精华内容
下载资源
问答
  • 在MlMO-OFDM系统中,每个接收天线上的信号都是多个发送天线信号的叠加,再加上多径的影响,使得帧同步比一般OFDM系统更加困难,为此提出了一种改进的用于M1MO-OFDM帧同步和载波频偏估计的正交帧头结构。通过在时域...
  • 正交频分复用[1]OFDM(Orthogonal Frequency Division Multiplexing)技术作为4G通信系统的物理层调制方式,具有抗频率选择性衰落、抗载波间干扰(ICI)、频谱利用率高以及克服符号间干扰(ISI)等优点。到目前为止...

    正交频分复用[1]OFDM(Orthogonal Frequency Division Multiplexing)技术作为4G通信系统的物理层调制方式,具有抗频率选择性衰落、抗载波间干扰(ICI)、频谱利用率高以及克服符号间干扰(ISI)等优点。到目前为止,OFDM 已经被广泛应用于欧洲的广播电视系统、ADSL、数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV) 等领域,其在无线局域网(WLAN)的应用也是研究的热点问题之一。
         根据IEEE 802.11a标准规定,在52个子载波中插入了4个导频符号。因其信息量较小,而且提取过程繁琐,所以在同步过程中,较少采用导频信息,而是利用数量较多信息量较大的训练符号[2]。
        合理的帧检测过程最大程度地滤除了前导训练符号前的噪声信息,可以较为准确地找到每个OFDM帧的起始和结束位置,精确地提取出训练符号的信息,实现准确的定时和频率偏差估计。本文采用一种改进的延时相关帧检测算法,它利用短训练序列的长度信息和相关特性,与常用算法对比,此算法能够较准确地找到帧的起始位置,并具备FPGA硬件实现的合理性。
    1 IEEE 802.11a物理层数据单帧结构
        IEEE 802.11a的帧结构包括10个周期重复的短训练符号、2个周期重复的长训练符号、SIGNAL域以及数据域。详细帧结构如图1所示,其中G1、G2、G3为循环前缀。
        帧检测利用了帧结构中经过精心设计的短训练符号。根据协议规定[3],每个短训练符号包含16个时域样值,实际中一般都是将它们的时域样值存储在片内存储器中,发送时只需按规定时序重复读出,加在长训练序列前。短训练符号的周期性使其具有理想的相关特性,本文采用的延时相关帧检测算法就是利用前导结构中10个短训练序列的相关性对接收数据的训练符号位置信息进行提取的过程。
    2 OFDM帧检测算法
      常用的帧检测算法是利用短训练符号的长度及其相关特性,将通过算法后的判决值与规定阈值进行比较判断帧检测的情况。若判决值大于或等于规定阈值,则判定检测到帧头;若判决值小于规定阈值,则判定为噪声或无信号,未检测到帧头,即:
        
    时,窗口A的能量最大。当数据经过窗口A到达窗口B时,窗口B的能量开始增加,而窗口A的能量不变。数据分组从窗口A到窗口B有一个从小到大再到小的变化过程,故取判决值:
        

        图4中,横坐标为接收信号采样点数,纵坐标为算法判决值的大小。当采样点在0~800时,接收数据为噪声信息。由于噪声的相似度很低,其相关性很差,相关运算得到的结果较小,故判决值较小,基本都在0.5以下。当采样点在800~1 600时,分组数据到来,由于分组数据的短训练序列具有周期性,故其具有理想的相关性,若没有噪声干扰,判决值应保持为1。在加入噪声干扰的情况下,判决值在很短的时间内增加到较大的数值,并在判决值1上下小范围浮动。
        从仿真结果可以看出,噪声的判决值和分组数据的判决值相差明显,所以阈值可以选在0.5~0.8之间。相比以上两种算法,延时相关算法精度较高,且阈值选取容易了很多。
    3.3 硬件实现和结果分析
        本设计使用了XILINX公司的Spartan-3E开发板,接收数据由MATLAB仿真的IEEE 802.11a OFDM发送系统产生,将其转换为二进制数据并存储于IP核存储器中,进行算法硬件下载实现时,可以通过代码直接调用IP核中的数据作为接收数据。基于FPGA的算法设计中采用了模块化的编程思想,根据延时相关算法的流程图,将算法一一模块化。接收数据首先进入数据控制模块,控制模块将数据分流为两路相差32个时间长度的数据,分别送入运算模块。经过延时相关运算和能量计算,运算模块将相关运算与能量计算的比值送入判决模块,最终判决模块根据判决值与阈值的比较结果,向数据控制模块反馈使能信号,控制数据的输出与否。这种模块分工的思想便于程序的修改,尤其便于阈值的选取。通过ISE软件中的功能仿真结果对比,最终将阈值选择为0.6,并要求判决值保持48个长度,这是为了避免实际中的突发较大功率噪声对结果的干扰。功能仿真的结果如图5所示。输入数据结构如图5所示,分为实部(datainRe)和虚部(datainIm)两部分。410 ns前为加入的噪声序列,410 ns后为数据帧序列。

