-
跨平台
-
简单清晰
-
开放性
-
发展迅速
Arduino是一款便捷灵活、方便上手的开源电子原型平台。包含硬件(各种型号的Arduino板)和软件(Arduino IDE)。由一个欧洲开发团队于2005年冬季开发。其成员包括Massimo Banzi、David Cuartielles、Tom Igoe、Gianluca Martino、David Mellis和Nicholas Zambetti等。它构建于开放原始码simple I/O介面版,并且具有使用类似Java、C语言的Processing/Wiring开发环境。主要包含两个主要的部分:硬件部分是可以用来做电路连接的Arduino电路板;另外一个则是Arduino IDE,你的计算机中的程序开发环境。你只要在IDE中编写程序代码,将程序上传到Arduino电路板后,程序便会告诉Arduino电路板要做些什么了。Arduino能通过各种各样的传感器来感知环境,通过控制灯光、马达和其他的装置来反馈、影响环境。板子上的微控制器可以通过Arduino的编程语言来编写程序,编译成二进制文件,烧录进微控制器。对Arduino的编程是通过 Arduino编程语言 (基于 Wiring)和Arduino开发环境(基于 Processing)来实现的。基于Arduino的项目,可以只包含Arduino,也可以包含Arduino和其他一些在PC上运行的软件,他们之间进行通信 (比如 Flash, Processing, MaxMSP)来实现。[1]Massimo Banzi之前是意大利Ivrea一家高科技设计学校的老师。他的学生们经常抱怨找不到便宜好用的微控制器。 2005年冬天, Massimo Banzi跟David Cuartielles讨论了这个问题。 David Cuartielles是一个西班牙籍晶片工程师,当时在这所学校做访问学者。两人决定设计自己的电路板,并引入了Banzi的学生David Mellis为电路板设计编程语言。两天以后,David Mellis就写出了程式码。又过了三天,电路板就完工了。Massimo Banzi喜欢去一家名叫di Re Arduino的酒吧,该酒吧是以1000年前意大利国王Arduin的名字命名的。为了纪念这个地方,他将这块电路板命名为Arduino。随后Banzi、Cuartielles和Mellis把设计图放到了网上。版权法可以监管开源软件,却很难用在硬件上,为了保持设计的开放源码理念,他们决定采用Creative Commons(CC)的授权方式公开硬件设计图。在这样的授权下.任何人都可以生产电路板的复制品,甚至还能重新设计和销售原设计的复制品。人们不需要支付任何费用,甚至不用取得Arduino团队的许可。然而,如果重新发布了引用设计,就必须声明原始Arduino团队的贡献。如果修改了电路板,则最新设计必须使用相同或类似的Creative Commons(CC)的授权方式,以保证新版本的Arduino电路板也会一样是自由和开放的。唯一被保留的只有Arduino这个名字,它被注册成了商标,在没有官方授权的情况下不能使用它。
跨平台Arduino IDE可以在Windows、Macintosh OS X、Linux三大主流操作系统上运行,而其他的大多数控制器只能在Windows上开发。
简单清晰Arduino IDE基于processing IDE开发。对于初学者来说,极易掌握,同时有着足够的灵活性。Arduino语言基于wiring语言开发,是对 avr-gcc库的二次封装,不需要太多的单片机基础、编程基础,简单学习后,你也可以快速的进行开发。
开放性Arduino的硬件原理图、电路图、IDE软件及核心库文件都是开源的,在开源协议范围内里可以任意修改原始设计及相应代码。
发展迅速Arduino不仅仅是全球最流行的开源硬件,也是一个优秀的硬件开发平台,更是硬件开发的趋势。Arduino简单的开发方式使得开发者更关注创意与实现,更快的完成自己的项目开发,大大节约了学习的成本,缩短了开发的周期。因为Arduino的种种优势,越来越多的专业硬件开发者已经或开始使用Arduino来开发他们的项目、产品;越来越多的软件开发者使用Arduino进入硬件、物联网等开发领域;大学里,自动化、软件,甚至艺术专业,也纷纷开展了Arduino相关课程。[3]可以快速使用Arduino与Adobe Flash, Processing, Max/MSP, Pure Data, SuperCollider等软件结合,作出互动作品。 Arduino可以使用现有的电子元件例如开关或者传感器或者其他控制器件、LED、步进马达或其他输出装置。 Arduino也可以独立运行,并与软件进行交互,例如: Macromedia Flash, Processing, Max/MSP, Pure Data, VVVV或其他互动软件。 Arduino的IDE界面基于开放源代码,可以免费下载使用,开发出更多令人惊艳的互动作品。[4-5]主板
Arduino UnoArduino NanoArduino LilyPadArduino Mega 2560Arduino EthernetArduino DueArduino Leonardo扩展板
