精华内容
下载资源
问答
  • 线性回归是回归函数关于未知回归系数具有非线性结构的回归。常用的处理方法有回归函数的线性迭代法、分段回归法、迭代最小二乘法等。非线性回归分析的主要内容与线性回归分析相似。
  • 模糊线性回归模型及其应用,王磊,郭嗣琮,本文提出了一种基于结构元线性表示的模糊回归模型,此模型的输入为精确数据,输出为模糊数据。给出了在最小二乘意义下的回归系数
  • 一元线性回归模型应用.ppt
  • 线性回归分析及其应用,贝茨。值得看看,对非线性回归理论学习挺有用的。
  • 本文介绍回归模型的原理知识,包括线性回归、多项式回归和逻辑回归,并详细介绍Python Sklearn机器学习库的LinearRegression和LogisticRegression算法及回归分析实例。进入基础文章,希望对您有所帮助。

    欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智能40篇、Python安全20篇、其他技巧10篇。您的关注、点赞和转发就是对秀璋最大的支持,知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。

    前一篇文章讲述了数据分析部分,主要普及网络数据分析的基本概念,讲述数据分析流程和相关技术,同时详细讲解Python提供的若干第三方数据分析库,包括Numpy、Pandas、Matplotlib、Sklearn等。本文介绍回归模型的原理知识,包括线性回归、多项式回归和逻辑回归,并详细介绍Python Sklearn机器学习库的LinearRegression和LogisticRegression算法及回归分析实例。进入基础文章,希望对您有所帮助。

    下载地址:

    前文赏析:

    第一部分 基础语法

    第二部分 网络爬虫

    第三部分 数据分析和机器学习

    作者新开的“娜璋AI安全之家”将专注于Python和安全技术,主要分享Web渗透、系统安全、人工智能、大数据分析、图像识别、恶意代码检测、CVE复现、威胁情报分析等文章。虽然作者是一名技术小白,但会保证每一篇文章都会很用心地撰写,希望这些基础性文章对你有所帮助,在Python和安全路上与大家一起进步。


    监督学习(Supervised Learning)包括分类算法(Classification)和回归算法(Regression)两种,它们是根据类别标签分布的类型来定义的。回归算法用于连续型的数据预测,分类算法用于离散型的分布预测。回归算法作为统计学中最重要的工具之一,它通过建立一个回归方程用来预测目标值,并求解这个回归方程的回归系数。

    一.回归

    1.什么是回归

    回归(Regression)最早是英国生物统计学家高尔顿和他的学生皮尔逊在研究父母和子女的身高遗传特性时提出的。1855年,他们在《遗传的身高向平均数方向的回归》中这样描述“子女的身高趋向于高于父母的身高的平均值,但一般不会超过父母的身高”,首次提出来回归的概念。现在的回归分析已经和这种趋势效应没有任何瓜葛了,它只是指源于高尔顿工作,用一个或多个自变量来预测因变量的数学方法。

    在这里插入图片描述

    图1是一个简单的回归模型,X坐标是质量,Y坐标是用户满意度,从图中可知,产品的质量越高其用户评价越好,这可以拟合一条直线来预测新产品的用户满意度。

    在回归模型中,我们需要预测的变量叫做因变量,比如产品质量;选取用来解释因变量变化的变量叫做自变量,比如用户满意度。回归的目的就是建立一个回归方程来预测目标值,整个回归的求解过程就是求这个回归方程的回归系数。

    简言之,回归最简单的定义就是:

    • 给出一个点集,构造一个函数来拟合这个点集,并且尽可能的让该点集与拟合函数间的误差最小,如果这个函数曲线是一条直线,那就被称为线性回归,如果曲线是一条三次曲线,就被称为三次多项回归。

    2.线性回归

    首先,作者引用类似于斯坦福大学机器学习公开课线性回归的例子,给大家讲解线性回归的基础知识和应用,方便大家的理解。同时,作者强烈推荐大家学习原版Andrew Ng教授的斯坦福机器学习公开课,会让您非常受益。

    在这里插入图片描述

    假设存在表1的数据集,它是某企业的成本和利润数据集。数据集中2002年到2016年的数据集称为训练集,整个训练集共15个样本数据。重点是成本和利润两个变量,成本是输入变量或一个特征,利润是输出变量或目标变量,整个回归模型如图2所示。

    在这里插入图片描述

    现建立模型,x表示企业成本,y表示企业利润,h(Hypothesis)表示将输入变量映射到输出变量y的函数,对应一个因变量的线性回归(单变量线性回归)公式如下:

    在这里插入图片描述

    那么,现在要解决的问题是如何求解的两个参数和。我们的构想是选取的参数和使得函数尽可能接近y值,这里提出了求训练集(x,y)的平方误差函数(Squared Error Function)或最小二乘法。

    在回归方程里,最小化误差平方和方法是求特征对应回归系数的最佳方法。误差是指预测y值和真实y值之间的差值,使用误差的简单累加将使得正差值和负差值相互抵消,所采用的平方误差(最小二乘法)如下:

    在这里插入图片描述

    在数学上,求解过程就转化为求一组值使上式取到最小值,最常见的求解方法是梯度下降法(Gradient Descent)。根据平方误差,定义该线性回归模型的损耗函数(Cost Function)为,公式如下:
    在这里插入图片描述

    选择适当的参数让其最小化min,即可实现拟合求解过程。通过上面的这个示例,我们就可以对线性回归模型进行如下定义:根据样本x和y的坐标,去预估函数h,寻求变量之间近似的函数关系。公式如下:

    在这里插入图片描述

    其中,n表示特征数目,表示每个训练样本的第i个特种值,当只有一个因变量x时,称为一元线性回归,类似于;而当多个因变量时,成为多元线性回归。我们的目的是使最小化,从而最好的将样本数据集进行拟合,更好地预测新的数据。

    多项式回归或逻辑回归相关知识将在后面介绍。


    二.线性回归分析

    线性回归是数据挖掘中基础的算法之一,其核心思想是求解一组因变量和自变量之间的方程,得到回归函数,同时误差项通常使用最小二乘法进行计算。在本书常用的Sklaern机器学习包中将调用Linear_model子类的LinearRegression类进行线性回归模型计算。

    1.LinearRegression

    LinearRegression回归模型在Sklearn.linear_model子类下,主要是调用fit(x,y)函数来训练模型,其中x为数据的属性,y为所属类型。sklearn中引用回归模型的代码如下:

    from sklearn import linear_model          #导入线性模型  
    regr = linear_model.LinearRegression()    #使用线性回归  
    print(regr)
    

    输出函数的构造方法如下:

    LinearRegression(copy_X=True,   
    		fit_intercept=True,   
            n_jobs=1,   
            normalize=False) 
    

    其中参数说明如下:

    • copy_X:布尔型,默认为True。是否对X复制,如果选择False,则直接对原始数据进行覆盖,即经过中心化、标准化后,把新数据覆盖到原数据上。
    • fit_intercept:布尔型,默认为True。是否对训练数据进行中心化,如果是True表示对输入的训练数据进行中心化处理,如果是False则输入数据已经中心化处理,后面的过程不再进行中心化处理。
    • n_jobs:整型,默认为1。计算时设置的任务个数,如果设置为-1表示使用所有的CPU。该参数对于目标个数大于1且规模足够大的问题有加速作用。
    • normalize:布尔型,默认为False。是否对数据进行标准化处理。

    LinearRegression类主要包括如下方法:

    在这里插入图片描述

    • fit(X,y[,n_jobs])
      对训练集X,y进行训练,分析模型参数,填充数据集。其中X为特征,y为标记或类属性。
    • predict(X)
      使用训练得到的估计器或模型对输入的X数据集进行预测,返回结果为预测值。数据集X通常划分为训练集和测试集。
    • decision_function(X)
      使用训练得到的估计器或模型对数据集X进行预测。它与predict(X)区别在于该方法包含了对输入数据的类型检查和当前对象是否存在coef_属性的检查,更安全。
    • score(X, y[,]samples_weight)
      返回对于以X为samples、y为target的预测效果评分。
    • get_params([deep])
      获取该估计器(Estimator)的参数。
    • **set_params(params)
      设置该估计器(Estimator)的参数。
    • coef_
      存放LinearRegression模型的回归系数。
    • intercept_
      存放LinearRegression模型的回归截距。

    现在对前面的企业成本和利润数据集进行线性回归实验。完整代码如下:

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    from sklearn import linear_model     #导入线性模型
    import matplotlib.pyplot as plt       
    import numpy as np
    
    #X表示企业成本 Y表示企业利润
    X = [[400], [450], [486], [500], [510], [525], [540], [549], [558], [590], [610], [640], [680], [750], [900]]
    Y = [[80], [89], [92], [102], [121], [160], [180], [189], [199], [203], [247], [250], [259], [289], [356]]
    print('数据集X: ', X)
    print('数据集Y: ', Y)
    
    #回归训练
    clf = linear_model.LinearRegression() 
    clf.fit(X, Y)
    
    #预测结果
    X2 = [[400], [750], [950]]
    Y2 = clf.predict(X2)
    print(Y2)
    res = clf.predict(np.array([1200]).reshape(-1, 1))[0]   
    print('预测成本1200元的利润:$%.1f' % res) 
    
    #绘制线性回归图形
    plt.plot(X, Y, 'ks')                 #绘制训练数据集散点图
    plt.plot(X2, Y2, 'g-')               #绘制预测数据集直线
    plt.show()
    

    调用sklearn包中的LinearRegression()回归函数,fit(X,Y)载入数据集进行训练,然后通过predict(X2)预测数据集X2的利润,并将预测结果绘制成直线,(X,Y)数据集绘制成散点图,如图3所示。

