合文章中的代码,可以看我的机器学习实战之KNN 博客 配合文章中的代码,可以看我的机器学习实战之KNN 博客 配合文章中的代码,可以看我的机器学习实战之KNN 博客 配合文章中的代码,可以看我的机器学习实战之...
  • 机器学习实战代码,里面附有书本中的代码实例,以及所需要的txt文档
  • 机器学习实战示例代码,附书籍地址 所有章节示例代码(KNN treePlotter bayes logRegres svmMLiA等)

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 109,922
精华内容 43,968
关键字:

机器学习实战