机器学习算法 订阅
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 [1]  它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。 展开全文
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 [1]  它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
信息
外文名
Machine Learning Algorithm
领    域
多领域交叉学科
应用学科
概率论、统计学、逼近论
中文名
机器学习算法
应    用
智能控制、图形图像处理
机器学习算法发展史
机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。第一阶段是在20世纪50年代中叶到60年代中叶,属于热烈时期。第二阶段是在20世纪60年代中叶至70年代中叶,被称为机器学习的冷静时期。第三阶段是从20世纪70年代中叶至80年代中叶,称为复兴时期。 [2]  机器学习的最新阶段始于1986年。机器学习进入新阶段的重要表现在下列诸方面:(1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。(2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。(3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。(4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。(5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。
收起全文
精华内容
下载资源
问答
  • 机器学习算法

    千次阅读 2016-07-01 17:38:25
    这里 IT 经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。  机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来...

      机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里 IT 经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。

      机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。

      学习方式

      根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。

      监督式学习:

      

      在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 

      非监督式学习:

      在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括 Apriori 算法以及k-Means 算法。 

      半监督式学习:

      在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 

      强化学习:

      

      在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的应用场景包括动态系统以及机器人控制等。常见算法包括Q-Learning 以及时间差学习(Temporal difference learning)

      在企业数据应用的场景下, 人们最常用的可能就是监督式学习和非监督式学习的模型。 在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据, 目前半监督式学习是一个很热的话题。 而强化学习更多的应用在机器人控制及其他需要进行系统控制的领域。

      算法类似性

      根据算法的功能和形式的类似性,我们可以把算法分类,比如说基于树的算法,基于神经网络的算法等等。当然,机器学习的范围非常庞大,有些算法很难明确归类到某一类。而对于有些分类来说,同一分类的算法可以针对不同类型的问题。这里,我们尽量把常用的算法按照最容易理解的方式进行分类。 

      回归算法

    regression

      回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法(Ordinary Least Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(Multivariate Adaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing) 

      基于实例的算法

      基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括 k-Nearest Neighbor (KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM) 

      正则化方法

      

      正则化方法是其他算法(通常是回归算法)的延伸,根据算法的复杂度对算法进行调整。正则化方法通常对简单模型予以奖励而对复杂算法予以惩罚。常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net)。 

      决策树学习

      

      决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常常用来解决分类和回归问题。常见的算法包括:分类及回归树(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection (CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM) 

      贝叶斯方法

      

      贝叶斯方法算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。常见算法包括:朴素贝叶斯算法,平均单依赖估计(Averaged One-Dependence Estimators, AODE),以及 Bayesian Belief Network(BBN)。 

      基于核的算法

      

      基于核的算法中最著名的莫过于支持向量机(SVM)了。 基于核的算法把输入数据映射到一个高阶的向量空间, 在这些高阶向量空间里, 有些分类或者回归问题能够更容易的解决。 常见的基于核的算法包括:支持向量机(Support Vector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等。 

      聚类算法

      

      聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。常见的聚类算法包括 k-Means 算法以及期望最大化算法(Expectation Maximization, EM)。 

      关联规则学习

      

      关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则。常见算法包括 Apriori 算法和 Eclat 算法等。 

      人工神经网络

      人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学习就是其中的一类算法,我们会单独讨论),重要的人工神经网络算法包括:感知器神经网络(Perceptron Neural Network), 反向传递(Back Propagation), Hopfield 网络,自组织映射(Self-Organizing Map, SOM)。学习矢量量化(Learning Vector Quantization, LVQ) 

      深度学习

      

      深度学习算法是对人工神经网络的发展。 在近期赢得了很多关注, 特别是 百度也开始发力深度学习后, 更是在国内引起了很多关注。  在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼机(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders)。 

      降低维度算法

      像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。常见的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon 映射,多维尺度(Multi-Dimensional Scaling, MDS),  投影追踪(Projection Pursuit)等。 

      集成算法

    RF

      集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(Gradient Boosting Machine, GBM),随机森林(Random Forest)。

      机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里 IT 经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。

      机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。

      学习方式

      根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。

      监督式学习:

      

      在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 

      非监督式学习:

      在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括 Apriori 算法以及k-Means 算法。 

      半监督式学习:

      在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 

      强化学习:

      

      在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的应用场景包括动态系统以及机器人控制等。常见算法包括Q-Learning 以及时间差学习(Temporal difference learning)

      在企业数据应用的场景下, 人们最常用的可能就是监督式学习和非监督式学习的模型。 在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据, 目前半监督式学习是一个很热的话题。 而强化学习更多的应用在机器人控制及其他需要进行系统控制的领域。

      算法类似性

      根据算法的功能和形式的类似性,我们可以把算法分类,比如说基于树的算法,基于神经网络的算法等等。当然,机器学习的范围非常庞大,有些算法很难明确归类到某一类。而对于有些分类来说,同一分类的算法可以针对不同类型的问题。这里,我们尽量把常用的算法按照最容易理解的方式进行分类。 

      回归算法

    regression

      回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法(Ordinary Least Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(Multivariate Adaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing) 

      基于实例的算法

      基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括 k-Nearest Neighbor (KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM) 

      正则化方法

      

      正则化方法是其他算法(通常是回归算法)的延伸,根据算法的复杂度对算法进行调整。正则化方法通常对简单模型予以奖励而对复杂算法予以惩罚。常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net)。 

      决策树学习

      

      决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常常用来解决分类和回归问题。常见的算法包括:分类及回归树(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection (CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM) 

      贝叶斯方法

      

      贝叶斯方法算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。常见算法包括:朴素贝叶斯算法,平均单依赖估计(Averaged One-Dependence Estimators, AODE),以及 Bayesian Belief Network(BBN)。 

      基于核的算法

      

      基于核的算法中最著名的莫过于支持向量机(SVM)了。 基于核的算法把输入数据映射到一个高阶的向量空间, 在这些高阶向量空间里, 有些分类或者回归问题能够更容易的解决。 常见的基于核的算法包括:支持向量机(Support Vector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等。 

      聚类算法

      

      聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。常见的聚类算法包括 k-Means 算法以及期望最大化算法(Expectation Maximization, EM)。 

      关联规则学习

      

      关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则。常见算法包括 Apriori 算法和 Eclat 算法等。 

      人工神经网络

      人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学习就是其中的一类算法,我们会单独讨论),重要的人工神经网络算法包括:感知器神经网络(Perceptron Neural Network), 反向传递(Back Propagation), Hopfield 网络,自组织映射(Self-Organizing Map, SOM)。学习矢量量化(Learning Vector Quantization, LVQ) 

      深度学习

      

      深度学习算法是对人工神经网络的发展。 在近期赢得了很多关注, 特别是 百度也开始发力深度学习后, 更是在国内引起了很多关注。  在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼机(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders)。 

      降低维度算法

      像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。常见的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon 映射,多维尺度(Multi-Dimensional Scaling, MDS),  投影追踪(Projection Pursuit)等。 

      集成算法

    RF

      集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(Gradient Boosting Machine, GBM),随机森林(Random Forest)。

    展开全文
  • 我们先带着大家过一遍传统机器学习算法,基本思想和用途。把问题解决思路和方法应用建议提前到这里的想法也很简单,希望能提前给大家一些小建议,对于某些容易出错的地方也先给大家打个预防针,这样在理解后续相应...