    在这里插入图片描述

    同时调用代码预测2017年企业成本为1200元的利润为575.1元。注意,线性模型的回归系数会保存在coef_变量中,截距保存在intercept_变量中。clf.score(X, Y) 是一个评分函数,返回一个小于1的得分。评分过程的代码如下:

    print('系数', clf.coef_)
    print('截距', clf.intercept_)
    print('评分函数', clf.score(X, Y))
    
    '''
    系数 [[ 0.62402912]]
    截距 [-173.70433885]
    评分函数 0.911831188777
    '''
    

    在这里插入图片描述

    该直线对应的回归函数为:y = 0.62402912 * x - 173.70433885,则X2[1]=400这个点预测的利润值为75.9,而X1中成本为400元对应的真实利润是80元,预测是基本准确的。


    2.线性回归预测糖尿病

    (1).糖尿病数据集
    Sklearn机器学习包提供了糖尿病数据集(Diabetes Dataset),该数据集主要包括442行数据,10个特征值,分别是:年龄(Age)、性别(Sex)、体质指数(Body mass index)、平均血压(Average Blood Pressure)、S1~S6一年后疾病级数指标。预测指标为Target,它表示一年后患疾病的定量指标。原网址的描述如图4所示:

    在这里插入图片描述

    下面代码进行简单的调用及数据规模的测试。

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    from sklearn import datasets
    diabetes = datasets.load_diabetes()                           #载入数据  
    print(diabetes.data)                                          #数据  
    print(diabetes.target)                                        #类标  
    print('总行数: ', len(diabetes.data), len(diabetes.target))         
    print('特征数: ', len(diabetes.data[0]))                      #每行数据集维数  
    print('数据类型: ', diabetes.data.shape)                     
    print(type(diabetes.data), type(diabetes.target))     
    

    调用load_diabetes()函数载入糖尿病数据集,然后输出其数据data和类标target。输出总行数442行,特征数共10个,类型为(442L, 10L)。其输出如下所示:

    [[ 0.03807591  0.05068012  0.06169621 ..., -0.00259226  0.01990842 
      -0.01764613] 
     [-0.00188202 -0.04464164 -0.05147406 ..., -0.03949338 -0.06832974 
      -0.09220405] 
      ... 
     [-0.04547248 -0.04464164 -0.0730303  ..., -0.03949338 -0.00421986 
       0.00306441]] 
    [ 151.   75.  141.  206.  135.   97.  138.   63.  110.  310.  101. 
      ... 
    64.   48.  178.  104.  132.  220.   57.] 
    总行数:  442 442 
    特征数:  10 
    数据类型:  (442L, 10L) 
    <type 'numpy.ndarray'> <type 'numpy.ndarray'>         
    

    (2).代码实现
    现在我们将糖尿病数据集划分为训练集和测试集,整个数据集共442行,我们取前422行数据用来线性回归模型训练,后20行数据用来预测。其中取预测数据的代码为diabetes_x_temp[-20:],表示从后20行开始取值,直到数组结束,共取值20个数。

    整个数据集共10个特征值,为了方便可视化画图我们只获取其中一个特征进行实验,这也可以绘制图形,而真实分析中,通常经过降维处理再绘制图形。这里获取第3个特征,对应代码为:diabetes_x_temp = diabetes.data[:, np.newaxis, 2]。完整代码如下:

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    from sklearn import datasets  
    import matplotlib.pyplot as plt  
    from sklearn import linear_model
    import numpy as np  
    
    #数据集划分
    diabetes = datasets.load_diabetes()                #载入数据  
    diabetes_x_temp = diabetes.data[:, np.newaxis, 2]  #获取其中一个特征  
    diabetes_x_train = diabetes_x_temp[:-20]           #训练样本  
    diabetes_x_test = diabetes_x_temp[-20:]            #测试样本 后20行  
    diabetes_y_train = diabetes.target[:-20]           #训练标记  
    diabetes_y_test = diabetes.target[-20:]            #预测对比标记
    
    #回归训练及预测  
    clf = linear_model.LinearRegression()  
    clf.fit(diabetes_x_train, diabetes_y_train)        #训练数据集  
    pre = clf.predict(diabetes_x_test)
    
    #绘图  
    plt.title(u'LinearRegression Diabetes')            #标题  
    plt.xlabel(u'Attributes')                          #x轴坐标  
    plt.ylabel(u'Measure of disease')                  #y轴坐标    
    plt.scatter(diabetes_x_test, diabetes_y_test, color = 'black')  #散点图   
    plt.plot(diabetes_x_test, pre, color='blue', linewidth = 2)     #预测直线
    plt.show()          
    

    输出结果如图5所示,每个点表示真实的值,而直线表示预测的结果。

    在这里插入图片描述


    (3).代码优化
    下面代码增加了几个优化措施,包括增加了斜率、 截距的计算,可视化绘图增加了散点到线性方程的距离线,增加了保存图片设置像素代码等。这些优化都更好地帮助我们分析真实的数据集。

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    from sklearn import datasets
    import numpy as np
    from sklearn import linear_model
    import matplotlib.pyplot as plt
    
    #第一步 数据集划分
    d = datasets.load_diabetes()  #数据 10*442
    x = d.data
    x_one = x[:,np.newaxis, 2]    #获取一个特征 第3列数据
    y = d.target                  #获取的正确结果
    x_train = x_one[:-42]         #训练集X [  0:400]
    x_test = x_one[-42:]          #预测集X [401:442]
    y_train = y[:-42]             #训练集Y [  0:400]
    y_test = y[-42:]              #预测集Y [401:442]
    
    #第二步 线性回归实现
    clf = linear_model.LinearRegression()
    print(clf)
    clf.fit(x_train, y_train)
    pre = clf.predict(x_test)
    print('预测结果', pre)
    print('真实结果', y_test)
       
    #第三步 评价结果
    cost = np.mean(y_test-pre)**2   #2次方
    print('平方和计算:', cost)
    print('系数', clf.coef_) 
    print('截距', clf.intercept_)  
    print('方差', clf.score(x_test, y_test))
    
    #第四步 绘图
    plt.plot(x_test, y_test, 'k.')      #散点图
    plt.plot(x_test, pre, 'g-')        #预测回归直线
    #绘制点到直线距离
    for idx, m in enumerate(x_test):
        plt.plot([m, m],[y_test[idx], pre[idx]], 'r-')
    
    plt.savefig('blog12-01.png', dpi=300) #保存图片
    plt.show()      
    

    绘制的图形如图6所示。

    在这里插入图片描述

    输出结果如下:

    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
    预测结果 [ 196.51241167  109.98667708  121.31742804  245.95568858  204.75295782
      270.67732703   75.99442421  241.8354155   104.83633574  141.91879342
      126.46776938  208.8732309   234.62493762  152.21947611  159.42995399
      161.49009053  229.47459628  221.23405012  129.55797419  100.71606266
      118.22722323  168.70056841  227.41445974  115.13701842  163.55022706
      114.10695016  120.28735977  158.39988572  237.71514243  121.31742804
       98.65592612  123.37756458  205.78302609   95.56572131  154.27961264
      130.58804246   82.17483382  171.79077322  137.79852034  137.79852034
      190.33200206   83.20490209]
    真实结果 [ 175.   93.  168.  275.  293.  281.   72.  140.  189.  181.  209.  136.
      261.  113.  131.  174.  257.   55.   84.   42.  146.  212.  233.   91.
      111.  152.  120.   67.  310.   94.  183.   66.  173.   72.   49.   64.
       48.  178.  104.  132.  220.   57.]
    
    平方和计算: 83.192340827
    系数 [ 955.70303385]
    截距 153.000183957
    方差 0.427204267067
    

    其中cost = np.mean(y_test-pre)**2表示计算预测结果和真实结果之间的平方和,为83.192340827,根据系数和截距得出其方程为:y = 955.70303385 * x + 153.000183957。


    三.多项式回归分析

    1.基础概念

    线性回归研究的是一个目标变量和一个自变量之间的回归问题,但有时候在很多实际问题中,影响目标变量的自变量往往不止一个,而是多个,比如绵羊的产毛量这一变量同时受到绵羊体重、胸围、体长等多个变量的影响,因此需要设计一个目标变量与多个自变量间的回归分析,即多元回归分析。由于线性回归并不适用于所有的数据,我们需要建立曲线来适应我们的数据,现实世界中的曲线关系很多都是增加多项式实现的,比如一个二次函数模型:

    在这里插入图片描述

    再或者一个三次函数模型:

    在这里插入图片描述

    这两个模型我们绘制的图形如下所示:

    在这里插入图片描述

    多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式的回归分析方法。如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。在一元回归分析中,如果依变量y与自变量x的关系为非线性的,但是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。17.3小节主要讲解一元多次的多项式回归分析,一元m次多项式方程如下:

    在这里插入图片描述

    其方程的求解过程希望读者下来自行学习,接下来作者主要讲解Python如何代码实现多项式回归分析的。


    2.PolynomialFeatures

    Python的多项式回归需要导入sklearn.preprocessing子类中PolynomialFeatures类实现。PolynomialFeatures对应的函数原型如下:

    class sklearn.preprocessing.PolynomialFeatures(degree=2, 
    		interaction_only=False, 
    		include_bias=True)
    

    PolynomialFeatures类在Sklearn官网给出的解释是:专门产生多项式的模型或类,并且多项式包含的是相互影响的特征集。共有三个参数,degree表示多项式阶数,一般默认值是2;interaction_only如果值是true(默认是False),则会产生相互影响的特征集;include_bias表示是否包含偏差列。