     


        通过定义管脚,生成比特流,将其下载到Spartan-3E开发板中,使用在线逻辑分析仪(chipscope)观察管脚输出,如图7所示。在实际硬件中,帧检测模块能够完成帧检测过程,并保持一定精度,其波形与功能仿真一致。

        从功能仿真和硬件输出来看,延时相关算法帧检测误差较小,虽然由于模块设计产生了一定的延时,但检测精度得到了改进,阈值波动范围小,容易选择,且能够在硬件上实现。总体来讲,延时相关算法是一种可行的帧检测算法。
        帧检测作为接收机同步的第一步,有着举足轻重的意义,其准确性直接影响接收机以及整个OFDM系统的性能。根据IEEE 802.11a标准规定,帧检测算法一般不利用导频,多数情况下是利用前导结构中的短训练符号进行。延时相关算法合理利用了帧结构中的短训练符号,通过与两种常用帧检测算法的对比,这种算法阈值选取范围小,易于硬件实现;提取精度高,没有增加过多的运算量,有助于节省硬件资源。FPGA硬件平台的功能仿真充分验证了延时相关算法的优越性,它可以较为精确地找到接收信号数据分组的开头部分,是一种较为理想的帧检测算法。

    展开全文
  • LTE物理传输资源(1)-帧结构OFDM符号

    万次阅读 多人点赞 2016-05-04 21:50:01
    写完上一篇博文《LTE小区搜索-物理小区ID和同步信号PSS、SSS》之后,本想继续写系统信息相关内容的,但发现写的...关于帧结构,之前的博文里零散的提到过一些,比如博文《LTE-TDD随机接入过程(2)-前导码Preamble的格

    写完上一篇博文《LTE小区搜索-物理小区ID和同步信号PSS、SSS》之后,本想继续写系统信息相关内容的,但发现写的时候必不可少的要涉及PDCCH、PHICH等内容,而这些内容目前还没有系统的写。所以接下来的几篇博文,将写一些需要掌握的LTE背景知识。

    本文描述的是LTE的帧结构相关内容。

    关于帧结构,之前的博文里零散的提到过一些,比如博文《LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置》,里面在讲解前导码格式的时候,提到了每个子帧的长度是30720Ts,以及不同的上下行子帧配置时,下行、特殊子帧、上行的配比。本文综合整理一下这些内容。

    1.基本时间单位

    在LTE里,无论是FDD还是TDD,它的时间基本单位都是采样周期Ts,值固定等于:


    其中,15000表示子载波的间隔是15KHz,2048表示采样点个数。除了15KHz的子载波间隔之外,3GPP协议实际上还定义了一个7.5KHz的载波间隔。这种降低的子载波间隔是专门针对MBSFN(Multimedia Broadcast multicast service Single Frequency Network)的多播/广播传输的,且在R9协议中只是部分给出了实现,因此本博客除非特别说明,都将默认子载波间隔是15KHz。

    2.FDD帧结构

    协议上对LTE-FDD的帧结构模式,一般又称为Frame structure type 1,这里为了指代明确,还是称呼为FDD帧结构。

    在FDD里,每个无线帧(radio frame)的长度Tf=307200*Ts=10ms,由20个时隙(slot)组成,每个时隙长度Tslot=15360*Ts=0.5ms,按照0到19进行周期循环编号。每个子帧(subframe)由2个连续的时隙组成,按照0到9进行周期循环编号,因此1个无线帧由10个子帧组成,无线帧的周期是1024。