    作者:寒小阳
    时间:2016年1月。
    出处:http://blog.csdn.net/han_xiaoyang/article/details/50469334
    声明:版权所有,转载请联系作者并注明出处

    1.引言

    提起笔来写这篇博客,突然有点愧疚和尴尬。愧疚的是,工作杂事多,加之懒癌严重,导致这个系列一直没有更新,向关注该系列的同学们道个歉。尴尬的是,按理说,机器学习介绍与算法一览应该放在最前面写,详细的应用建议应该在讲完机器学习常用算法之后写,突然莫名奇妙在中间插播这么一篇,好像有点打乱主线。
    老话说『亡羊补牢,为时未晚』,前面开头忘讲的东西,咱在这块儿补上。我们先带着大家过一遍传统机器学习算法,基本思想和用途。把问题解决思路和方法应用建议提前到这里的想法也很简单,希望能提前给大家一些小建议,对于某些容易出错的地方也先给大家打个预防针,这样在理解后续相应机器学习算法之后,使用起来也有一定的章法。

    2.机器学习算法简述

    按照不同的分类标准,可以把机器学习的算法做不同的分类。

    2.1 从机器学习问题角度分类

    我们先从机器学习问题本身分类的角度来看,我们可以分成下列类型的算法:

    • 监督学习算法

    机器学习中有一大部分的问题属于『监督学习』的范畴,简单口语化地说明,这类问题中,给定的训练样本中,每个样本的输入xx都对应一个确定的结果yy,我们需要训练出一个模型(数学上看是一个xyx → y的映射关系ff),在未知的样本xx'给定后,我们能对结果yy'做出预测。

    这里的预测结果如果是离散值(很多时候是类别类型,比如邮件分类问题中的垃圾邮件/普通邮件,比如用户会/不会购买某商品),那么我们把它叫做分类问题(classification problem);如果预测结果是连续值(比如房价,股票价格等等),那么我们把它叫做回归问题(regression problem)。

    有一系列的机器学习算法是用以解决监督学习问题的,比如最经典的用于分类问题的朴素贝叶斯、逻辑回归、支持向量机等等;比如说用于回归问题的线性回归等等。

    • 无监督学习

    有另外一类问题,给我们的样本并没有给出『标签/标准答案』,就是一系列的样本。而我们需要做的事情是,在一些样本中抽取出通用的规则。这叫做『无监督学习』。包括关联规则和聚类算法在内的一系列机器学习算法都属于这个范畴。

    • 半监督学习

    这类问题给出的训练数据,有一部分有标签,有一部分没有标签。我们想学习出数据组织结构的同时,也能做相应的预测。此类问题相对应的机器学习算法有自训练(Self-Training)、直推学习(Transductive Learning)、生成式模型(Generative Model)等。

    总体说来,最常见是前两类问题,而对应前两类问题的一些机器学习算法如下:

    机器学习算法

    2.2 从算法的功能角度分类

    我们也可以从算法的共性(比如功能,运作方式)角度对机器学习算法分类。下面我们根据算法的共性去对它们归个类。不过需要注意的是,我们下面的归类方法可能对分类和回归有比较强的倾向性,而这两类问题也是最常遇到的。

    2.2.1 回归算法(Regression Algorithms)

    回归算法
    回归算法是一种通过最小化预测值与实际结果值之间的差距,而得到输入特征之间的最佳组合方式的一类算法。对于连续值预测有线性回归等,而对于离散值/类别预测,我们也可以把逻辑回归等也视作回归算法的一种,常见的回归算法如下:

    • Ordinary Least Squares Regression (OLSR)
    • Linear Regression
    • Logistic Regression
    • Stepwise Regression
    • Locally Estimated Scatterplot Smoothing (LOESS)
    • Multivariate Adaptive Regression Splines (MARS)

    2.2.2 基于实例的算法(Instance-based Algorithms)

    基于实例的算法
    这里所谓的基于实例的算法,我指的是我们最后建成的模型,对原始数据样本实例依旧有很强的依赖性。这类算法在做预测决策时,一般都是使用某类相似度准则,去比对待预测的样本和原始样本的相近度,再给出相应的预测结果。常见的基于实例的算法有:

    • k-Nearest Neighbour (kNN)
    • Learning Vector Quantization (LVQ)
    • Self-Organizing Map (SOM)
    • Locally Weighted Learning (LWL)

    2.2.3 决策树类算法(Decision Tree Algorithms)

    决策树类算法
    决策树类算法,会基于原始数据特征,构建一颗包含很多决策路径的树。预测阶段选择路径进行决策。常见的决策树算法包括:

    • Classification and Regression Tree (CART)
    • Iterative Dichotomiser 3 (ID3)
    • C4.5 and C5.0 (different versions of a powerful approach)
    • Chi-squared Automatic Interaction Detection (CHAID)
    • M5
    • Conditional Decision Trees

    2.2.4 贝叶斯类算法(Bayesian Algorithms)

    贝叶斯类算法
    这里说的贝叶斯类算法,指的是在分类和回归问题中,隐含使用了贝叶斯原理的算法。包括:

    • Naive Bayes
    • Gaussian Naive Bayes
    • Multinomial Naive Bayes
    • Averaged One-Dependence Estimators (AODE)
    • Bayesian Belief Network (BBN)
    • Bayesian Network (BN)

    2.2.5 聚类算法(Clustering Algorithms)

    聚类算法
    聚类算法做的事情是,把输入样本聚成围绕一些中心的『数据团』,以发现数据分布结构的一些规律。常用的聚类算法包括:

    • k-Means
    • Hierarchical Clustering
    • Expectation Maximisation (EM)

    2.2.6 关联规则算法(Association Rule Learning Algorithms)

    关联规则算法
    关联规则算法是这样一类算法:它试图抽取出,最能解释观察到的训练样本之间关联关系的规则,也就是获取一个事件和其他事件之间依赖或关联的知识,常见的关联规则算法有:

    • Apriori algorithm
    • Eclat algorithm

    2.2.7 人工神经网络类算法(Artificial Neural Network Algorithms)

    人工神经网络类算法
    这是受人脑神经元工作方式启发而构造的一类算法。需要提到的一点是,我把『深度学习』单拎出来了,这里说的人工神经网络偏向于更传统的感知算法,主要包括:

    • Perceptron
    • Back-Propagation
    • Radial Basis Function Network (RBFN)

    2.2.8 深度学习(Deep Learning Algorithms)

    深度学习
    深度学习是近年来非常火的机器学习领域,相对于上面列的人工神经网络算法,它通常情况下,有着更深的层次和更复杂的结构。有兴趣的同学可以看看我们另一个系列机器学习与计算机视觉,最常见的深度学习算法包括:

    • Deep Boltzmann Machine (DBM)
    • Deep Belief Networks (DBN)
    • Convolutional Neural Network (CNN)
    • Stacked Auto-Encoders

    2.2.9 降维算法(Dimensionality Reduction Algorithms)

    降维算法
    从某种程度上说,降维算法和聚类其实有点类似,因为它也在试图发现原始训练数据的固有结构,但是降维算法在试图,用更少的信息(更低维的信息)总结和描述出原始信息的大部分内容。
    有意思的是,降维算法一般在数据的可视化,或者是降低数据计算空间有很大的作用。它作为一种机器学习的算法,很多时候用它先处理数据,再灌入别的机器学习算法学习。主要的降维算法包括:

    • Principal Component Analysis (PCA)
    • Principal Component Regression (PCR)
    • Partial Least Squares Regression (PLSR)
    • Sammon Mapping
    • Multidimensional Scaling (MDS)
    • Linear Discriminant Analysis (LDA)
    • Mixture Discriminant Analysis (MDA)
    • Quadratic Discriminant Analysis (QDA)
    • Flexible Discriminant Analysis (FDA)

    2.2.10 模型融合算法(Ensemble Algorithms)

    模型融合算法
    严格意义上来说,这不算是一种机器学习算法,而更像是一种优化手段/策略,它通常是结合多个简单的弱机器学习算法,去做更可靠的决策。拿分类问题举个例,直观的理解,就是单个分类器的分类是可能出错,不可靠的,但是如果多个分类器投票,那可靠度就会高很多。常用的模型融合增强方法包括:

    • Random Forest
    • Boosting
    • Bootstrapped Aggregation (Bagging)
    • AdaBoost
    • Stacked Generalization (blending)
    • Gradient Boosting Machines (GBM)
    • Gradient Boosted Regression Trees (GBRT)