    PolynomialFeatures类通过实例化一个多项式,建立等差数列矩阵,然后进行训练和预测,最后绘制相关图形,接下来与前面的一元线性回归分析进行对比试验。


    3.多项式回归预测成本和利润

    本小节主要讲解多项式回归分析实例,分析的数据集是表17.1提供的企业成本和利润数据集。下面直接给出线性回归和多项式回归分析对比的完整代码和详细注释。

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    from sklearn.linear_model import LinearRegression     
    from sklearn.preprocessing import PolynomialFeatures
    import matplotlib.pyplot as plt       
    import numpy as np
    
    #X表示企业成本 Y表示企业利润
    X = [[400], [450], [486], [500], [510], [525], [540], [549], [558], [590], [610], [640], [680], [750], [900]]
    Y = [[80], [89], [92], [102], [121], [160], [180], [189], [199], [203], [247], [250], [259], [289], [356]]
    print('数据集X: ', X)
    print('数据集Y: ', Y)
    
    #第一步 线性回归分析
    clf = LinearRegression() 
    clf.fit(X, Y)                     
    X2 = [[400], [750], [950]]
    Y2 = clf.predict(X2)
    print(Y2)
    res = clf.predict(np.array([1200]).reshape(-1, 1))[0]   
    print('预测成本1200元的利润:$%.1f' % res) 
    plt.plot(X, Y, 'ks')    #绘制训练数据集散点图
    plt.plot(X2, Y2, 'g-')  #绘制预测数据集直线
    
    #第二步 多项式回归分析
    xx = np.linspace(350,950,100) #350到950等差数列
    quadratic_featurizer = PolynomialFeatures(degree = 2) #实例化一个二次多项式
    x_train_quadratic = quadratic_featurizer.fit_transform(X) #用二次多项式x做变换
    X_test_quadratic = quadratic_featurizer.transform(X2)
    regressor_quadratic = LinearRegression()
    regressor_quadratic.fit(x_train_quadratic, Y)
    
    #把训练好X值的多项式特征实例应用到一系列点上,形成矩阵
    xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
    plt.plot(xx, regressor_quadratic.predict(xx_quadratic), "r--",
             label="$y = ax^2 + bx + c$",linewidth=2)
    plt.legend()
    plt.show()    
    

    输出图形如下图所示,其中黑色散点图表示真实的企业成本和利润的关系,绿色直线为一元线性回归方程,红色虚曲线为二次多项式方程。它更接近真实的散点图。

    在这里插入图片描述

    这里我们使用R方(R-Squared)来评估多项式回归预测的效果,R方也叫确定系数(Coefficient of Determination),它表示模型对现实数据拟合的程度。计算R方的方法有几种,一元线性回归中R方等于皮尔逊积矩相关系数(Pearson Product Moment Correlation Coefficient)的平方,该方法计算的R方是一定介于0~1之间的正数。另一种是Sklearn库提供的方法来计算R方。R方计算代码如下:

    print('1 r-squared', clf.score(X, Y))
    print('2 r-squared', regressor_quadratic.score(x_train_quadratic, Y))
    

    输出如下所示:

    ('1 r-squared', 0.9118311887769025)
    ('2 r-squared', 0.94073599498559335)
    

    在这里插入图片描述

    一元线性回归的R方值为0.9118,多项式回归的R方值为0.9407,说明数据集中超过94%的价格都可以通过模型解释。最后补充5次项的拟合过程,下面只给出核心代码。

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    from sklearn.linear_model import LinearRegression     
    from sklearn.preprocessing import PolynomialFeatures
    import matplotlib.pyplot as plt       
    import numpy as np
    
    #X表示企业成本 Y表示企业利润
    X = [[400], [450], [486], [500], [510], [525], [540], [549], [558], [590], [610], [640], [680], [750], [900]]
    Y = [[80], [89], [92], [102], [121], [160], [180], [189], [199], [203], [247], [250], [259], [289], [356]]
    print('数据集X: ', X)
    print('数据集Y: ', Y)
    
    #第一步 线性回归分析
    clf = LinearRegression() 
    clf.fit(X, Y)                     
    X2 = [[400], [750], [950]]
    Y2 = clf.predict(X2)
    print(Y2)
    res = clf.predict(np.array([1200]).reshape(-1, 1))[0]   
    print('预测成本1200元的利润:$%.1f' % res) 
    plt.plot(X, Y, 'ks')    #绘制训练数据集散点图
    plt.plot(X2, Y2, 'g-')  #绘制预测数据集直线
    
    #第二步 多项式回归分析
    xx = np.linspace(350,950,100) 
    quadratic_featurizer = PolynomialFeatures(degree = 5) 
    x_train_quadratic = quadratic_featurizer.fit_transform(X) 
    X_test_quadratic = quadratic_featurizer.transform(X2)
    regressor_quadratic = LinearRegression()
    regressor_quadratic.fit(x_train_quadratic, Y)
    #把训练好X值的多项式特征实例应用到一系列点上,形成矩阵
    xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
    plt.plot(xx, regressor_quadratic.predict(xx_quadratic), "r--",
             label="$y = ax^2 + bx + c$",linewidth=2)
    plt.legend()
    plt.show()
    print('1 r-squared', clf.score(X, Y))
    print('5 r-squared', regressor_quadratic.score(x_train_quadratic, Y))
    
    # ('1 r-squared', 0.9118311887769025)
    # ('5 r-squared', 0.98087802460869788)
    

    输出如下所示,其中红色虚线为五次多项式曲线,它更加接近真实数据集的分布情况,而绿色直线为一元线性回归方程,显然相较于五次多项式曲线,线性方程拟合的结果更差。同时,五次多项式曲线的R方值为98.08%,非常准确的预测了数据趋势。

    在这里插入图片描述

    最后补充一点,建议多项式回归的阶数不要太高,否则会出现过拟合现象。


    四.逻辑回归

    1.基础原理

    在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的模型描述是因变量的期望与自变量之间的线性关系或多项式曲线关系。比如常见的线性回归模型:

    在这里插入图片描述

    而在采用回归模型分析实际问题中,所研究的变量往往不全是区间变量而是顺序变量或属性变量,比如二项分布问题。通过分析年龄、性别、体质指数、平均血压、疾病指数等指标,判断一个人是否换糖尿病,Y=0表示未患病,Y=1表示患病,这里的响应变量是一个两点(0或1)分布变量,它就不能用h函数连续的值来预测因变量Y(Y只能取0或1)。

    总之,线性回归或多项式回归模型通常是处理因变量为连续变量的问题,如果因变量是定性变量,线性回归模型就不再适用了,此时需采用逻辑回归模型解决。

    逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。

    在这里插入图片描述

    二分类问题的概率与自变量之间的关系图形往往是一个S型曲线,如图17.10所示,采用的Sigmoid函数实现。这里我们将该函数定义如下:

    在这里插入图片描述

    函数的定义域为全体实数,值域在[0,1]之间,x轴在0点对应的结果为0.5。当x取值足够大的时候,可以看成0或1两类问题,大于0.5可以认为是1类问题,反之是0类问题,而刚好是0.5,则可以划分至0类或1类。对于0-1型变量,y=1的概率分布公式定义如下:

    在这里插入图片描述

    y=0的概率分布公式定义如下:

    在这里插入图片描述

    其离散型随机变量期望值公式如下:

    在这里插入图片描述

    采用线性模型进行分析,其公式变换如下:

    在这里插入图片描述

    而实际应用中,概率p与因变量往往是非线性的,为了解决该类问题,我们引入了logit变换,使得logit§与自变量之间存在线性相关的关系,逻辑回归模型定义如下:

    在这里插入图片描述

    通过推导,概率p变换如下,这与Sigmoid函数相符,也体现了概率p与因变量之间的非线性关系。以0.5为界限,预测p大于0.5时,我们判断此时y更可能为1,否则y为0。

    在这里插入图片描述

    得到所需的Sigmoid函数后,接下来只需要和前面的线性回归一样,拟合出该式中n个参数θ即可。下列为绘制Sigmoid曲线,输出如图10所示。

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    import matplotlib.pyplot as plt
    import numpy as np
    
    def Sigmoid(x):
        return 1.0 / (1.0 + np.exp(-x))
    
    x= np.arange(-10, 10, 0.1)
    h = Sigmoid(x)                #Sigmoid函数
    plt.plot(x, h)
    plt.axvline(0.0, color='k')   #坐标轴上加一条竖直的线(0位置)
    plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted')  
    plt.axhline(y=0.5, ls='dotted', color='k') 
    plt.yticks([0.0, 0.5, 1.0])  #y轴标度
    plt.ylim(-0.1, 1.1)          #y轴范围
    plt.show()
    

    由于篇幅有限,逻辑回归构造损失函数J函数,求解最小J函数及回归参数θ的方法就不在叙述,原理和前面介绍的一样,请读者下去深入研究。

    在这里插入图片描述


    2.LogisticRegression

    LogisticRegression回归模型在Sklearn.linear_model子类下,调用sklearn逻辑回归算法步骤比较简单,即:

    • 导入模型。调用逻辑回归LogisticRegression()函数。
    • fit()训练。调用fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型。
    • predict()预测。利用训练得到的模型对数据集进行预测,返回预测结果。

    代码如下:

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    from sklearn.linear_model import LogisticRegression  #导入逻辑回归模型 
    clf = LogisticRegression()
    print(clf)
    clf.fit(train_feature,label)
    predict['label'] = clf.predict(predict_feature)
    

    输出函数的构造方法如下:

    LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
              intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
              penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
              verbose=0, warm_start=False)
    