    在FDD里,每个无线帧的10个子帧都可以传输下行,也都可以传输上行,上下行在不同的频域中分别进行。在半双工的FDD模式下,UE不能在同一个子帧里既发送数据又接收数据,而在全双工的FDD模式下,UE则没有这个限制,在同个子帧里可以同时发送和接收数据。

    下面是FDD制式的帧结构示意图。


    3.TDD帧结构

    协议上对LTE-TDD的帧结构模式,一般又称为Frame structure type 2,这里为了指代明确,还是称呼为TDD帧结构。

    在TDD里,每个无线帧的长度Tf=307200*Ts=10ms,由2个“半帧”组成,每个“半帧”的长度等于5ms,由5个连续的子帧组成,每个子帧长度等于1ms。除了特殊子帧,每个子帧由2个连续的时隙组成。特殊子帧固定在1、6号子帧,由DwPTS(下行导频时隙)、GP、UpPTS(上行导频时隙)组成。同样的,1个无线帧由10个子帧组成,无线帧的周期是1024。

    下面是TDD制式的帧结构示意图。



    相同的子帧在不同的上下行配置(Uplink-downlink configuration)时,可能会发送不同方向的数据。下图是各种上下行子帧配置下,所有子帧发送数据的方向。D表示该子帧只能发送下行数据,U表示该子帧只能发送上行数据,S表示特殊子帧,一般用作下行数据发送。UL/DL configuration参数来自于RRC层的SIB1消息(36331协议),具体参数路径是:SystemInformationBlockType1->tdd-Config->TDD-Config->subframeAssignment,详见博文《LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置》。


    下行-上行切换周期与10ms内特殊子帧的个数有关,计算方式参考下图。

    本质上DwPTS可作为一个常规的下行子帧使用,只是调度的时候有效的RB仅为普通下行子帧的0.75倍,因此传输的数据量较小。一般在讲上下行子帧配比的时候,是将特殊子帧作为下行子帧考虑的。下图所示的就是TDD制式下,各种子帧上下行配比关系。而UpPTS由于时间太短,不用于数据传输,可用作随机接入PRACH(还记得随机接入的DCI格式4吗?请再看一遍文章《LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置》)。


    特殊子帧的时长与特殊子帧配置相关,如下图所示。关于特殊子帧配置(Special subframe configuration参数),参考博文《LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置》。下文会结合OFDM符号长度再说这个表格。


    4.OFDM符号

    LTE的每个时隙由包括循环前缀CP)在内的一定数量的OFDM符号组成。除了CP之外的OFDM符号时间称为有用的OFDM符号时间,时长为Tu=2048*Ts=66.7us。若系统是Normal CP类型(普通CP类型),则每个时隙包括7个OFDM符号,若是Extended CP类型(扩展CP类型),则每个时隙包括6个OFDM符号。对于Normal CP类型,每个时隙第一个OFDM符号前部的CP长度是160*Ts,其他的CP长度是144*Ts,第一个符号长度不同的原因仅仅在于为了填满0.5ms的时隙。对于Extended CP类型,每个CP的长度是512*Ts。如下图所示。


    我在博文《LTE小区搜索-物理小区ID和同步信号PSS、SSS》的末尾给出了2张PSS和SSS的位置图,从图中可以看到,下行CP类型是Normal CP类型。从该博文中,也可以知道,检测到PSS/SSS同步信号之后,UE就获知了下行CP类型,而上行CP类型是RRC的ul-CyclicPrefixLength字段下发给UE的,如下图所示。

    5.特殊子帧占用的OFDM符号个数

    结合前文特殊子帧中DwPTS、UpPTS的长度以及每个OFDM符号的长度,可以得到特殊子帧中各部分占用的OFDM符号个数,如下图所示(只列出部分配置,其他配置类似可以画出)。