    2.3 机器学习算法使用图谱

    scikit-learn作为一个丰富的python机器学习库,实现了绝大多数机器学习的算法,有相当多的人在使用,于是我这里很无耻地把machine learning cheat sheet for sklearn搬过来了,原文可以看这里。哈哈,既然讲机器学习,我们就用机器学习的语言来解释一下,这是针对实际应用场景的各种条件限制,对scikit-learn里完成的算法构建的一颗决策树,每一组条件都是对应一条路径,能找到相对较为合适的一些解决方法,具体如下:

    sklearn机器学习算法使用图谱

    首先样本量如果非常少的话,其实所有的机器学习算法都没有办法从里面『学到』通用的规则和模式,so多弄点数据是王道。然后根据问题是有/无监督学习和连续值/离散值预测,分成了分类聚类回归维度约减四个方法类,每个类里根据具体情况的不同,又有不同的处理方法。

    3. 机器学习问题解决思路

    上面带着代价走马观花过了一遍机器学习的若干算法,下面我们试着总结总结在拿到一个实际问题的时候,如果着手使用机器学习算法去解决问题,其中的一些注意点以及核心思路。主要包括以下内容:

    • 拿到数据后怎么了解数据(可视化)
    • 选择最贴切的机器学习算法
    • 定位模型状态(过/欠拟合)以及解决方法
    • 大量极的数据的特征分析与可视化
    • 各种损失函数(loss function)的优缺点及如何选择

    多说一句,这里写的这个小教程,主要是作为一个通用的建议和指导方案,你不一定要严格按照这个流程解决机器学习问题。

    3.1 数据与可视化

    我们先使用scikit-learn的make_classification函数来生产一份分类数据,然后模拟一下拿到实际数据后我们需要做的事情。

    #numpy科学计算工具箱
    import numpy as np
    #使用make_classification构造1000个样本,每个样本有20个feature
    from sklearn.datasets import make_classification
    X, y = make_classification(1000, n_features=20, n_informative=2, 
                               n_redundant=2, n_classes=2, random_state=0)
    #存为dataframe格式
    from pandas import DataFrame
    df = DataFrame(np.hstack((X, y[:, None])),columns = range(20) + ["class"])
    

    我们生成了一份包含1000个分类数据样本的数据集,每个样本有20个数值特征。同时我们把数据存储至pandas中的DataFrame数据结构中。我们取前几行的数据看一眼:

    df[:6]
    

    前6行

    不幸的是,肉眼看数据,尤其是维度稍微高点的时候,很有可能看花了也看不出看不出任何线索。幸运的是,我们对于图像的理解力,比数字好太多,而又有相当多的工具可以帮助我们『可视化』数据分布。

    我们在处理任何数据相关的问题时,了解数据都是很有必要的,而可视化可以帮助我们更好地直观理解数据的分布和特性

    数据的可视化有很多工具包可以用,比如下面我们用来做数据可视化的工具包Seaborn。最简单的可视化就是数据散列分布图和柱状图,这个可以用Seanborn的pairplot来完成。以下图中2种颜色表示2种不同的类,因为20维的可视化没有办法在平面表示,我们取出了一部分维度,两两组成pair看数据在这2个维度平面上的分布状况,代码和结果如下:

    import matplotlib.pyplot as plt
    import seaborn as sns
    #使用pairplot去看不同特征维度pair下数据的空间分布状况
    _ = sns.pairplot(df[:50], vars=[8, 11, 12, 14, 19], hue="class", size=1.5)
    plt.show()
    

    pair_plot下数据分布状况

    我们从散列图和柱状图上可以看出,确实有些维度的特征相对其他维度,有更好的区分度,比如第11维和14维看起来很有区分度。这两个维度上看,数据点是近似线性可分的。而12维和19维似乎呈现出了很高的负相关性。接下来我们用Seanborn中的corrplot来计算计算各维度特征之间(以及最后的类别)的相关性。代码和结果图如下:

    import matplotlib.pyplot as plt
    plt.figure(figsize=(12, 10))
    _ = sns.corrplot(df, annot=False)
    plt.show()
    

    各位特征相关性

    相关性图很好地印证了我们之前的想法,可以看到第11维特征和第14维特征和类别有极强的相关性,同时它们俩之间也有极高的相关性。而第12维特征和第19维特征却呈现出极强的负相关性。强相关的特征其实包含了一些冗余的特征,而除掉上图中颜色较深的特征,其余特征包含的信息量就没有这么大了,它们和最后的类别相关度不高,甚至各自之间也没什么先惯性。

    插一句,这里的维度只有20,所以这个相关度计算并不费太大力气,然而实际情形中,你完全有可能有远高于这个数字的特征维度,同时样本量也可能多很多,那种情形下我们可能要先做一些处理,再来实现可视化了。别着急,一会儿我们会讲到。

    3.2 机器学习算法选择

    数据的情况我们大致看了一眼,确定一些特征维度之后,我们可以考虑先选用机器学习算法做一个baseline的系统出来了。这里我们继续参照上面提到过的机器学习算法使用图谱
    我们只有1000个数据样本,是分类问题,同时是一个有监督学习,因此我们根据图谱里教的方法,使用LinearSVC(support vector classification with linear kernel)试试。注意,LinearSVC需要选择正则化方法以缓解过拟合问题;我们这里选择使用最多的L2正则化,并把惩罚系数C设为10。我们改写一下sklearn中的学习曲线绘制函数,画出训练集和交叉验证集上的得分:

    from sklearn.svm import LinearSVC
    from sklearn.learning_curve import learning_curve
    #绘制学习曲线,以确定模型的状况
    def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                            train_sizes=np.linspace(.1, 1.0, 5)):
        """
        画出data在某模型上的learning curve.
        参数解释
        ----------
        estimator : 你用的分类器。
        title : 表格的标题。
        X : 输入的feature,numpy类型
        y : 输入的target vector
        ylim : tuple格式的(ymin, ymax), 设定图像中纵坐标的最低点和最高点
        cv : 做cross-validation的时候,数据分成的份数,其中一份作为cv集,其余n-1份作为training(默认为3份)
        """
        
        plt.figure()
        train_sizes, train_scores, test_scores = learning_curve(
            estimator, X, y, cv=5, n_jobs=1, train_sizes=train_sizes)
        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        test_scores_mean = np.mean(test_scores, axis=1)
        test_scores_std = np.std(test_scores, axis=1)
    
        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                         train_scores_mean + train_scores_std, alpha=0.1,
                         color="r")
        plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                         test_scores_mean + test_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training score")
        plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
                 label="Cross-validation score")
    
        plt.xlabel("Training examples")
        plt.ylabel("Score")
        plt.legend(loc="best")
        plt.grid("on") 
        if ylim:
            plt.ylim(ylim)
        plt.title(title)
        plt.show()
    
    #少样本的情况情况下绘出学习曲线
    plot_learning_curve(LinearSVC(C=10.0), "LinearSVC(C=10.0)",
                        X, y, ylim=(0.8, 1.01),
                        train_sizes=np.linspace(.05, 0.2, 5))
    

    学习曲线1

    这幅图上,我们发现随着样本量的增加,训练集上的得分有一定程度的下降,交叉验证集上的得分有一定程度的上升,但总体说来,两者之间有很大的差距,训练集上的准确度远高于交叉验证集。这其实意味着我们的模型处于过拟合的状态,也即模型太努力地刻画训练集,一不小心把很多噪声的分布也拟合上了,导致在新数据上的泛化能力变差了。

    3.2.1 过拟合的定位与解决

    问题来了,过拟合咋办?
    针对过拟合,有几种办法可以处理:

    • 增大样本量

    这个比较好理解吧,过拟合的主要原因是模型太努力地去记住训练样本的分布状况,而加大样本量,可以使得训练集的分布更加具备普适性,噪声对整体的影响下降。恩,我们提高点样本量试试:

    #增大一些样本量
    plot_learning_curve(LinearSVC(C=10.0), "LinearSVC(C=10.0)",
                        X, y, ylim=(0.8, 1.1),
                        train_sizes=np.linspace(.1, 1.0, 5))
    

    学习曲线2

    是不是发现问题好了很多?随着我们增大训练样本量,我们发现训练集和交叉验证集上的得分差距在减少,最后它们已经非常接近了。增大样本量,最直接的方法当然是想办法去采集相同场景下的新数据,如果实在做不到,也可以试试在已有数据的基础上做一些人工的处理生成新数据(比如图像识别中,我们可能可以对图片做镜像变换、旋转等等),当然,这样做一定要谨慎,强烈建议想办法采集真实数据。

    • 减少特征的量(只用我们觉得有效的特征)

    比如在这个例子中,我们之前的数据可视化和分析的结果表明,第11和14维特征包含的信息对识别类别非常有用,我们可以只用它们。

    plot_learning_curve(LinearSVC(C=10.0), "LinearSVC(C=10.0) Features: 11&14", X[:, [11, 14]], y, ylim=(0.8, 1.0), train_sizes=np.linspace(.05, 0.2, 5))
    

    特征选择后

    从上图上可以看出,过拟合问题也得到一定程度的缓解。不过我们这是自己观察后,手动选出11和14维特征。那能不能自动进行特征组合和选择呢,其实我们当然可以遍历特征的组合样式,然后再进行特征选择(前提依旧是这里特征的维度不高,如果高的话,遍历所有的组合是一个非常非常非常耗时的过程!!):

    from sklearn.pipeline import Pipeline
    from sklearn.feature_selection import SelectKBest, f_classif
    # SelectKBest(f_classif, k=2) 会根据Anova F-value选出 最好的k=2个特征
    
    plot_learning_curve(Pipeline([("fs", SelectKBest(f_classif, k=2)), # select two features
                                   ("svc", LinearSVC(C=10.0))]), "SelectKBest(f_classif, k=2) + LinearSVC(C=10.0)", X, y, ylim=(0.8, 1.0), train_sizes=np.linspace(.05, 0.2, 5))
    

    自动特征选择

    如果你自己跑一下程序,会发现在我们自己手造的这份数据集上,这个特征筛选的过程超级顺利,但依旧像我们之前提过的一样,这是因为特征的维度不太高。
    从另外一个角度看,我们之所以做特征选择,是想降低模型的复杂度,而更不容易刻画到噪声数据的分布。从这个角度出发,我们还可以有(1)多项式你和模型中降低多项式次数 (2)神经网络中减少神经网络的层数和每层的结点数 ©SVM中增加RBF-kernel的bandwidth等方式来降低模型的复杂度。
    话说回来,即使以上提到的办法降低模型复杂度后,好像能在一定程度上缓解过拟合,但是我们一般还是不建议一遇到过拟合,就用这些方法处理,优先用下面的方法:

    • 增强正则化作用(比如说这里是减小LinearSVC中的C参数)
      正则化是我认为在不损失信息的情况下,最有效的缓解过拟合现象的方法。
    plot_learning_curve(LinearSVC(C=0.1), "LinearSVC(C=0.1)", X, y, ylim=(0.8, 1.0), train_sizes=np.linspace(.05, 0.2, 5))
    

    调整正则化参数

    调整正则化系数后,发现确实过拟合现象有一定程度的缓解,但依旧是那个问题,我们现在的系数是自己敲定的,有没有办法可以自动选择最佳的这个参数呢?可以。我们可以在交叉验证集上做grid-search查找最好的正则化系数(对于大数据样本,我们依旧需要考虑时间问题,这个过程可能会比较慢):

    from sklearn.grid_search import GridSearchCV
    estm = GridSearchCV(LinearSVC(), 
                       param_grid={"C": [0.001, 0.01, 0.1, 1.0, 10.0]})
    plot_learning_curve(estm, "LinearSVC(C=AUTO)", 
                        X, y, ylim=(0.8, 1.0),
                        train_sizes=np.linspace(.05, 0.2, 5))
    print "Chosen parameter on 100 datapoints: %s" % estm.fit(X[:500], y[:500]).best_params_
    

    在500个点得到的结果是:{‘C’: 0.01}
    使用新的C参数,我们再看看学习曲线:
    C取0.01的学习曲线

    对于特征选择的部分,我打算多说几句,我们刚才看过了用sklearn.feature_selection中的SelectKBest来选择特征的过程,也提到了在高维特征的情况下,这个过程可能会非常非常慢。那我们有别的办法可以进行特征选择吗?比如说,我们的分类器自己能否甄别那些特征是对最后的结果有益的?这里有个实际工作中用到的小技巧。

    我们知道:

    • l2正则化,它对于最后的特征权重的影响是,尽量打散权重到每个特征维度上,不让权重集中在某些维度上,出现权重特别高的特征。
    • 而l1正则化,它对于最后的特征权重的影响是,让特征获得的权重稀疏化,也就是对结果影响不那么大的特征,干脆就拿不着权重。

    那基于这个理论,我们可以把SVC中的正则化替换成l1正则化,让其自动甄别哪些特征应该留下权重。

    plot_learning_curve(LinearSVC(C=0.1, penalty='l1', dual=False), "LinearSVC(C=0.1, penalty='l1')", X, y, ylim=(0.8, 1.0), train_sizes=np.linspace(.05, 0.2, 5))
    

    使用l1正则化

    好了,我们一起来看看最后特征获得的权重:

    estm = LinearSVC(C=0.1, penalty='l1', dual=False)
    estm.fit(X[:450], y[:450])  # 用450个点来训练
    print "Coefficients learned: %s" % est.coef_
    print "Non-zero coefficients: %s" % np.nonzero(estm.coef_)[1]
    

    得到结果:

    Coefficients learned: [[ 0.          0.          0.          0.          0.          0.01857999
       0.          0.          0.          0.004135    0.          1.05241369
       0.01971419  0.          0.          0.          0.         -0.05665314
       0.14106505  0.        ]]
    Non-zero coefficients: [5 9 11 12 17 18]
    

    你看,5 9 11 12 17 18这些维度的特征获得了权重,而第11维权重最大,也说明了它影响程度最大。

    3.2.2 欠拟合定位与解决

    我们再随机生成一份数据[1000*20]的数据(但是分布和之前有变化),重新使用LinearSVC来做分类。

    #构造一份环形数据
    from sklearn.datasets import make_circles
    X, y = make_circles(n_samples=1000, random_state=2)
    #绘出学习曲线
    plot_learning_curve(LinearSVC(C=0.25),"LinearSVC(C=0.25)",X, y, ylim=(0.5, 1.0),train_sizes=np.linspace(.1, 1.0, 5))
    

    环形数据的学习曲线

    简直烂出翔了有木有,二分类问题,我们做随机猜测,准确率都有0.5,这比随机猜测都高不了多少!!!怎么办?

    不要盲目动手收集更多资料,或者调整正则化参数。我们从学习曲线上其实可以看出来,训练集上的准确度和交叉验证集上的准确度都很低,这其实就对应了我们说的『欠拟合』状态。别急,我们回到我们的数据,还是可视化看看:

    f = DataFrame(np.hstack((X, y[:, None])), columns = range(2) + ["class"])
    _ = sns.pairplot(df, vars=[0, 1], hue="class", size=3.5)
    

    环形数据可视化

    你发现什么了,数据根本就没办法线性分割!!!,所以你再找更多的数据,或者调整正则化参数,都是无济于事的!!!