    这里仅介绍两个参数:参数penalty表示惩罚项,包括两个可选值L1和L2。L1表示向量中各元素绝对值的和,常用于特征选择;L2表示向量中各个元素平方之和再开根号,当需要选择较多的特征时,使用L2参数,使他们都趋近于0。C值的目标函数约束条件为:s.t.||w||1<C,默认值是0,C值越小,则正则化强度越大。


    3.鸢尾花数据集回归分析实例

    下面将结合Scikit-learn官网的逻辑回归模型分析鸢尾花数据集。由于该数据分类标签划分为3类(0类、1类、2类),属于三分类问题,所以能利用逻辑回归模型对其进行分析。

    (1).鸢尾花数据集
    在Sklearn机器学习包中,集成了各种各样的数据集,包括前面的糖尿病数据集,这里引入的是鸢尾花卉(Iris)数据集,它也是一个很常用的数据集。该数据集一共包含4个特征变量,1个类别变量,共有150个样本。其中四个特征分别是萼片的长度和宽度、花瓣的长度和宽度,一个类别变量是标记鸢尾花所属的分类情况,该值包含三种情况,即山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。鸢尾花数据集详细介绍如表2所示:

    在这里插入图片描述

    Class 类别变量。0表示山鸢尾,1表示变色鸢尾,2表示维吉尼亚鸢尾。 int
    iris里有两个属性iris.data,iris.target。data是一个矩阵,每一列代表了萼片或花瓣的长宽,一共4列,每一行代表一个被测量的鸢尾植物,一共采样了150条记录,即150朵鸢尾花样本。

    from sklearn.datasets import load_iris   #导入数据集iris
    iris = load_iris()  #载入数据集
    print(iris.data)
    

    输出如下所示:

    [[ 5.1  3.5  1.4  0.2]
     [ 4.9  3.   1.4  0.2]
     [ 4.7  3.2  1.3  0.2]
     [ 4.6  3.1  1.5  0.2]
     ....
     [ 6.7  3.   5.2  2.3]
     [ 6.3  2.5  5.   1.9]
     [ 6.5  3.   5.2  2. ]
     [ 6.2  3.4  5.4  2.3]
     [ 5.9  3.   5.1  1.8]]
    

    target是一个数组,存储了每行数据对应的样本属于哪一类鸢尾植物,要么是山鸢尾(值为0),要么是变色鸢尾(值为1),要么是维吉尼亚鸢尾(值为2),数组的长度是150。

    print(iris.target)           #输出真实标签
    print(len(iris.target))      #150个样本 每个样本4个特征
    print(iris.data.shape)  
    
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
     2 2]
    150
    (150L, 4L)
    

    从输出结果可以看到,类标共分为三类,前面50个类标位0,中间50个类标位1,后面为2。下面给详细介绍使用逻辑回归对这个数据集进行分析的代码。


    (2).散点图绘制
    在载入了鸢尾花数据集(数据data和标签target)之后,我们需要获取其中两列数据或两个特征,再调用scatter()函数绘制散点图。其中获取一个特征的核心代码为:X = [x[0] for x in DD],将获取的值赋值给X变量。完整代码如下:

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_iris    #导入数据集iris
      
    #载入数据集  
    iris = load_iris()  
    print(iris.data)           #输出数据集  
    print(iris.target)         #输出真实标签
    
    #获取花卉两列数据集  
    DD = iris.data  
    X = [x[0] for x in DD]  
    print(X)  
    Y = [x[1] for x in DD]  
    print(Y)  
      
    #plt.scatter(X, Y, c=iris.target, marker='x')
    plt.scatter(X[:50], Y[:50], color='red', marker='o', label='setosa') #前50个样本
    plt.scatter(X[50:100], Y[50:100], color='blue', marker='x', label='versicolor') #中间50个
    plt.scatter(X[100:], Y[100:],color='green', marker='+', label='Virginica') #后50个样本
    plt.legend(loc=2) #左上角
    plt.show()
    

    输出如图11所示:

    在这里插入图片描述


    (3).线性回归分析
    下述代码先获取鸢尾花数据集的前两列数据,再调用Sklearn库中线性回归模型进行分析,完整代码如文件所示。

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    
    #第一步 导入数据集
    from sklearn.datasets import load_iris
    hua = load_iris()
    
    #获取花瓣的长和宽
    x = [n[0] for n in hua.data]
    y = [n[1] for n in hua.data]
    import numpy as np #转换成数组
    x = np.array(x).reshape(len(x),1)
    y = np.array(y).reshape(len(y),1)
    
    #第二步 线性回归分析
    from sklearn.linear_model import LinearRegression
    clf = LinearRegression()
    clf.fit(x,y)
    pre = clf.predict(x)
    print(pre)
    
    #第三步 画图
    import matplotlib.pyplot as plt
    plt.scatter(x,y,s=100)
    plt.plot(x,pre,"r-",linewidth=4)
    for idx, m in enumerate(x):
        plt.plot([m,m],[y[idx],pre[idx]], 'g-')
    plt.show()
    

    输出图形如图12所示,并且可以看到所有散点到拟合的一元一次方程的距离。

    在这里插入图片描述


    (4).逻辑回归分析鸢尾花
    讲解完线性回归分析之后,那如果用逻辑回归分析的结果究竟如何呢?下面开始讲述。从散点图(图11)中可以看出,数据集是线性可分的,划分为3类,分别对应三种类型的鸢尾花,下面采用逻辑回归对其进行分析预测。

    前面使用X=[x[0] for x in DD]获取第一列数据,Y=[x[1] for x in DD]获取第二列数据,这里采用另一种方法,iris.data[:, :2]获取其中两列数据或两个特征,完整代码如下:

    # -*- coding: utf-8 -*-
    # By:Eastmount CSDN 2021-07-03
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_iris   
    from sklearn.linear_model import LogisticRegression 
    
    #载入数据集
    iris = load_iris()         
    X = X = iris.data[:, :2]   #获取花卉两列数据集
    Y = iris.target           
    
    #逻辑回归模型
    lr = LogisticRegression(C=1e5)  
    lr.fit(X,Y)
    
    #meshgrid函数生成两个网格矩阵
    h = .02
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    
    #pcolormesh函数将xx,yy两个网格矩阵和对应的预测结果Z绘制在图片上
    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(8,6))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
    
    #绘制散点图
    plt.scatter(X[:50,0], X[:50,1], color='red',marker='o', label='setosa')
    plt.scatter(X[50:100,0], X[50:100,1], color='blue', marker='x', label='versicolor')
    plt.scatter(X[100:,0], X[100:,1], color='green', marker='s', label='Virginica') 
    
    plt.xlabel('Sepal length')
    plt.ylabel('Sepal width')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())
    plt.legend(loc=2) 
    plt.show()
    

    输出如图13所示。经过逻辑回归后划分为三个区域,左上角部分为红色的圆点,对应setosa鸢尾花;右上角部分为绿色方块,对应virginica鸢尾花;中间下部分为蓝色星形,对应versicolor鸢尾花。散点图为各数据点真实的花类型,划分的三个区域为数据点预测的花类型,预测的分类结果与训练数据的真实结果结果基本一致,部分鸢尾花出现交叉。

    在这里插入图片描述

    下面作者对导入数据集后的代码进行详细讲解。

    • lr = LogisticRegression(C=1e5)
      初始化逻辑回归模型,C=1e5表示目标函数。
    • lr.fit(X,Y)
      调用逻辑回归模型进行训练,参数X为数据特征,参数Y为数据类标。
    • x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    • y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    • xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
      获取鸢尾花数据集的两列数据,对应为花萼长度和花萼宽度,每个点的坐标就是(x,y)。 先取X二维数组的第一列(长度)的最小值、最大值和步长h(设置为0.02)生成数组,再取X二维数组的第二列(宽度)的最小值、最大值和步长h生成数组, 最后用meshgrid函数生成两个网格矩阵xx和yy,如下所示:
    [[ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
     [ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
     ..., 
     [ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
     [ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]]
    [[ 1.5   1.5   1.5  ...,  1.5   1.5   1.5 ]
     [ 1.52  1.52  1.52 ...,  1.52  1.52  1.52]
     ..., 
     [ 4.88  4.88  4.88 ...,  4.88  4.88  4.88]
     [ 4.9   4.9   4.9  ...,  4.9   4.9   4.9 ]]
    
    • Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
      调用ravel()函数将xx和yy的两个矩阵转变成一维数组,由于两个矩阵大小相等,因此两个一维数组大小也相等。np.c_[xx.ravel(), yy.ravel()]是获取并合并成矩阵,即:
    xx.ravel() 
    [ 3.8   3.82  3.84 ...,  8.36  8.38  8.4 ]
    yy.ravel() 
    [ 1.5  1.5  1.5 ...,  4.9  4.9  4.9]
    np.c_[xx.ravel(), yy.ravel()]
    [[ 3.8   1.5 ]
     [ 3.82  1.5 ]
     [ 3.84  1.5 ]
     ..., 
     [ 8.36  4.9 ]
     [ 8.38  4.9 ]
     [ 8.4   4.9 ]]
    

    总之,上述操作是把第一列花萼长度数据按h取等分作为行,并复制多行得到xx网格矩阵;再把第二列花萼宽度数据按h取等分作为列,并复制多列得到yy网格矩阵;最后将xx和yy矩阵都变成两个一维数组,再调用np.c_[]函数将其组合成一个二维数组进行预测。

    • Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
      调用predict()函数进行预测,预测结果赋值给Z。即:
    Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
    [1 1 1 ..., 2 2 2]
    size: 39501
    