    关于特殊子帧中UpPTS占用OFDM符号个数的计算

    对于上下行都是Normal CP来说,因为UpPTS肯定不在时隙的第一个符号,因此对于UpPTS来说,每个OFDM符号占用的时长是2192Ts(2048+144)。所以:对于时长是2192Ts的UpPTS,那么只需要1个OFDM符号即可传输;对于时长是4384Ts的UpPTS,那么需要2个OFDM符号即可传输。同样的,对于上下行都是Extended CP来说,对于时长是2560Ts的UpPTS,那么只需要1个OFDM符号即可传输;对于时长是5120Ts的UpPTS,那么需要2个OFDM符号即可传输。

    6.PSS所处的OFDM符号位置

    协议36213提到:如果特殊子帧配置是0、5,且下行CP类型是Normal,或者特殊子帧配置是0、4,且下行CP类型是Extended,那么不能在该特殊子帧中发送PDSCH数据

    For the special subframe configurations 0 and with normal downlink CP or configurations 0 and 4 with extended downlink CP, there shall be no PDSCH transmission in  DwPTS of the special subframe.

    下面分析一下为什么会有这个结论,原因是什么。

    下图是同步信号PSS和SSS的一种位置示意图。从图中可以看到,这是个TDD制式,且下行CP类型是Normal CP类型。SSS位于子帧0、5的最后一个OFDM符号,无论是哪种上下行子帧配置,0、5子帧始终是下行子帧。PSS位于子帧1、6的第三个符号,而1、6子帧始终是特殊子帧,那么这里需要确保PSS不会落到GP甚至UpPTS中。

    从前文的“特殊子帧时间长度”表格中可以看到,DwPTS的长度是由特殊子帧配置(Special subframe configuration)决定的,范围从6592Ts26336Ts不等。而对于Normal CP时,每个时隙前三个OFDM符号的总长度(含循环前缀CP)=(160+2048+144+2048+144+2048)Ts=6592Ts。也就是说,无论是哪种特殊子帧配置,位于特殊子帧第三个符号上的PSS,总会落在DwPTS中,而不会落到GP甚至UpPTS中。

    那么问题来了,如果特殊子帧配置是0或5,且下行是普通CP类型时,DwPTS的时长就是6592Ts(见前文表格),那么这个时候就没有办法在特殊子帧中发送下行数据了。所以,有时候更换了特殊子帧配置,也会影响下行的流量(还记得GAP配置也会影响下行流量吗?参考《LTE-TDD资源调度(3)-测量GAP》)。

    再来看看扩展CP的情况。当下行CP是扩展CP时,DwPTS的长度范围从7680Ts25600Ts不等。每个时隙前三个OFDM符号的总长度(含循环前缀CP)=(512+2048)*3Ts=7680Ts。同样的,此时无论是哪种特殊子帧配置,位于特殊子帧第三个符号上的PSS,也总会落在DwPTS中,而不会落到GP甚至UpPTS中。同理,如果特殊子帧配置是0或4,且下行是扩展CP类型时,DwPTS的时长是7680Ts(见前文表格),这个时候是没有办法在特殊子帧中发送下行数据的

    参考文献:

    (1)3GPP TS 36.211 V9.1.0 (2010-03) Physical Channels and Modulation

    (2)《4G LTE/LTE-Advanced for Mobile Broadband》

    (3)http://www.sharetechnote.com/

    (4)3GPP TS 36.213 V9.3.0 (2010-09) Physical layer procedures

    展开全文
  • ofdm基本原理及lte帧结构综述

    千次阅读 2019-04-10 20:55:31
  • LTE通讯相关1:-帧结构OFDM符号

    千次阅读 2019-10-09 17:07:08
    关于帧结构,之前的博文里零散的提到过一些,比如博文《 LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置 》,里面在讲解前导码格式的时候,提到了每个子帧的长度是30720Ts,以及不同的上下行子帧配置时,...
    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
    本文链接: https://blog.csdn.net/m_052148/article/details/51305338

    写完上一篇博文《LTE小区搜索-物理小区ID和同步信号PSS、SSS》之后,本想继续写系统信息相关内容的,但发现写的时候必不可少的要涉及PDCCH、PHICH等内容,而这些内容目前还没有系统的写。所以接下来的几篇博文,将写一些需要掌握的LTE背景知识。