    那我们又怎么解决欠拟合问题呢?通常有下面一些方法:

    • 调整你的特征(找更有效的特征!!)
      比如说我们观察完现在的数据分布,然后我们先对数据做个映射:
    # 加入原始特征的平方项作为新特征
    X_extra = np.hstack((X, X[:, [0]]**2 + X[:, [1]]**2))
    
    plot_learning_curve(LinearSVC(C=0.25), "LinearSVC(C=0.25) + distance feature", X_extra, y, ylim=(0.5, 1.0), train_sizes=np.linspace(.1, 1.0, 5))
    

    平方映射后的准确度
    卧槽,少年,这准确率,被吓尿了有木有啊!!!所以你看,选用的特征影响太大了,当然,我们这里是人工模拟出来的数据,分布太明显了,实际数据上,会比这个麻烦一些,但是在特征上面下的功夫还是很有回报的。

    • 使用更复杂一点的模型(比如说用非线性的核函数)
      我们对模型稍微调整了一下,用了一个复杂一些的非线性rbf kernel:
    from sklearn.svm import SVC
    # note: we use the original X without the extra feature
    plot_learning_curve(SVC(C=2.5, kernel="rbf", gamma=1.0), "SVC(C=2.5, kernel='rbf', gamma=1.0)",X, y, ylim=(0.5, 1.0), train_sizes=np.linspace(.1, 1.0, 5))
    

    rbf核SVM学习曲线

    你看,效果依旧很赞。

    3.3 关于大数据样本集和高维特征空间

    我们在小样本的toy dataset上,怎么捣鼓都有好的方法。但是当数据量和特征样本空间膨胀非常厉害时,很多东西就没有那么好使了,至少是一个很耗时的过程。举个例子说,我们现在重新生成一份数据集,但是这次,我们生成更多的数据,更高的特征维度,而分类的类别也提高到5。

    3.3.1 大数据情形下的模型选择与学习曲线

    在上面提到的那样一份数据上,我们用LinearSVC可能就会有点慢了,我们注意到机器学习算法使用图谱推荐我们使用SGDClassifier。其实本质上说,这个模型也是一个线性核函数的模型,不同的地方是,它使用了随机梯度下降做训练,所以每次并没有使用全部的样本,收敛速度会快很多。再多提一点,SGDClassifier对于特征的幅度非常敏感,也就是说,我们在把数据灌给它之前,应该先对特征做幅度调整,当然,用sklearn的StandardScaler可以很方便地完成这一点。

    SGDClassifier每次只使用一部分(mini-batch)做训练,在这种情况下,我们使用交叉验证(cross-validation)并不是很合适,我们会使用相对应的progressive validation:简单解释一下,estimator每次只会拿下一个待训练batch在本次做评估,然后训练完之后,再在这个batch上做一次评估,看看是否有优化。

    #生成大样本,高纬度特征数据
    X, y = make_classification(200000, n_features=200, n_informative=25, n_redundant=0, n_classes=10, class_sep=2, random_state=0)
    
    #用SGDClassifier做训练,并画出batch在训练前后的得分差
    from sklearn.linear_model import SGDClassifier
    est = SGDClassifier(penalty="l2", alpha=0.001)
    progressive_validation_score = []
    train_score = []
    for datapoint in range(0, 199000, 1000):
        X_batch = X[datapoint:datapoint+1000]
        y_batch = y[datapoint:datapoint+1000]
        if datapoint > 0:
            progressive_validation_score.append(est.score(X_batch, y_batch))
        est.partial_fit(X_batch, y_batch, classes=range(10))
        if datapoint > 0:
            train_score.append(est.score(X_batch, y_batch))
        
    plt.plot(train_score, label="train score")
    plt.plot(progressive_validation_score, label="progressive validation score")
    plt.xlabel("Mini-batch")
    plt.ylabel("Score")
    plt.legend(loc='best')  
    plt.show()                     
    

    得到如下的结果:
    SGDClassifier学习曲线

    从这个图上的得分,我们可以看出在50个mini-batch迭代之后,数据上的得分就已经变化不大了。但是好像得分都不太高,所以我们猜测一下,这个时候我们的数据,处于欠拟合状态。我们刚才在小样本集合上提到了,如果欠拟合,我们可以使用更复杂的模型,比如把核函数设置为非线性的,但遗憾的是像rbf核函数是没有办法和SGDClassifier兼容的。因此我们只能想别的办法了,比如这里,我们可以把SGDClassifier整个替换掉了,用多层感知神经网来完成这个任务,我们之所以会想到多层感知神经网,是因为它也是一个用随机梯度下降训练的算法,同时也是一个非线性的模型。当然根据机器学习算法使用图谱,也可以使用**核估计(kernel-approximation)**来完成这个事情。

    3.3.2 大数据量下的可视化

    大样本数据的可视化是一个相对比较麻烦的事情,一般情况下我们都要用到降维的方法先处理特征。我们找一个例子来看看,可以怎么做,比如我们数据集取经典的『手写数字集』,首先找个方法看一眼这个图片数据集。

    #直接从sklearn中load数据集
    from sklearn.datasets import load_digits
    digits = load_digits(n_class=6)
    X = digits.data
    y = digits.target
    n_samples, n_features = X.shape
    print "Dataset consist of %d samples with %d features each" % (n_samples, n_features)
    
    # 绘制数字示意图
    n_img_per_row = 20
    img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row))
    for i in range(n_img_per_row):
        ix = 10 * i + 1
        for j in range(n_img_per_row):
            iy = 10 * j + 1
            img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8))
    
    plt.imshow(img, cmap=plt.cm.binary)
    plt.xticks([])
    plt.yticks([])
    _ = plt.title('A selection from the 8*8=64-dimensional digits dataset')
    plt.show()
    

    数字示意图

    我们总共有1083个训练样本,包含手写数字(0,1,2,3,4,5),每个样本图片中的像素点平铺开都是64位,这个维度显然是没办法直接可视化的。下面我们基于scikit-learn的示例教程对特征用各种方法做降维处理,再可视化。

    随机投射
    我们先看看,把数据随机投射到两个维度上的结果:

    #import所需的package
    from sklearn import (manifold, decomposition, random_projection)
    rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
    
    #定义绘图函数
    from matplotlib import offsetbox
    def plot_embedding(X, title=None):
        x_min, x_max = np.min(X, 0), np.max(X, 0)
        X = (X - x_min) / (x_max - x_min)
    
        plt.figure(figsize=(10, 10))
        ax = plt.subplot(111)
        for i in range(X.shape[0]):
            plt.text(X[i, 0], X[i, 1], str(digits.target[i]),
                     color=plt.cm.Set1(y[i] / 10.),
                     fontdict={'weight': 'bold', 'size': 12})
    
        if hasattr(offsetbox, 'AnnotationBbox'):
            # only print thumbnails with matplotlib > 1.0
            shown_images = np.array([[1., 1.]])  # just something big
            for i in range(digits.data.shape[0]):
                dist = np.sum((X[i] - shown_images) ** 2, 1)
                if np.min(dist) < 4e-3:
                    # don't show points that are too close
                    continue
                shown_images = np.r_[shown_images, [X[i]]]
                imagebox = offsetbox.AnnotationBbox(
                    offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
                    X[i])
                ax.add_artist(imagebox)
        plt.xticks([]), plt.yticks([])
        if title is not None:
            plt.title(title)
    
    #记录开始时间
    start_time = time.time()
    X_projected = rp.fit_transform(X)
    plot_embedding(X_projected, "Random Projection of the digits (time: %.3fs)" % (time.time() - start_time))
    

    结果如下:
    2方向随机投射图

    PCA降维
    在维度约减/降维领域有一个非常强大的算法叫做PCA(Principal Component Analysis,主成分分析),它能将原始的绝大多数信息用维度远低于原始维度的几个主成分表示出来。PCA在我们现在的数据集上效果还不错,我们来看看用PCA对原始特征降维至2维后,原始样本在空间的分布状况:

    from sklearn import (manifold, decomposition, random_projection)
    #TruncatedSVD 是 PCA的一种实现
    X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X)
    #记录时间
    start_time = time.time()
    plot_embedding(X_pca,"Principal Components projection of the digits (time: %.3fs)" % (time.time() - start_time))
    