    • Z = Z.reshape(xx.shape)
      调用reshape()函数修改形状,将Z变量转换为两个特征(长度和宽度),则39501个数据转换为171*231的矩阵。Z = Z.reshape(xx.shape)输出如下:
    [[1 1 1 ..., 2 2 2]
     [1 1 1 ..., 2 2 2]
     [0 1 1 ..., 2 2 2]
     ..., 
     [0 0 0 ..., 2 2 2]
     [0 0 0 ..., 2 2 2]
     [0 0 0 ..., 2 2 2]]
    
    • plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
      调用pcolormesh()函数将xx、yy两个网格矩阵和对应的预测结果Z绘制在图片上,可以发现输出为三个颜色区块,分布表示分类的三类区域。cmap=plt.cm.Paired表示绘图样式选择Paired主题,输出区域如下图所示:

    在这里插入图片描述

    • plt.scatter(X[:50,0], X[:50,1], color=‘red’,marker=‘o’, label=‘setosa’)
      调用scatter()绘制散点图,第一个参数为第一列数据(长度),第二个参数为第二列数据(宽度),第三、四个参数为设置点的颜色为红色,款式为圆圈,最后标记为setosa。

    五.本章小结

    回归分析是通过建立一个回归方程用来预测目标值,并求解这个回归方程的回归系数的方法。它是统计学中最重要的工具之一,包括线性回归、多项式回归、逻辑回归、非线性回归等。常用来确定变量之间是否存在相关关系,并找出数学表达式,也可以通过控制几个变量的值来预测另一个变量的值,比如房价预测、增长趋势、是否患病等问题。

    在Python中,我们通过调用Sklearn机器学习库的LinearRegression模型实现线性回归分析,调用PolynomialFeatures模型实现多项式回归分析,调用LogisticRegression模型实现逻辑回归分析。希望读者实现本章节中的每一部分代码,从而更好的用于自己的研究领域、解决自己遇到的问题。

    该系列所有代码下载地址:

    感谢在求学路上的同行者,不负遇见,勿忘初心。这周的留言感慨~

    在这里插入图片描述

    (By:娜璋之家 Eastmount 2021-07-03 夜于武汉 https://blog.csdn.net/Eastmount )


    参考文献:

    • [1] 杨秀璋. 专栏:知识图谱、web数据挖掘及NLP - CSDN博客[EB/OL]. (2016-09-19)[2017-11-07]. http://blog.csdn.net/column/details/eastmount-kgdmnlp.html.
    • [2] 张良均,王路,谭立云,苏剑林. Python数据分析与挖掘实战[M]. 北京:机械工业出版社,2016.
    • [3] (美)Wes McKinney著. 唐学韬等译. 利用Python进行数据分析[M]. 北京:机械工业出版社,2013.
    • [4] Jiawei Han,Micheline Kamber著. 范明,孟小峰译. 数据挖掘概念与技术. 北京:机械工业出版社,2007.
    • [5] 杨秀璋. [Python数据挖掘课] 五.线性回归知识及预测糖尿病实例[EB/OL].(2016-10-28)[2017-11-07]. http://blog.csdn.net/eastmount/article/details/52929765.
    • [6] 杨秀璋. [Python数据挖掘课程] 九.回归模型LinearRegression简单分析氧化物数据[EB/OL]. (2017-03-05)[2017-11-07].http://blog.csdn.net/eastmount/article/
      details/60468818.
    • [7] scikit-learn. sklearn.linear_model.LogisticRegression[EB/OL]. (2017)[2017-11-17]. http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html.
    • [8] scikit-learn. Logistic Regression 3-class Classifier[EB/OL]. (2017)[2017-11-17]. http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html#sphx-glr-auto-examples-linear-model-plot-iris-logistic-py.
    • [9] 吴恩达. Coursera公开课: 斯坦福大学机器学习"[EB/OL]. (2011-2017)[2017-11-15]. http://open.163.com/special/opencourse/machinelearning.html.
    • [10] scikit-learn. Sklearn Datasets[EB/OL]. (2017)[2017-11-15]. http://scikit-learn.org/
      stable/datasets/.
    • [11] lsldd. 用Python开始机器学习(7:逻辑回归分类)[EB/OL]. (2014-11-27)[2017-11-15]. http://blog.csdn.net/lsldd/article/details/41551797.
    • [12] 杨秀璋. [python数据挖掘课程] 十六.逻辑回归LogisticRegression分析鸢尾花数据[EB/OL]. (2017-09-10)[2017-11-15]. http://blog.csdn.net/eastmount/article/details/77920470.
    • [13] 杨秀璋. [python数据挖掘课程] 十八.线性回归及多项式回归分析四个案例分享[EB/OL]. (2017-11-26)[2017-11-26]. http://blog.csdn.net/eastmount/article/details/78635096.
    展开全文
  • 大家好,我是天空之城,今天给大家带来小福利,...一元线性回归模型的介绍与应用 多元线性回归模型的系数推导 线性回归模型的假设检验 假设前提 p小于0.3可能不符合线性相关 =============================

    大家好,我是天空之城,今天给大家带来小福利,带你快速了解一元线性回归方程模拟和多元线性回归方程模拟
    主要用来进行数据的相关性分析
    之前在研究生阶段用过一个叫origin的数据处理软件,只要是科研数据都可以用这个软件进行快速的分析处理,绘图和模拟等操作,那么咱们的Python同样也是具有这个模拟功能的哦

    1. 一元线性回归模型的介绍与应用
    2. 多元线性回归模型的系数推导
    3. 线性回归模型的假设检验
    4. 假设前提

    在这里插入图片描述
    在这里插入图片描述
    p小于0.3可能不符合线性相关

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    =========================================
    多元线性回归模型

    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述

    展开全文
  • 针对负荷影响因素的复杂性和不确定性,结合模糊数学和线性回归模型,讨论应用模糊线性回归模型预测负荷的变化区间。推导了模糊线性回归模型参数求解的数学模型,详细讨论了隶属度的取值对模型参数的影响。应用该模型...
  • 文章目录线性回归学习目标2.1 线性回归简介学习目标1 线性回归应用场景2 什么是线性回归2.1 定义与公式2.2 线性回归的特征与目标的关系分析3 小结 线性回归 学习目标 掌握线性回归的实现过程 应用LinearRegression...

    线性回归

    学习目标

    • 掌握线性回归的实现过程
    • 应用LinearRegression或SGDRegressor实现回归预测
    • 知道回归算法的评估标准及其公式
    • 知道过拟合与欠拟合的原因以及解决方法
    • 知道岭回归的原理及与线性回归的不同之处
    • 应用Ridge实现回归预测
    • 应用joblib实现模型的保存与加载
      线性回归简介 | 机器学习算法课程定位、目标

    2.1 线性回归简介

    学习目标

    • 了解线性回归的应用场景
    • 知道线性回归的定义

    1 线性回归应用场景

    • 房价预测

    • 销售额度预测

    • 贷款额度预测

    举例:

    在这里插入图片描述

    2 什么是线性回归

    2.1 定义与公式

    线性回归(Linear regression)是利用回归方程(函数)一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

    • 特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归

    在这里插入图片描述

    • 线性回归用矩阵表示举例

    在这里插入图片描述

    那么怎么理解呢?我们来看几个例子

    • 期末成绩:0.7×考试成绩+0.3×平时成绩
    • 房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率

    上面两个例子,我们看到特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型

    2.2 线性回归的特征与目标的关系分析

    线性回归当中主要有两种模型,**一种是线性关系,另一种是非线性关系。**在这里我们只能画一个平面更好去理解,所以都用单个特征或两个特征举例子。

    • 线性关系

      • 单变量线性关系:

    在这里插入图片描述
    * 多变量线性关系

    在这里插入图片描述

    注释:单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系

    更高维度的我们不用自己去想,记住这种关系即可

    • 非线性关系
      在这里插入图片描述

    注释:为什么会这样的关系呢?原因是什么?

    如果是非线性关系,那么回归方程可以理解为:

    w1x1+w2x22+w3x32w_1x_1+w_2x_22+w_3x_32w​1​​x​1​​+w​2​​x​2​2​​+w​3​​x​3​2​​

    3 小结

    • 线性回归的定义【了解】
      • 利用回归方程(函数)一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式
    • 线性回归的分类【知道】
      • 线性关系
      • 非线性关系
    展开全文
  • 7.1 单因素方差分析 7.1.1 方差分析概念 7.1.2 单因素方差分析的数据结构 ...7.3.2 一元线性回归模型 1.回归参数的估计 2.回归模型、参数的显著性检验 7.3.3 一元线性回归分析应用 多元线性回归分析

    🚀【MOOC数学建模与实验---学习笔记---整理汇总表】🚀

    🌈【学习网址:MOOC---郑州轻工业大学---数学建模与实验】🌈

    目   录

    7.1 单因素方差分析

    7.1.1 方差分析概念

    7.1.2 单因素方差分析的数据结构

    例7.1.1  三种治疗方案对降血糖的疗效比较

    7.1.3 单因素方差分析模型

    定理7.1.1 总变异 = 组间变异 + 组内变异

    例7.1.1 Matlab求解

    7.2 双因素方差分析

    7.2.1 问题引入

    7.2.2 双因素方差分析的数据结构

    7.2.3 因素方差分析模型

    1. 无交互作用的双因素方差分析模型

    2. 有交互作用的双因素方差分析模型

    7.3 一元线性回归分析

    7.3.1 回归分析的概念

    相关关系的类型

    7.3.2 一元线性回归模型

    1.回归参数的估计

    2.回归模型的显著性检验

    3.回归参数的显著性检验

    7.3.3 一元线性回归分析应用

    7.4 多元线性回归分析

    7.4.1 多元线性回归模型

    多元线性回归分析内容

    7.4.2 回归参数的估计

    7.4.3 回归方程的拟合优度

    7.4.4 显著性检验

    1.模型的显著性检验

    2. 偏回归系数的显著性检验

    7.4.5 共线性诊断

    7.5 牙膏价格问题

    7.5.1 问题描述

    7.5.2 问题分析

    7.5.3 模型假设与符号

    7.5.4 模型建立与求解

    1.牙膏价格差对销售量影响模型

    2.广告费用对销售量影响模型

    3.牙膏价格差与广告费用对销售量影响模型

    4.模型改进

    7.5.5 结果分析

    7.6 方差分析与回归分析的SPSS实现

    7.6.1 SPSS软件概述

    1 SPSS版本与安装

    2 SPSS界面

    3 SPSS特点

    4 SPSS数据

    7.6.2 SPSS与方差分析

    1 单因素方差分析

    2 双因素方差分析

    7.6.3 SPSS与回归分析 

    SPSS回归分析过程

    牙膏价格问题的回归分析


    数学方法解决实际问题,应用数学方法、概念:应用 -> 理论 -> 研究


    常用数据分析统计方法:方差分析、回归分析、主成分分析、因子分析、聚类分析、判别分析...