    本文描述的是LTE的帧结构相关内容。

    关于帧结构,之前的博文里零散的提到过一些,比如博文《LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置》,里面在讲解前导码格式的时候,提到了每个子帧的长度是30720Ts,以及不同的上下行子帧配置时,下行、特殊子帧、上行的配比。本文综合整理一下这些内容。

    1.基本时间单位

    在LTE里,无论是FDD还是TDD,它的时间基本单位都是采样周期Ts,值固定等于:


    其中,15000表示子载波的间隔是15KHz,2048表示采样点个数。除了15KHz的子载波间隔之外,3GPP协议实际上还定义了一个7.5KHz的载波间隔。这种降低的子载波间隔是专门针对MBSFN(Multimedia Broadcast multicast service Single Frequency Network)的多播/广播传输的,且在R9协议中只是部分给出了实现,因此本博客除非特别说明,都将默认子载波间隔是15KHz。

    2.FDD帧结构

    协议上对LTE-FDD的帧结构模式,一般又称为Frame structure type 1,这里为了指代明确,还是称呼为FDD帧结构。

    在FDD里,每个无线帧(radio frame)的长度Tf=307200*Ts=10ms,由20个时隙(slot)组成,每个时隙长度Tslot=15360*Ts=0.5ms,按照0到19进行周期循环编号。每个子帧(subframe)由2个连续的时隙组成,按照0到9进行周期循环编号,因此1个无线帧由10个子帧组成,无线帧的周期是1024。

    在FDD里,每个无线帧的10个子帧都可以传输下行,也都可以传输上行,上下行在不同的频域中分别进行。在半双工的FDD模式下,UE不能在同一个子帧里既发送数据又接收数据,而在全双工的FDD模式下,UE则没有这个限制,在同个子帧里可以同时发送和接收数据。

    下面是FDD制式的帧结构示意图。


    3.TDD帧结构

    协议上对LTE-TDD的帧结构模式,一般又称为Frame structure type 2,这里为了指代明确,还是称呼为TDD帧结构。

    在TDD里,每个无线帧的长度Tf=307200*Ts=10ms,由2个“半帧”组成,每个“半帧”的长度等于5ms,由5个连续的子帧组成,每个子帧长度等于1ms。除了特殊子帧,每个子帧由2个连续的时隙组成。特殊子帧固定在1、6号子帧,由DwPTS(下行导频时隙)、GP、UpPTS(上行导频时隙)组成。同样的,1个无线帧由10个子帧组成,无线帧的周期是1024。

    下面是TDD制式的帧结构示意图。



    相同的子帧在不同的上下行配置(Uplink-downlink configuration)时,可能会发送不同方向的数据。下图是各种上下行子帧配置下,所有子帧发送数据的方向。D表示该子帧只能发送下行数据,U表示该子帧只能发送上行数据,S表示特殊子帧,一般用作下行数据发送。UL/DL configuration参数来自于RRC层的SIB1消息(36331协议),具体参数路径是:SystemInformationBlockType1->tdd-Config->TDD-Config->subframeAssignment,详见博文《LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置》。


    下行-上行切换周期与10ms内特殊子帧的个数有关,计算方式参考下图。

    本质上DwPTS可作为一个常规的下行子帧使用,只是调度的时候有效的RB仅为普通下行子帧的0.75倍,因此传输的数据量较小。一般在讲上下行子帧配比的时候,是将特殊子帧作为下行子帧考虑的。下图所示的就是TDD制式下,各种子帧上下行配比关系。而UpPTS由于时间太短,不用于数据传输,可用作随机接入PRACH(还记得随机接入的DCI格式4吗?请再看一遍文章《LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置》)。


    特殊子帧的时长与特殊子帧配置相关,如下图所示。关于特殊子帧配置(Special subframe configuration参数),参考博文《LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置》。下文会结合OFDM符号长度再说这个表格。