    得到的结果如下:
    PCA后的可视化

    我们可以看出,效果还不错,不同的手写数字在2维平面上,显示出了区域集中性。即使它们之间有一定的重叠区域。

    如果我们用一些非线性的变换来做降维操作,从原始的64维降到2维空间,效果更好,比如这里我们用到一个技术叫做t-SNE,sklearn的manifold对其进行了实现:

    from sklearn import (manifold, decomposition, random_projection)
    #降维
    tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
    start_time = time.time()
    X_tsne = tsne.fit_transform(X)
    #绘图
    plot_embedding(X_tsne,
                   "t-SNE embedding of the digits (time: %.3fs)" % (time.time() - start_time))
    

    非线性降维手写数字分布图

    我们发现结果非常的惊人,似乎这个非线性变换降维过后,仅仅2维的特征,就可以将原始数据的不同类别,在平面上很好地划分开。不过t-SNE也有它的缺点,一般说来,相对于线性变换的降维,它需要更多的计算时间。也不太适合在大数据集上全集使用。

    3.4 损失函数的选择

    损失函数的选择对于问题的解决和优化,非常重要。我们先来看一眼各种不同的损失函数:

    import numpy as np
    import matplotlib.plot as plt
    # 改自http://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html
    xmin, xmax = -4, 4
    xx = np.linspace(xmin, xmax, 100)
    plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-',
             label="Zero-one loss")
    plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-',
             label="Hinge loss")
    plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-',
             label="Log loss")
    plt.plot(xx, np.exp(-xx), 'c-',
             label="Exponential loss")
    plt.plot(xx, -np.minimum(xx, 0), 'm-',
             label="Perceptron loss")
    
    plt.ylim((0, 8))
    plt.legend(loc="upper right")
    plt.xlabel(r"Decision function $f(x)$")
    plt.ylabel("$L(y, f(x))$")
    plt.show()
    

    得到结果图像如下:

    损失函数对比

    不同的损失函数有不同的优缺点:

    • **0-1损失函数(zero-one loss)**非常好理解,直接对应分类问题中判断错的个数。但是比较尴尬的是它是一个非凸函数,这意味着其实不是那么实用。
    • hinge loss(SVM中使用到的)的健壮性相对较高(对于异常点/噪声不敏感)。但是它没有那么好的概率解释。
    • **log损失函数(log-loss)**的结果能非常好地表征概率分布。因此在很多场景,尤其是多分类场景下,如果我们需要知道结果属于每个类别的置信度,那这个损失函数很适合。缺点是它的健壮性没有那么强,相对hinge loss会对噪声敏感一些。
    • 多项式损失函数(exponential loss)(AdaBoost中用到的)对离群点/噪声非常非常敏感。但是它的形式对于boosting算法简单而有效。
    • **感知损失(perceptron loss)**可以看做是hinge loss的一个变种。hinge loss对于判定边界附近的点(正确端)惩罚力度很高。而perceptron loss,只要样本的判定类别结果是正确的,它就是满意的,而不管其离判定边界的距离。优点是比hinge loss简单,缺点是因为不是max-margin boundary,所以得到模型的泛化能力没有hinge loss强。

    4. 总结

    全文到此就结束了。先走马观花看了一遍机器学习的算法,然后给出了对应scikit-learn的『秘密武器』机器学习算法使用图谱,紧接着从了解数据(可视化)选择机器学习算法定位过/欠拟合及解决方法大量极的数据可视化损失函数优缺点与选择等方面介绍了实际机器学习问题中的一些思路和方法。本文和文章机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾都提及了一些处理实际机器学习问题的思路和方法,有相似和互补之处,欢迎大家参照着看。

    展开全文
  • 图解十大经典机器学习算法入门

    万次阅读 多人点赞 2018-01-30 14:07:46
    弱人工智能近几年取得了重大突破,悄然间,已经成为每个人生活中必不可少的一部分。以我们的智能手机为例,看看到底温...传统的机器学习算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。这篇文章将对

    弱人工智能近几年取得了重大突破,悄然间,已经成为每个人生活中必不可少的一部分。以我们的智能手机为例,看看到底温藏着多少人工智能的神奇魔术。

    下图是一部典型的智能手机上安装的一些常见应用程序,可能很多人都猜不到,人工智能技术已经是手机上很多应用程序的核心驱动力。

    图解十大经典的机器学习算法

    图1 智能手机上的相关应用

    传统的机器学习算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。这篇文章将对常用算法做常识性的介绍,没有代码,也没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的。

    人工智能领域知识面广泛,推荐专注于人工智能在线教育的平台—深蓝学院。深蓝学院由中科院自动化所毕业博士团队创建,虽成立半年,但在业界已颇具口碑。

    决策树

    根据一些 feature(特征) 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

    图解十大经典的机器学习算法

    图2 决策树原理示意图

    随机森林

    在源数据中随机选取数据,组成几个子集:

    图解十大经典的机器学习算法

    图3-1 随机森林原理示意图

    S矩阵是源数据,有1-N条数据,A、B、C 是feature,最后一列C是类别:

    图解十大经典的机器学习算法

    由S随机生成M个子矩阵:

    图解十大经典的机器学习算法

    这M个子集得到 M 个决策树:将新数据投入到这M个树中,得到M个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果。

    图解十大经典的机器学习算法

    图3-2 随机森林效果展示图

    逻辑回归

    当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。

    图解十大经典的机器学习算法

    图4-1 线性模型图

    所以此时需要这样的形状的模型会比较好:

    图解十大经典的机器学习算法

    图4-2

    那么怎么得到这样的模型呢?

    这个模型需要满足两个条件 “大于等于0”,“小于等于1” 。大于等于0 的模型可以选择绝对值,平方值,这里用指数函数,一定大于0;小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了。

    图解十大经典的机器学习算法

    图4-3

    再做一下变形,就得到了 logistic regressions 模型:

    图解十大经典的机器学习算法

    图4-4

    通过源数据计算可以得到相应的系数了:

    图解十大经典的机器学习算法

    图4-5

    图解十大经典的机器学习算法

    图4-6 LR模型曲线图

    支持向量机

    要将两类分开,想要得到一个超平面,最优的超平面是到两类的 margin 达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好。

    图解十大经典的机器学习算法

    图5 分类问题示意图

    将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1:

    图解十大经典的机器学习算法

    点到面的距离根据图中的公式计算:

    图解十大经典的机器学习算法

    所以得到total margin的表达式如下,目标是最大化这个margin,就需要最小化分母,于是变成了一个优化问题:

    图解十大经典的机器学习算法

    举个例子,三个点,找到最优的超平面,定义了 weight vector=(2,3)-(1,1):

    图解十大经典的机器学习算法

    得到weight vector为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。

    图解十大经典的机器学习算法

    a求出来后,代入(a,2a)得到的就是support vector,a和w0代入超平面的方程就是support vector machine。

    朴素贝叶斯

    举个在 NLP 的应用:给一段文字,返回情感分类,这段文字的态度是positive,还是negative:

    图解十大经典的机器学习算法

    图6-1 问题案例

    为了解决这个问题,可以只看其中的一些单词:

    图解十大经典的机器学习算法

    这段文字,将仅由一些单词和它们的计数代表:

    图解十大经典的机器学习算法

    原始问题是:给你一句话,它属于哪一类 ?通过bayes rules变成一个比较简单容易求得的问题:

    图解十大经典的机器学习算法

    问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率。例子:单词“love”在positive的情况下出现的概率是 0.1,在negative的情况下出现的概率是0.001。

    图解十大经典的机器学习算法

    图6-2 NB算法结果展示图

    K近邻算法

    给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类。

    例子:要区分“猫”和“狗”,通过“claws”和“sound”两个feature来判断的话,圆形和三角形是已知分类的了,那么这个“star”代表的是哪一类呢?