    历年赛题方法(全国赛):

    • 2010B 上海世博会影响力的定量评估
    • 2012A 葡萄酒的评价(回归分析、关联性分析)
    • 2013A 车道被占用对城市道路通行能力的影响(回归分析)
    • 2017B “拍照赚钱”的任务定价(回归分析、聚类分析)

    主要内容:方差分析、回归分析

    1. 单因素方差分析
    2. 多因素方差分析
    3. 一元回归分析
    4. 多元回归分析

    7.1 单因素方差分析

    数据分析   统计模型:方差分析模型、回归分析模型、主成分分析模型、聚类分析模型、因子分析模型

    7.1.1 方差分析概念

    • 在工农业生产和科学研究中,经常遇到这样的问题:影响产品产量、质量的因素很多,我们需要了解在这众多的因素中,哪些因素对影响产品产量、质量有显著影响。为此,要先做试验,然后对测试的结果进行分析。方差分析(Analysis of Variance,简称ANOVA)就是分析测试结果的一种方法。                主要是多组实验数据比较所采用的方法
    • 方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。

    例如,医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同饲料对牲畜体重增长的效果等都可以使用方差分析方法去解决。

    7.1.2 单因素方差分析的数据结构

    • 若指标观测值X只受一个因素A的影响,检验A在取不同的状态或水平时,对指标值X的影响称为单因素试验
    • 观测值X称为因变量(响应变量),是连续型的数值变量。
    • 因素(Factor)A是影响因变量变化的客观条件。

    设因素A有r个水平,每个水平下重复观测n次(n:重复数),则观测数据为如下形式

       \overline{x_{i}}:第i行的平均值;\overline{x}:整个实验数据的算数平均值(总均值)

    例7.1.1  三种治疗方案对降血糖的疗效比较

    例7.1.1 某医生研究一种四类降糖新药的疗效,按完全随机设计方案治疗糖尿病患者,治疗一月后,记录下每名受试者血糖下降值,资料见下表,问三种治疗方案对降血糖的疗效是否相同?【No,第1组疗效显著高于另外两组!】

    每一组,18名受试验者。3个剂量水平,每个剂量水平 重复观测 18次(n=18)。比较均值!

    7.1.3 单因素方差分析模型

    • 方差分析是从总体上判断多组数据平均数(r≥3)之间的差异是否显著。
    • 方差分析将全部数据看成是一个整体,分析构成变量的变异原因,进而计算不同变异来源的总体方差的估值。然后进行F检验,判断各样本的总体平均数是否有显著差异。若差异显著,再对平均数进行两两之间的比较。

    假设检验:分析数据之间差异是否显著。

       i:代表水平;j:代表重复数

    x_{ij} = \mu _{i} + \varepsilon _{ij} : 观测值 = 治疗方案 + 随机因素

    \mu _{i} :反映第x种(x = 1\2\3)治疗方案的平均治疗水平。

     H0:原假设;各个水平下的均值相同

    H0:先假定不同水平下的均值是相等的;三种治疗方案之间是没有差异的。-> 利用 数据分析 进行检验(类似于 反证法)

    单因素方差分析法是将样本总偏差的平方和分解成两个平方和(因子平方和误差平方和),通过这两个平方和之间的比较,导出假设检验的统计量和拒绝域。

    总偏差平方和:所有数据的偏差平方和。(求和:每个观测值与总均值之间的差的平方。)

    因子平方和:比较各个水平(行)下,数据之间的差异。xi:第i个水平下的样本均值。每个水平下的均值与总均值的偏差平方和。

    误差平方和:各个组内的偏差平方和。每一行数据内部的偏差平方和。主要与 随机误差 有关。

    自由度:自由取值的变量个数。

    定理7.1.1 总变异 = 组间变异 + 组内变异

    ST:所有数据之间的差异(xij之间的差异越大,ST就越大)。

    x_{ij} = \mu _{i} + \varepsilon _{ij} :\mu _{i} (组间变异\不同治疗方案) + \varepsilon _{ij}(组内变异)

    H0:原假设(\mu _{1} = \mu _{2} = \mu _{3} = ... = \mu _{r}

    用“均方和”进行比较:消除自由度的影响。MSA、MSE进行比较:观察SA、SE哪个引起的误差偏大。

    如果,因子平方和 所占的比例较大:各个因子之间的差异较大;

    如果,误差平方和 所占的比例较大:数据之间的差异,主要由随机误差引起。

    数据量越多,随机因素多占的比例越大,ST越大,∴ 用均方和进行比较。

    F(f_{A}, f_{E}) :F分布(第一自由度, 第二自由度)

    第一自由度:(r-1)、(水平数-1)          第二自由度:(n-r)、(样本观测值的个数-水平数)

    H0不合理:SA占的比例越大,F越大,越拒绝原假设。

    一般,r ≥ 3   《概率论与数理统计》

    拒绝原假设(各个水平下的均值相等):各个水平下的均值 有 显著差异。P值越小(小于α)(α一般为0.05)

    例7.1.1 Matlab求解

    % 例7.1.1
    x = xlsread('C:\Users\lwx\Desktop\chapter7.xlsx','Sheet1','A1:C18') % 读取数据
    % 每个水平(列)下 观测值、重复数都是一样的 单因素误差分析:重复数一样的数据容易分析处理
    [p,table,stats] = anova1(x)

    图1:方差分析表        图2:均值盒形图    箱形图    红线:反映平均血糖下降值(第1个下降值最高)     

        

    n:[18 18 18]:样本量          s:残差均方           残差自由度:51       means:均值比较

    三列数据:三组治疗方案的治疗效果;18个测试者;行数:重复数。

    7.2 双因素方差分析

    7.2.1 问题引入

    在实际应用中,指标值(因变量)往往受多个不同因素的影响。不仅这些因素会影响指标值,而且这些因素的不同水平交叉也会影响指标值。统计学中把多个因素不同水平交叉对指标值的影响称为交互作用。在多因素方差分析中,交互作用作为一个新因素来处理。 这里介绍两个因素的方差分析,亦称为双因素方差分析

    7.2.2 双因素方差分析的数据结构

    • 假设在观测指标X的试验中,有两个变化因素A和B。因素A有r个水平,记作A1 ,A2 ,…,Ar;因素B有k个水平,记作B1 ,B2 ,…,Bk;则A 与B的不同水平组合A_{i}B_{j}(i=1,2,…,r;j=1,2,…,k)共有rk个,每个 水平组合称为一个处理,每个处理作m次试验(亦可1次试验),得rkm个观测值x_{ij},双因素的有重复(无重复)观测数据表7.2.2。

       交叉项:重复观测数

    A1、B1水平下,有m个观测值。

    7.2.3 因素方差分析模型

    1. 无交互作用的双因素方差分析模型

    在双因素方差分析中,若不考虑两因素的交互作用效应,数据可采用无重复观测

       类似于 单因素方差分析

    x11...xrk:交叉水平下的观测值。

    \overline{x_{i.}}:第i行的算数平均(代表因素A的各个水平下的样本平均值)

    \overline{x_{.j}}:第j列的算数平均(代表因素B的各个水平下的样本平均值,因素B的第j个水平下 数据的算数平均);

    \overline{x}:所有数据的算数平均(总算数平均值)。

     A_{i}:第i个水平下

    在无交互作用下,分析因素A,B的不同水平对试验结果是否有显著影响,即为检验如下假设是否成立:

     检验两组假设:假设因素A下,不同水平下的均值没有差异;假设因素B...