    4.OFDM符号

    LTE的每个时隙由包括循环前缀CP)在内的一定数量的OFDM符号组成。除了CP之外的OFDM符号时间称为有用的OFDM符号时间,时长为Tu=2048*Ts=66.7us。若系统是Normal CP类型(普通CP类型),则每个时隙包括7个OFDM符号,若是Extended CP类型(扩展CP类型),则每个时隙包括6个OFDM符号。对于Normal CP类型,每个时隙第一个OFDM符号前部的CP长度是160*Ts,其他的CP长度是144*Ts,第一个符号长度不同的原因仅仅在于为了填满0.5ms的时隙。对于Extended CP类型,每个CP的长度是512*Ts。如下图所示。


    我在博文《LTE小区搜索-物理小区ID和同步信号PSS、SSS》的末尾给出了2张PSS和SSS的位置图,从图中可以看到,下行CP类型是Normal CP类型。从该博文中,也可以知道,检测到PSS/SSS同步信号之后,UE就获知了下行CP类型,而上行CP类型是RRC的ul-CyclicPrefixLength字段下发给UE的,如下图所示。

    5.特殊子帧占用的OFDM符号个数

    结合前文特殊子帧中DwPTS、UpPTS的长度以及每个OFDM符号的长度,可以得到特殊子帧中各部分占用的OFDM符号个数,如下图所示(只列出部分配置,其他配置类似可以画出)。



    关于特殊子帧中UpPTS占用OFDM符号个数的计算:

    对于上下行都是Normal CP来说,因为UpPTS肯定不在时隙的第一个符号,因此对于UpPTS来说,每个OFDM符号占用的时长是2192Ts(2048+144)。所以:对于时长是2192Ts的UpPTS,那么只需要1个OFDM符号即可传输;对于时长是4384Ts的UpPTS,那么需要2个OFDM符号即可传输。同样的,对于上下行都是Extended CP来说,对于时长是2560Ts的UpPTS,那么只需要1个OFDM符号即可传输;对于时长是5120Ts的UpPTS,那么需要2个OFDM符号即可传输。

    6.PSS所处的OFDM符号位置

    协议36213提到:如果特殊子帧配置是0、5,且下行CP类型是Normal,或者特殊子帧配置是0、4,且下行CP类型是Extended,那么不能在该特殊子帧中发送PDSCH数据。

    For the special subframe configurations 0 and with normal downlink CP or configurations 0 and 4 with extended downlink CP, there shall be no PDSCH transmission in  DwPTS of the special subframe.

    下面分析一下为什么会有这个结论,原因是什么。

    下图是同步信号PSS和SSS的一种位置示意图。从图中可以看到,这是个TDD制式,且下行CP类型是Normal CP类型。SSS位于子帧0、5的最后一个OFDM符号,无论是哪种上下行子帧配置,0、5子帧始终是下行子帧。PSS位于子帧1、6的第三个符号,而1、6子帧始终是特殊子帧,那么这里需要确保PSS不会落到GP甚至UpPTS中。

    从前文的“特殊子帧时间长度”表格中可以看到,DwPTS的长度是由特殊子帧配置(Special subframe configuration)决定的,范围从6592Ts26336Ts不等。而对于Normal CP时,每个时隙前三个OFDM符号的总长度(含循环前缀CP)=(160+2048+144+2048+144+2048)Ts=6592Ts。也就是说,无论是哪种特殊子帧配置,位于特殊子帧第三个符号上的PSS,总会落在DwPTS中,而不会落到GP甚至UpPTS中。

    那么问题来了,如果特殊子帧配置是0或5,且下行是普通CP类型时,DwPTS的时长就是6592Ts(见前文表格),那么这个时候就没有办法在特殊子帧中发送下行数据了。所以,有时候更换了特殊子帧配置,也会影响下行的流量(还记得GAP配置也会影响下行流量吗?参考《LTE-TDD资源调度(3)-测量GAP》)。

    再来看看扩展CP的情况。当下行CP是扩展CP时,DwPTS的长度范围从7680Ts25600Ts不等。每个时隙前三个OFDM符号的总长度(含循环前缀CP)=(512+2048)*3Ts=7680Ts。同样的,此时无论是哪种特殊子帧配置,位于特殊子帧第三个符号上的PSS,也总会落在DwPTS中,而不会落到GP甚至UpPTS中。同理,如果特殊子帧配置是0或4,且下行是扩展CP类型时,DwPTS的时长是7680Ts(见前文表格),这个时候是没有办法在特殊子帧中发送下行数据的。