    图解十大经典的机器学习算法

    图7-1 问题案例

    k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫。

    图解十大经典的机器学习算法

    图7-2 算法步骤展示图

    K均值算法

    先要将一组数据,分为三类,粉色数值大,黄色数值小 。最开始先初始化,这里面选了最简单的 3,2,1 作为各类的初始值 。剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别。

    图解十大经典的机器学习算法

    图8-1 问题案例

    分好类后,计算每一类的平均值,作为新一轮的中心点:

    图解十大经典的机器学习算法

    图8-2

    几轮之后,分组不再变化了,就可以停止了:

    图解十大经典的机器学习算法

    图解十大经典的机器学习算法

    图8-3 算法结果展示

    Adaboost

    Adaboost 是 Boosting 的方法之一。Boosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。

    下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度。

    图解十大经典的机器学习算法

    图9-1 算法原理展示

    Adaboost 的例子,手写识别中,在画板上可以抓取到很多features(特征),例如始点的方向,始点和终点的距离等等。

    图解十大经典的机器学习算法

    图9-2

    training的时候,会得到每个feature的weight(权重),例如2和3的开头部分很像,这个feature对分类起到的作用很小,它的权重也就会较小。

    图解十大经典的机器学习算法

    图9-3

    而这个alpha角就具有很强的识别性,这个feature的权重就会较大,最后的预测结果是综合考虑这些feature的结果。

    图解十大经典的机器学习算法

    图9-4

    神经网络

    Neural Networks适合一个input可能落入至少两个类别里:NN由若干层神经元,和它们之间的联系组成。 第一层是input层,最后一层是output层。在hidden层和output层都有自己的classifier。

    图解十大经典的机器学习算法

    图10-1 神经网络结构

    input输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output层的节点上的分数代表属于各类的分数,下图例子得到分类结果为class 1;同样的input被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和bias,这也就是forward propagation。

    图解十大经典的机器学习算法

    图10-2 算法结果展示

    马尔科夫

    Markov Chains由state(状态)和transitions(转移)组成。例子,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到markov chains。

    步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率。

    图解十大经典的机器学习算法

    图11-1 马尔科夫原理图

    这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如the后面可以连接的单词,及相应的概率。

    图解十大经典的机器学习算法

    图11-2 算法结果展示

    上述十大类机器学习算法是人工智能发展的践行者,即使在当下,依然在数据挖掘以及小样本的人工智能问题中被广泛使用。


    展开全文
  • AI:人工智能领域机器学习算法总结(持续更新)十一大类机器学习算法详细分类之详细攻略 目录 Machine Learning Algorithms 1、Decision Tree决策树相关 Cassification and Regression Tree (CART) ...

    AI:人工智能领域机器学习算法总结(持续更新)十一大类机器学习算法详细分类之详细攻略

     

     

     

     

     

     

    目录

    Machine Learning Algorithms

    1、Decision Tree决策树相关

    Cassification and Regression Tree (CART)

    Iterative Dichotomiser 3 (ID3)

    C4.5

    C5.0

    Chi-squared Automatic Ineraction Detection (CHAID)

    Decision Stump

    Conditional Decision Trees

    M5

    2、Bayesian贝叶斯相关

    Naive Bayes

    Averaged One-Dependence Estimators (AODE)

    Bayesian Belief Network (BBN)

    Gaussian Naive Bayes

    Multinomial Naive Bayes

    Bayesian Network (BN)

    3、Regression回归相关

    Linear Regression

    Ordinary Least Squares Regression (OLSR)

    Stepwise Regression

    Multivariate Adaptive Regression Splines (MARS)

    Locally Estimated Scatterplot Smoothing (LOESS)

    Logistic Regression

    4、Instance Based基于实例相关

    k-Nearest Neighbour (kNN)

    Learning Vector Quantization (LVQ)

    Self-Organizing Map (SOM)

    Locally Weighted Learning (LWL)

    5、Ensemble集成学习相关

    Random Forest

    Gradient Boosting Machines (GBM)

    Boosting

    Bootstrapped Aggregation (Bagging)

    AdaBoost

    Stacked Generalization (Blending)

    Gradient Boosted Regression Trees (GBRT)

    6、Rule System规则相关

    Cubist

    One Rule (OneR)

    Zero Rule (ZeroR)

    Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

    7、Regularization正则化相关

    Ridge Regression

    Least Absolute Shrinkage and Selection Operator (LASSO)

    Elastic Net

    Least Angle Regression (LARS)

    8、Dimensionality Reduction降维相关

    Principal Component Analysis (PCA)

    Partial Least Squares Regression (PLSR)

    Sammon Mapping

    Multidimensional Scaling (MDS)

    Projection Pursuit

    Principal Component Regression (PCR)

    Partial Least Squares Discriminant Analysis

    Mixture Discriminant Analysis (MDA)

    Quadratic Discriminant Analysis (QDA)

    Regularized Discriminant Analysis (RDA)

    Flexible Discriminant Analysis (FDA)

    Linear Discriminan Analysis (LDA)

    9、Clustering聚类相关

    k-Means

    k-Medians

    Expectation Maximization

    Hirarhical Clusteingg

    10、Neural Networks神经网络相关

    Radial Basis Function Network (RBFN)

    Perceptron

    Back- Propagation

    Hopfield Network

    11、Deep Learning深度学习相关

    Deep Boltzmann Machine (DBM)

    Deep Belief Networks (DBN)

    Convolutional Neural Network (CNN)

    Stacked Auto- Encoders


     

     

    Machine Learning Algorithms

     

    1、Decision Tree决策树相关

    Cassification and Regression Tree (CART)

    Iterative Dichotomiser 3 (ID3)

    C4.5

    C5.0

    Chi-squared Automatic Ineraction Detection (CHAID)

    Decision Stump

    Conditional Decision Trees

    M5

     

     

     

    2、Bayesian贝叶斯相关

    Naive Bayes

    Averaged One-Dependence Estimators (AODE)

    Bayesian Belief Network (BBN)

    Gaussian Naive Bayes

    Multinomial Naive Bayes

    Bayesian Network (BN)

     

     

    3、Regression回归相关

    Linear Regression

    Ordinary Least Squares Regression (OLSR)

    Stepwise Regression

    Multivariate Adaptive Regression Splines (MARS)

    Locally Estimated Scatterplot Smoothing (LOESS)

    Logistic Regression

     

     

    4、Instance Based基于实例相关

    k-Nearest Neighbour (kNN)

    Learning Vector Quantization (LVQ)

    Self-Organizing Map (SOM)

    Locally Weighted Learning (LWL)

     

     

    5、Ensemble集成学习相关

    Random Forest

    Gradient Boosting Machines (GBM)

    Boosting

    Bootstrapped Aggregation (Bagging)

    AdaBoost

    Stacked Generalization (Blending)

    Gradient Boosted Regression Trees (GBRT)

     

     

    6、Rule System规则相关

    Cubist

    One Rule (OneR)

    Zero Rule (ZeroR)

    Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

     


     

    7、Regularization正则化相关

    Ridge Regression

    Least Absolute Shrinkage and Selection Operator (LASSO)

    Elastic Net

    Least Angle Regression (LARS)

     

     

    8、Dimensionality Reduction降维相关

    Principal Component Analysis (PCA)

    Partial Least Squares Regression (PLSR)

    Sammon Mapping

    Multidimensional Scaling (MDS)

    Projection Pursuit

    Principal Component Regression (PCR)

    Partial Least Squares Discriminant Analysis

    Mixture Discriminant Analysis (MDA)

    Quadratic Discriminant Analysis (QDA)

    Regularized Discriminant Analysis (RDA)

    Flexible Discriminant Analysis (FDA)

    Linear Discriminan Analysis (LDA)


     

    9、Clustering聚类相关

    k-Means

    k-Medians

    Expectation Maximization

    Hirarhical Clusteingg

     

     