    类似单因素方差分析数据的处理,在上述定义下,无交互作用双因素方差分析模型中的平方和分解如下。

     m=1的情况。

    SA:不同行数据之间的差异,因素A的不同水平之间的差异;SB:不同列数据之间的差异。SE:随机误差平方和。

    检验两组假设:假设因素A下,不同水平下的均值没有差异;假设因素B...   -->   构造两个检验统计量。

     无交互作用的双因素方差分析

    在Matlab中进行双因素方差分析,采用命令

    [p, table, stats] = anova2(x,reps)

    reps:试验数据(每个交叉水平下)重复次数,缺省时为1。

    % 例7.2.1
    x = [365,350,343,340,323;345,368,363,330,333;
        358,232,353,343,308;288,280,298,260,298]'; % 不转置 也行
    [p,table,stats] = anova2(x)

      此图,表格数据有误。看matlab运行图,即可。

    P值越大,越不拒绝原假设。

    2. 有交互作用的双因素方差分析模型

    在数据分析种,不一定存在交互作用,但是可以通过数据处理来识别有没有交互作用。

    交叉水平下的重复数 m。l:交叉水平下的重复数。

    \overline{x_{i.}}:第i行的算数平均(代表因素A的各个水平下的样本平均值)

    \overline{x_{.j}}:第j列的算数平均(代表因素B的各个水平下的样本平均值,因素B的第j个水平下 数据的算数平均);

    \overline{x_{ij}}:因素A、B交叉水平下的平均值。

    存在交互作用的情况下,双因素方差分析需要检验如下假设

    原假设 H03:假设不存在交互作用。

    有交互作用的双因素方差分析

     重复观测、交互作用影响

    拒绝原假设(各个水平下的均值相等):各个水平下的均值 有 显著差异。P值越小(小于α)(α一般为0.05)

    P值大,不拒绝 原假设。

    % 例7.2.2
    x = [26,19;24,20;27,23;25,22;25,21;
        20,18;17,17;22,13;21,16;17,12];
    [p,table,stats] = anova2(x,5) % 5:每个交叉水平下的重复数

    7.3 一元线性回归分析

     在应用问题研究当中,如果涉及到变量与变量之间的分析,可以借助回归分析来进行研究。

    7.3.1 回归分析的概念

    研究变量间的关系常有两种。

    • 确定性关系函数关系

    如圆面积与圆半径的关系;价格一定时,商品销售额与销售量的关系等。

    • 相关关系

    如父亲与子女身高的关系;收入水平与受教育程度间的关系等。

    变量间的相关关系不能用完全确切的函数形式表示,但在平均意义下 有一定的定量关系表达式。研究总体(总体规律)

    相关关系的类型

       不相关:无明显相关关系

    回归分析(Regression Analysis)就是研究变量间的相关关系的统计方法,是英国生物学家兼统计学家高尔顿在研究父代与子代身高关系时得到的分析方法。

    通过对客观事物中变量的大量观察或试验获得的数据,寻找隐藏在数据背后的相关关系,并给出它们的表达形式——回归函数的估计。

    回归分析主要用于研究指标的估计和预测。

    通过数据分析,得到 回归表达式(回归函数),对变量进行估计、预测。

    设变量y与x(一维或多维)间有相关关系,称x为自变量(解释变量),y为因变量(被解释变量)。

    若x为一般变量,在获得x取值后,设y 的取值为一随机变量,可表示为

                                           y = f(x) + ε

    上式称为一般回归模型,其中ε称为随机误差项,一般假设 ε~N(0, \sigma ^{2})。正态分布

    7.3.2 一元线性回归模型

     r_{xy}:反映 x组数据与y组数据的线性相关程度。

    r_{xy} 越大,线性相关程度越强。            |r_{xy}| ≤ 1              

    一元线性回归分析内容

    (1)回归参数\beta _{0},\beta _{1},\sigma ^{2}的估计

    (2)回归模型的显著性检验

    (3)回归参数的显著性检验

    1.回归参数的估计

    yi:观测值          最小二乘法(参数估计、数据拟合)             \beta _{0}+\beta _{1}x_{i} :yi的回归值

     (7.3.3) 求导式

     \overline{x} , \overline{y}:x、y数据的样本均值

    2.回归模型的显著性检验

    在模型假定下,可以证明

    对模型(7.3.2)的显著性提出假设

          H0 : 回归方程不显著,H1 : 回归方程显著

    如果回归方程显著,意味着SSE应该比较小,F值应该比较大,所以在显著水平α下,当 F\geq F_{\alpha } (1,n-2)时,拒绝原假设,认为回归方程显著。

    3.回归参数的显著性检验

     t^2 = F

    MATLAB进行回归分析的命令为 regress,其调用方式为 [b,bint,r,rint,stats] = regress(y, x) ,其输出结果为

    • b :回归方程的系数
    • bint:回归方程系数的95%置信区间
    • r: 回归方程的残差
    • rint:残差的95%置信区间
    • stats: 可决系数R^{2}、模型检验F值、模型检验P值

    7.3.3 一元线性回归分析应用

    例7.3.1 为研究销售收入与广告费用支出之间的关系,某医药管理部门随机抽取20家药品生产企业,得到它们的年销售收入和广告费用支出(万元)的数据如下表。分析销售收入与广告费用之间的关系。

    分析 由表(1)可得模型检验F值为116.3958,P值非常小,即模型是显著的;由表(2)可得模型的决定系数R^{2} = 0.866067,接近于1,说明模型拟合效果较好;由表(3)可得回归方程的系数\beta _{0} = 274.5502,\beta _{1} = 5.1308,且参数\beta _{1}检验的P值较小,显著非零,则回归方程为

    根据得到的回归方程可进行因变量y的估计和预测。

    7.4 多元线性回归分析

    研究多个变量之间相关性的常用统计方法:多元线性回归分析。

    7.4.1 多元线性回归模型

    实际应用中影响因变量变化的因素往往有多个,例如产出受各种投入要素(资本、劳动力、技术等)的影响;销售额受价格和广告费投入等的影响。      研究 多个变量 影响 因变量的情况。

    回归模型中自变量(解释变量)个数为两个及两个以上时,即为多元回归模型

    多元线性回归模型的一般形式为

     (p=1:一元线性回归模型)

    • \beta _{1}\beta _{2},...,\beta _{p} 称为 偏回归系数              \beta _{0} :辅助作用,根据实际问题分析,选择是否保留。
    • β_{i}\beta _{i} 表示假定其他变量不变,当 xi 每变动一个单位时,y 的平均变动值。 

    多元线性回归分析内容

    1. 回归参数的估计
    2. 回归方程的拟合优度
    3. 显著性检验
    4. 共线性诊断

    7.4.2 回归参数的估计

    x_{np} :第p个自变量的观测值。

    yi的值 由 自变量xi的线性回归值、随机误差 \varepsilon_{i} 的值 所构成。

    Y:因变量构成的列向量;\beta:回归参数向量;\varepsilon:随机误差项构成的向量。

     偏导数 = 0

    7.4.3 回归方程的拟合优度

    7.4.4 显著性检验

    多元线性回归分析的显著性检验包括模型的显著性检验和各偏回归系数的显著性检验。

    1.模型的显著性检验

    2. 偏回归系数的显著性检验

    关于模型的显著性检验 不拒绝 原假设 时,模型是不显著的,此时 不必做 偏回归系数的显著性检验。

    7.4.5 共线性诊断

    多元线性回归分析中,要求回归模型(7.4.1)中自变量之间线性无关。若有两个或两个以上的自变量彼此相关,称模型存在多重共线性

    多重共线性产生的问题

    (1)可能会使回归的结果造成混乱,甚至会把分析引入歧途;

    (2)可能对参数估计值的正负号产生影响,特别是各回归系数的正负号有可能同预期的正负号相反 。

    检测多重共线性的最简单的一种办法是计算模型中各对自变量之间的相关系数,并对各相关系数进行显著性检验。若有一个或多个相关系数显著,就表示模型中所用的自变量之间相关,存在着多重共线性。

    如果出现下列情况,暗示存在多重共线性。(存在多重共线性,需要对模型进行修正)

    • 模型中各对自变量之间显著相关;
    • 当模型的线性关系检验(F检验)显著时,几乎所有回归系数的t检验却不显著;
    • 回归系数的正负号与预期的相反。

    7.5 牙膏价格问题

    7.5.1 问题描述

    某大型牙膏制造企业为了更好地拓展产品市场,有效地管理库存,公司董事会要求销售部门根据市场调查,找出公司生产的牙膏销 售量与销售价格、广告投入等因素之间的关系,从而预测出在不同价格和广告费用下的销售量。表7.5.1是30个销售周期(4周为1销售周期)中收集到的资料。试根据这些数据建立一个数学模型,分析牙膏的销售量与其它因素的关系,为制定价格策略和广告投入提供决策依据。

    7.5.2 问题分析

    1.牙膏价格与销售量

    由于牙膏是小件生活必需品,对大多数顾客来说,在购买同类产品的牙膏时更多地会在意不同品牌中间的价格差异,而不是他们的 价格本身。因此在研究各个因素对销售量的影响时,用价格差代替公司销售价格更为合适。

    通过分析其他厂家牙膏价格与本公司牙膏价格差对销售量的影响关系,建立价格差与销售量的相关模型。

    2.广告费用与销售量

    通过分析广告费用对销售量的影响关系,建立广告费用与销售 量的相关模型。

    7.5.3 模型假设与符号

    实际中,由于影响牙膏销售量的因素有很多,根据问题分析和相关数据,提出假设:

    (1)假设牙膏销售量主要受价格差和广告费用影响,即其它因素对销售量的影响归入随机误差。

    (2)令 y~本公司牙膏销售量;x_{1}~其它厂家牙膏价格与本公司牙膏价格差;x_{2}~本公司广告费用。x_{1}x_{2}对y的影响、建立模型。

    7.5.4 模型建立与求解

    1.牙膏价格差对销售量影响模型

     正相关的线性关系

    2.广告费用对销售量影响模型

       勉强接受:线性关系

    建立模型:多尝试,以合理性为前提,越简单越好。

    3.牙膏价格差与广告费用对销售量影响模型

    由(7.5.1)和(7.5.2),将常数项合并,随机误差项合并,且不考虑牙膏价格差与广告费用对销售量的交叉影响。可得牙膏价格差与广告 费用对销售量影响模型

                                     

    由数据进行回归分析,见表7.5.2

                                        

    4.模型改进

     只考虑 线性关系

    由表7.5.3回归结果可得,修正可决系数为0.874,模型显著性检验的p值为0,模型是显著的。并且各回归参数均显著非0,说明模型 有效,得到牙膏价格差与广告费用对销售量影响模型为