    参考文献:

    (1)3GPP TS 36.211 V9.1.0 (2010-03) Physical Channels and Modulation

    (2)《4G LTE/LTE-Advanced for Mobile Broadband》

    (3)http://www.sharetechnote.com/

    (4)3GPP TS 36.213 V9.3.0 (2010-09) Physical layer procedures

    展开全文
  • 关于帧结构,之前的博文里零散的提到过一些,比如博文《 LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置 》,里面在讲解前导码格式的时候,提到了每个子帧的长度是30720Ts,以及不同的上下行子帧配置时,...
  • 第四代移动通信系统要求有更高的数据传输速率、更好的传输...在多径时延、信息速率以及带宽等特定背景条件确定的情况下,根据工程经验设计了一种适应该背景条件的突发OFDM传输系统,符号速率、OFDM帧结构等总体参数。
  • 提出了正交频分复用(OFDM)系统中一种新的同步算法。该算法采用一种具有中心对称结构的训练序列。借助于该训练序列,新算法在信噪比为10dB且误报概率为10-3的环境下具有10-3的训练序列漏检概率。在实现时间同步的...
  • 数据处理部分主要完成对输入数据的一系列处理操作,包括16QAM调制、IFFT处理,循环前缀及加窗,出此之外,数据处理还包括训练序列生成部分,来完成OFDM帧的前导数据部分。最终通过整合得到可以送人射频...
  • OFDM相关

    千次阅读 2018-11-12 20:30:43
    OFDM符号--一个OFDM符号是指一个已经经过QAM调制的子载波在某一个符号周期内的波形。OFDMA调制解调原理 详见:OFDM专题之子载波间干扰问题(一)https://blog.csdn.net/Reborn_Lee/article/details/81045108 ...
  • OFDM matlab程序

    2011-08-25 20:52:53
    接收端采用的算法和程序流程与发送端发送的OFDM符号的帧结构有关系。具体的帧结构,以及定时估计,频偏估计,剩余误差跟踪的算法可参考算法说明文档。这里对程序的流程进行说明。
  • lte无线帧格式

    2015-07-31 15:09:48
    在TDD帧结构中,一个特殊子帧的大小是1ms,就是两个资源模块RB,一个RB占7个OFDM符号,所以一个特殊子帧占14个OFDM符号,但是不管特殊子帧内部结构如何变换,其大小都是1ms。以上内容来自LTE轻松进阶,第六章 ...
  • OFDM com-par

    2010-12-23 12:07:29
    接收端采用的算法和程序流程与发送端发送的OFDM符号的帧结构有关系。具体的帧结构,以及定时估计,频偏估计,剩余误差跟踪的算法可参考算法说明文档。这里对程序的流程进行说明。
  • 关于OFDM

    千次阅读 2012-06-30 00:12:18
    两种帧结构,实际上是非MBSFN子帧的物理信道的循环前缀(CP:Cyclic Prefix)长度,它是上下行公用的一个参数,就是循环两种循环前缀。 一种采用的是一般循环前缀(Normal CP),则一个时隙里可以传7个OFDM。另一...
  • LTE帧结构----符号长度。

    万次阅读 2016-10-27 15:47:29
    网络有很多关于LTE帧结构的文档,但都局限到符号个数,并没有对符号的长度进行具体介绍。对于理解LTE物理层的概念,还是非常困难。这里主要以Ts为单位介绍LTE帧中的符号长度。   无论是FDL类型1的帧,还是TDL类型...
  • 5G NR帧结构

    千次阅读 2020-11-18 14:30:27
    1 整体结构 2 参数集—子载波间隔 3 参数集和时隙长度 4 参数集和支持的信道 ...5 OFDM符号时长 ...7 无线帧结构 7.1 Normal CP, Numerology = 0 7.2 Normal CP, Numerology = 1 ...
  • 5G学习笔记:NR帧结构