    10、Neural Networks神经网络相关

    Radial Basis Function Network (RBFN)

    Perceptron

    Back- Propagation

    Hopfield Network

     

     

    11、Deep Learning深度学习相关

    Deep Boltzmann Machine (DBM)

    Deep Belief Networks (DBN)

    Convolutional Neural Network (CNN)

    Stacked Auto- Encoders

     

     

     

     

     

     

     

     

     

    展开全文
  • 机器学习算法概述 “机器智能是人类永远需要的一项发明。”— Nick Bostrom. ​ 如果您可以回顾几年前的AI并将其与现在的AI进行比较,您会惊讶地发现AI的发展速度随着时间的增长呈指数级增长。 ​ 它已扩展到...
  • Python机器学习算法和实践

    千人学习 2018-06-22 15:49:25
    机器学习算法实战教程,包括各种常用机器学习算法,该课程教学视频以手写形式+普通话授课(类似斯坦福大学授课方式),+Python代码。经典算法进行原理推导与案例实战双管齐下,具体课程内容包括K-Means算法、KNN算法...
  • 机器学习算法选取

    万次阅读 2019-04-23 16:56:06
    下面代码选取了五种主流机器学习算法,包括SVM、KNN、决策树、逻辑回归、朴素贝叶斯,当然也包括集成学习算法,Bagging、Adaboost、GBDT和随机森林。编写一个通用函数分别构建上述模型,并作出ROC曲线进行模型评估。...
  • 机器学习算法简要

    万次阅读 2018-11-20 11:33:45
    机器学习算法很多,按照是否有标注,以及要解决的问题特点,按照如下规则分类。 有监督学习 分类问题 决策树: 支持向量机 朴素贝叶斯:条件概率 集成学习(多个分类算法的结合) Boosting:弱学习提升为强学习 ...
  • 机器学习算法基础

    万人学习 2018-12-18 14:02:49
    30个小时知识无盲区课程,覆盖十多个行业应用。
  • 机器学习算法背后的数学原理

    千次阅读 多人点赞 2020-09-06 09:29:04
    不同的机器学习算法是如何从数据中学习并预测未知数据的呢? ​ 机器学习算法的设计让它们从经验中学习,当它们获取越来越多的数据时,性能也会越来越高。每种算法都有自己学习和预测数据的思路。在本文中,我们将...
  • 人工智能之机器学习算法的介绍

    千人学习 2017-02-28 17:24:05
    机器学习算法入门教程,主要介绍人工智能机器学习常见算法,包括决策树、基于概率论的分类方法:朴素贝叶斯、Logistic回归、支持向量机、第利用AdaBoost元算法提高分类性能。
  • 阿里云机器学习算法应用实践

    万人学习 2016-10-27 14:30:17
    人工智能的商业化应用是下一个风口,阿里云在机器学习算法方面有许多沉淀。本次分享首先是介绍阿里云机器学习PAI,接着会在上面搭建真实的案例,包括心脏病预测、新闻分类等场景。
  • 机器学习算法地图

    千次阅读 多人点赞 2018-07-05 12:10:07
    其它机器学习、深度学习算法的...文章《机器学习算法地图》系SIGAI原创,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。如需获取原版PDF全文,可搜索关注VX公众号SIGAICN。(https://0x9.me/dxRg5) ...
  •  这部分不是要介绍哪个具体的机器学习算法,前面做了一些机器学习的算法,本人在学习的过程中也去看别人写的材料,但是很多作者写的太难懂,或者就是放了太多的公式,所以我就想我来写点这方面的材料可以给大家参照...
  • 机器学习算法入门介绍

    千次阅读 2018-07-09 10:59:12
    2.机器学习算法分类 3.机器学习模型是什么 我们做什么? 分析大量数据 分析具体业务 应用常见算法 特征工程、调参数、优化 我们应该怎么做? 学会分析问题,使用机器学习算法的目的,想要算法完成何种任务...
  • 常见机器学习算法背后的数学

    千次阅读 2020-08-05 08:46:20
    不同的机器学习算法是如何从数据中学习并预测未见数据的呢? 机器学习算法是这样设计的,它们从经验中学习,当它们获取越来越多的数据时,性能就会提高。每种算法都有自己学习和预测数据的方法。在本文中,我们将介绍...
  • 【机器学习】机器学习算法之旅

    千次阅读 2018-05-19 20:57:56
    在这篇文章中,我们将介绍最流行的机器学习算法。 浏览该领域的主要算法以了解可用的方法是有用的。 有很多算法可用,当算法名称被抛出时,它会感到压倒性的,并且您只需要知道它们是什么以及它们在哪里适合。 我想...
  • 机器学习算法之分类

    万次阅读 2018-05-24 19:35:32
    机器学习算法是一类能从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法 [1]。机器学习(Machine Learning)是人工智能(AI)中很重要的一部分,因为在目前的实践过程中,大多数人工智能问题是由机...
  • 机器学习算法总结

    千次阅读 2017-03-22 11:04:14
    机器学习 算法 神经网络 支持向量机
  • 机器学习算法 综述(入门)

    万次阅读 多人点赞 2019-06-16 21:59:28
    学习了一个学期机器学习算法,从什么都不懂到对十个机器学习算法有一定的了解,下面总结一下十大机器学习算法,从算法的概念、原理、优点、缺点、应用等方面来总结,如果有错误的地方,欢迎指出。 目录 1.决策树...
  • 机器学习算法与Python学习

    千次阅读 2018-03-06 14:14:56
    机器学习算法与Python学习 机器学习系列阶段总结! 1. 机器学习(1)之入门概念 2. 机器学习(2)之过拟合与欠拟合 3. 机器学习(3)之最大似然估计 4. 机器学习(4)之线性判别式(附Python源码) 5. 机器...
  • 8种常见机器学习算法比较

    万次阅读 多人点赞 2016-10-26 20:35:41
    机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM...
  • 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后...
  • 在本指南中,我们将通过现代机器学习算法进行实用,简洁的介绍。虽然存在其他这样的列表,但它们并没有真正解释每种算法的实际权衡,我们希望在这里做。我们将根据我们的经验讨论每种算法的优缺点。 对机器学习算法...
  • 机器学习算法源码

    千次阅读 2017-07-17 12:47:29
    《机器学习实战》中的的机器学习算法,使用Python源码相关文章: 【关联规则】Apriori算法分析与Python代码实现 【关联规则】Apriori算法分析与Python代码实现 【关联规则】FP-Tree算法分析与Python代码实现 ...
  • 机器学习算法一览表(中英对照)附opencv机器学习模块
  • 机器学习算法中的SVM和聚类算法

    千次阅读 2019-03-15 16:36:13
    相信大家都知道,机器学习中有很多的算法,我们在进行机器学习知识...提道机器学习算法就不得不说一说SVM,这种算法就是支持向量机,而支持向量机算法是诞生于统计学习界,这也是机器学习中的经典算法,而支持向量机...
  • 「本文的目的,是务实、简洁地盘点一番当前机器学习算法」。文中内容结合了个人在查阅资料过程中收集到的前人总结,同时添加了部分自身总结,在这里,依据实际使用中的经验,将对此模型优缺点及选择详加讨论。 主要...
  • 机器学习算法工程师笔试及面试总结

    千次阅读 多人点赞 2018-07-06 15:27:02
    一、机器学习算法工程师笔试题 机器学习笔试题目—-网易2016春招 BAT机器学习面试1000题系列 机器学习-算法工程师 -面试/笔试准备-重要知识点梳理 总结一点面试问题--算法工程师(机器学习) 2018 年大疆机器...
  • 系统的学习机器学习课程让我觉得受益匪浅,有些基础问题的认识我觉得是非常有必要的,比如机器学习算法的类别。 为什么这么说呢?我承认,作为初学者,可能无法在初期对一个学习的对象有全面而清晰的理解和审视,...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 85,083
精华内容 34,033
关键字:

机器学习算法