                                                         

    7.5.5 结果分析

                                                         

    由模型(7.5.5)可知,提高本公司牙膏价格,将会减少本公司牙膏销售量,例如,广告费不变时,本公司牙膏价格比其它厂家平均价格 提高1元,估计销售量将会减少约1.468百万支。

    另一方面,一定程度上,增加广告费用将会提高销售量,但过 度增加广告费用就会增加成本。

    根据模型(7.5.5),只要给定了x_{1}x_{2},代入就可以对销售量进行估计和预测,还可以进行一定的置信度下的区间预测。如当x_{1}=0.2,x_{2}=6.5时,可以计算得到销售量的预测值约为8.379(百万支),其95%的预测区间为[7.874, 8.863]。

    在公司管理中,这个预测上限可以用来作为公司的生产和库存数量;而这个预测下限可以用来较好地把握公司的现金流,因为到时至少有7.874百万支牙膏可以有把握的卖出去,可以回来相应的销售款。

    若考虑牙膏价格差与广告费用两个因素间可能会有交互作用,可以将二者的乘积x_{1}x_{2}来表示这个作用对销售量的影响,对原来的模型进行改进,

       

    同理,可对模型7.5.6进行回归分析,研究模型的有效性和显著性(略)。

    7.6 方差分析与回归分析的SPSS实现

    数据统计分析:Matlab、R、SPSS

    7.6.1 SPSS软件概述

    1 SPSS版本与安装

    SPSS的版本每年更新,当前最新为SPSS26.0,较新版本都有中文版,这里以2013年的SPSS22.0中文版为例介绍其安装及应用。

     数学建模【SPSS 下载、安装】

    2 SPSS界面

    SPSS的主要界面 有 数据编辑窗口 和 结果输出窗口。

    SPSS软件在其基本界面上集成了数据录入、转换、检索、统计分析、作图、制表及编辑等功能;采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。

    数据编辑窗口:标题栏、菜单栏、工具栏、状态栏、数据视图、变量视图

    控制菜单图标、窗口名称、窗口控制图标、窗口控制按钮

    变量视图

    3 SPSS特点

    • (1)囊括了各种成熟的统计方法与模型,为统计分析用户提供了全方位的统计学算法,为各种研究提供了相应的统计学方法。
    • (2)提供了各种数据准备与数据整理技术。
    • (3)自由灵活的表格功能。
    • (4)各种常用的统计学图形。

    SPSS最突出的特点就是操作界面极为友好,输出结果美观漂亮。SPSS是第一个采用人机交互界面的统计软件,非常容易学习和使用。

    SPSS软件基本操作可通过点击鼠标来完成,有一定统计基础且熟悉Windows一般操作的应用者参考它的帮助系统 基本上 可以自学使用;除了数据录入及部分命令程序等少数输入工作需要使用键盘键入外,对于常见的统计分析方法完全可以通过对“菜单”、“对话框”的操作完成,无需编程。

    4 SPSS数据

    SPSS能够与常用的数据文件格式互交。                  Excel文件

    SPSS数据文件中,变量有三种的基本类型:数值型、字符型和日期型。

    SPSS的文件类型:

    (1)数据文件:拓展名为.sav

    (2)结果文件:拓展名为.spv

    (3)图形文件:拓展名为.cht

    (4)语法文件:拓展名为.sps

    7.6.2 SPSS与方差分析

    【例7.1.1、例7.2.2 Excel文件:链接:https://pan.baidu.com/s/1PLXyYCelCfOGgMPbl7T2AA   提取码:zjxs】

    1 单因素方差分析

    生成数据:1、导入数据;2、手工录入

    54条数据:因变量(血糖下降值)记为A,分组变量(3个组别)记为g。Excel表中,第一行为变量名。

       

      数据视图
    变量视图

    单因素方差分析

      

       

    多重比较:将 各个水平下的均值 进行比较。Tukey:针对重复次数一样的多重比较。显著性水平 默认 0.05。

    左边:输出列表;右边:输出结果(概括性描述)。

    表2:方差极性检验(显著性-P值:0.871)   表3:方差分析表(因子平方和、误差平方和;总平方和)

     只要P值小于0.05,就认为 是有 显著差异的。

    根据多重比较的结果,进行分类得到的分类表。

      

    均值图                      1、2之间,有显著差异;2、3无显著差异。

    2 双因素方差分析

    【例7.1.1、例7.2.2 Excel文件:链接:https://pan.baidu.com/s/1PLXyYCelCfOGgMPbl7T2AA   提取码:zjxs】 

    双因素并且考虑交互作用的方差分析:将分析数据作为因变量指标;将时段、路段两个因素 建立 两个分组变量。

    将Excel表中的数据,导入SPSS。

       

    选择 “模型”:

        

       

    绘图

      -> 点击“添加”  ->   

    事后多重比较

    选项

        

      

        

        

    7.6.3 SPSS与回归分析 

    SPSS回归分析过程

    牙膏价格问题的回归分析

       

       

          

       

    表1:自变量、因变量、标准差...描述结果;表2:相关系数矩阵表---研究共线性;

    模型汇总统计量计算 Model Summary;ANOVA:回归分析的方差分析表;

    coefficients:回归系数估计

    不考虑x2(将x2从模型中去除!)

      

    展开全文
  • 一般线性模型和线性回归模型Interpretability is one of the biggest challenges in machine learning. A model has more interpretability than another one if its decisions are easier for a human to ...
  • Python——线性回归模型应用

    千次阅读 2020-07-14 16:21:22
    线性回归模型属于经典的统计学模型,该模型的应用场景是根据已知的变量(即自变量)来预测某个连续的数值变量(即因变量)。例如餐厅根据媒体的营业数据(包括菜谱价格、就餐人数、预订人数、特价菜折扣等)预测就餐...
  • 一元线性回归分析模型在家庭消费支出预测中的应用,高玉,周树民,介绍一元线性回归分析的基本概念和方法原理,并以2001年到2010年国民的城镇居民家庭人均支配收入(简称
  • 应用回归分析
  • 线性回归模型应用

    千次阅读 2017-05-03 20:40:12
    1.导入数据,缩放数据(有些模型在递归下降的时候为了更快,将不同特征缩放到相差不多的尺度内。另一种说法是:为了让大值特征不要淹没小值...1.用sklearn库的线性回归,重要的是参数的配置。 其中一个是:递归
  • 一元线性回归模型

    2019-12-08 19:42:27
    本文主要介绍线性回归模型,该模型主要应用于监督学习中目标变量是连续数值型的场景。 一元线性回归模型 线性回归模型是数据科学领域最简单的模型,很多复杂的模型 (如多项式回归、逻辑回归、SVM) 都是建立在线性...
  • 线性回归模型,用matlab实现,代码简单易读,训练结果直观,也可用于多变量线性回归,可在数据处理领域应用以及需要预测的领域应用
  • 线性回归模型

    2019-07-14 20:54:03
    内部包含线性回归模型的代码以及数据集,分为单线性回归和多线性回归两部分,使用python实现
  • 依据50年(1954-2003)和田绿洲的气象资料,应用灰关联分析,发现影响...在此基础上建立了回归模型。该模型模拟预测绿洲蒸发能力的变化精度较高,但需进一步改进。这种途径比逐步回归分析减少了分析工作量和上机时间。
  • Mathematica在多元线性回归分析中的应用,黄志鹏,李思泽,从多元线性回归分析的原理出发,利用最小二乘法准则,将回归分析归结为用Seidel迭代法求矩阵方程组解,确定待定系数,利用mathematica�
  • 基于MATLAB GUI的线性回归模型的设计与应用.pdf
  • 线性回归分析及其应用(426s).pdf
  • 线性回归模型请看上篇文章,本篇文章介绍的是非线性回归模型 线性回归模型链接 在目前的机器学习领域中,最常见的三种任务就是:回归分析、分类分析、聚类分析。那么什么是回归呢?回归分析是一种预测性的建模技术,...
  • 之前的博文讲的是理论。现在需要用到成熟的库,来应用。 Science 科学的工具包 kit # sklearn 命名惯例: ...# LinearRegression 线性回归的类,我们可以使用该类实现线性回归。 # 底层就是使用...
  • 线性回归分析

    2014-11-24 11:56:49
    该课件主要介绍以下内容:1 一元线性回归 2 多元线性回归 3 逐步回归 4 虚拟解释变量问题 5 用SPSS处理经典回归问题 6 曲线回归与SPSS的应用
  • 商业保险公司希望通过分析以往的固定资产保险理赔案例,能够预测理赔金额,借以提高其...本文结合该商业实例介绍了线性回归模型的基本概念,以及使用 Statistics 进行线性回归分析,解决该商业问题的基本步骤和方法。
  • 多元线性回归及logistics回归模型在上海市房价预测中的分析应用.rar
  • Applied Linear Statistical Models By Kutner & Nachtsheim & Neter,哥伦比亚大学线性回归课程规定的教材,堪称经典,难度和深度兼具,想要了解线性回归模型朋友自取
  • 多元线性回归及logistics回归模型在上海市房价预测中的分析应用.doc
  • 我们可以使用线性回归模型来拟合数据,然而,在现实中,数据未必总是线性(或接近线性)的。当数据并非线性时,直接使用LinearRegression的效果可能会较差,产生欠拟合。 import numpy as np import matplotlib as...
  • LOGISTIC是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。Logistics回归模型中因变量只有1-0,两种取值。 逻辑回归建模步骤: 根据分析目的设置特征 筛选特征 列出回归方程...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 77,174
精华内容 30,869
关键字:

线性回归模型应用