    万次阅读 多人点赞 2019-07-30 15:31:09
    NR帧结构 1 参数集—子载波间隔 与LTE参数集(子载波间隔和符号长度)相比,NR支持多种不同类型的子载波间隔(LTE中只有一种类型的子载波间隔,15kHz)。NR参数集总结在38.211中,转换为下图。 2 参数集和时隙...
  • 5G/NR帧格式概要

    千次阅读 2020-10-31 15:45:30
    5G/NR帧格式概要 Numerology参数集介绍   有别于LTE的帧结构设计,NR中的帧结构根据参数集的不同取值存在不同的结构。 子载波间隔   子载波间隔并不是一成不变,而是由参数u决定,由下表可知,当u=0时,等同...
  • 支持两种不同的无线帧结构,即Type1和Type2帧结构,帧长均为10ms。前者适用于FDD、TDD两种工作模式,后者仅适用于TDD。  Type1帧由20个0.5ms长的时隙构成,两个相邻的时隙组成一个子帧。在TDD模式下,上下行链路分...
  • 接收端采用的算法和程序流程与发送端发送的OFDM符号的帧结构有关系。具体的帧结构,以及定时估计,频偏估计,剩余误差跟踪的算法可参考算法说明文档。这里对程序的流程进行说明。
  • 5G NR帧结构与物理资源

    千次阅读 2021-03-26 11:51:14
    类似与LTE帧结构,在NR中,一个系统帧有10个子帧组成,系统帧的定义为,,每个子帧定义为,在每个子帧中由多个OFDM符号构成,其中OFDM符号数定义如下:,
  • 5G/4G:空口帧结构之帧、子帧、时隙、符号、RB。

    万次阅读 多人点赞 2019-07-15 21:39:31
    帧结构: 帧(Frame)的时间仍然是10ms,分为10个子帧(Subframe),编号为#0~#9,每个子帧时间为1ms,一个时隙所包含的OFDM符号数为14个(normal cp),每一帧又可以分为两个半帧(half-frame),编号...
  • 比较完美的OFDM程序:接收端采用的算法和程序流程与发送端发送的OFDM符号的帧结构有关系。具体实现见程序
  • LTE帧结构

    2021-09-23 10:53:13
    1、LTE中的一些参数 I 采样频率与采样点数 采样频率Fs与采样点数NFFT之比就是△f,即△f=Fs/NFFT。 例如:LTE子载波间隔15KHZ,采样点数... 一个OFDM的符号周期就是:1/15KHz = 66.67us,那么一个slot内(0.5...
  • 802.11 PHY层帧格式汇总

    千次阅读 2020-10-14 20:35:54
      工作之余,得以空暇。本文简单汇总梳理下从各网页浏览得到的各版本Wi-Fi协议中PHY(物理层)帧格式。...如下图1给出802.11a的PHY帧结构。 如图2所示,给出802.11n协议中PHY帧格式(HT)。 其中Mixed帧格式详细
  • 5G NR基础参数及帧结构

    万次阅读 多人点赞 2019-07-31 16:42:39
    本篇主要讲述5G的基础知识——基础参数及帧结构 1、子载波间隔: 我们知道LTE中子载波间隔是固定的15kHz,但NR中采用了更加灵活的子载波间隔,如下表: 我们可以把它叫做numerology(参数集),也就是说NR中有5...
  • IEEE802.11g 标准的OFDM

    千次阅读 2020-10-05 02:09:59
    首先IEEE802.11g 标准的OFDM帧结构如下所示: 关于802.11g,其基本的帧结构: 短训练序列分为10段,每段长度为16个抽样点;长训练序列分为2段,每段长度为128个抽样点,总长度为160+256个抽样点。前导码之后...
  • NR帧结构

    2020-05-26 15:03:28
    1 frame = 10 subframe = 10/20/40/80/160 slots 1 subframe = 1/2/4/8/16 slots 1 slot = 14 OFDM symbols RB:频域连续12个子载波,时域1个slot(14 symbols) RE:频域一个子载波,时域一个symbol
  • 802.11帧格式

    千次阅读 2011-06-02 10:10:00
    802.11帧格式介绍

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 1,784
精华内容 713
关键字:

ofdm的帧结构