Arduino的扩展板很多,如Arduino Ethernet ShieldArduino WiFi ShieldArduino Wireless SD ShieldArduino USB Host ShieldArduino Motor ShieldArduino Wireless Proto ShieldArduino Proto Shield为了保持设计的开放源码理念,因为版权法可以监管开源软件,却很难用在硬件上,Arduino决定采用Creative Commons许可。 Creative Commons(CC)是为保护开放版权行为而出现的类似GPL的一种许可(license)。在Creative Commons许可下,任何人都被允许生产电路板的复制品,还能重新设计,甚至销售原设计的复制品。你不需要付版税,甚至不用取得Arduino团队的许可。然而,如果你重新发布了引用设计,你必须说明原始Arduino团队的贡献。如果你调整或改动了电路板,你的最新设计必须使用相同或类似的 Creative Commons许可,以保证新版本的Arduino电路板也会一样的自由和开放。唯一被保留的只有Arduino这个名字。它被注册成了商标。如果有人想用这个名字卖电路板,那他们必须付一点商标费用给Arduino的核心开发团队成员。[8-11]
驱动在你的arduino安装文件夹中,如下
Arduino UNO、Arduino 2560、ADK、Leonardo等驱动地址:
arduino\drivers\
Arduino Duemilanove驱动地址:
驱动地址为:arduino\drivers\FTDI USB Drivers
Arduino智能小车——循迹篇
Arduino智能小车系列教程时空门:
- Arduino智能小车——拼装篇 点击跳转
- Arduino智能小车——测试篇 点击跳转
- Arduino智能小车——调速篇 点击跳转
- Arduino智能小车——超声波避障 点击跳转
- Arduino智能小车——蓝牙小车 点击跳转
- Arduino智能小车——循迹篇 点击跳转
- Arduino智能小车——小车测速 点击跳转
相信大家都在网上看到过类似下图这样的餐厅服务机器人,或者仓库搬运机器人,但是你们有没有注意到图片中地上的那条黑线?没错,他们都是沿着这条黑线来行进的,在这一篇将教大家怎么用小车实现类似的循迹功能。
![]()
准备材料
黑色电工胶布
黑色胶布用于搭建小车运行的“轨道”,选用黑色宽度18mm左右的即可。
![]()
循迹模块
在此我们使用循迹模块TCRT5000,该模块体积小,灵敏度较高,还可以通过转动上面的电位器来调节检测范围。
![]()
模块特色
1、采用TCRT5000红外反射传感器
2、检测距离:1mm~8mm适用,焦点距离为2.5mm
3、比较器输出,信号干净,波形好,驱动能力强,超过15mA。
4、配多圈可调精密电位器调节灵敏度
5、工作电压3.3V-5V
6、输出形式 :数字开关量输出(0和1)
7、设有固定螺栓孔,方便安装
8、小板PCB尺寸:3.2cm x 1.4cm
9、使用宽电压LM393比较器工作原理
TCRT5000传感器的红外发射二极管不断发射红外线,当发射出的红外线没有被反射回来或被反射回来但强度不够大时,光敏三极管一直处于关断状态,此时模块的输出端为低电平,指示二极管一直处于熄灭状态;被检测物体出现在检测范围内时,红外线被反射回来且强度足够大,光敏三极管饱和,此时模块的输出端为高电平,指示二极管被点亮。
由于黑色具有较强的吸收能力,当循迹模块发射的红外线照射到黑线时,红外线将会被黑线吸收,导致循迹模块上光敏三极管处于关闭状态,此时模块上一个LED熄灭。在没有检测到黑线时,模块上两个LED常量。
##循迹模块安装
循迹模块的工作一般要求距离待检测的黑线距离1-2cm,因此我建议大家可以将循迹模块向下延伸。我自己是在硬纸板上面打了几个孔,固定循迹模块,每个模块之间可以留1cm左右的距离。传感器在接收到反射不同的距离的时候“AO”引脚电压会不同,是模拟信号,“DO”是数字信号输出。因为在这里我们只用判断是否检测到黑线,因此使用“DO”数字信号即可。按照车头为正方向,从右到左循迹模块的“DO”依次接到开发板“10”、“11”、“12”、“13”引脚。## 跑道的搭建 找一块干净的地面,贴上准备好的黑色电工胶布。由于小车自身结构的原因,转弯的时候尽可能增大转弯半径,在跑道尽头如图中那样拉一条黑色横线,用于小车识别终点。 ![]()
![]()
测试代码
#include <Servo.h> #define STOP 0 #define FORWARD 1 #define BACKWARD 2 #define TURNLEFT 3 #define TURNRIGHT 4 int leftMotor1 = 16; int leftMotor2 = 17; int rightMotor1 = 18; int rightMotor2 = 19; int trac1 = 10; //从车头方向的最右边开始排序 int trac2 = 11; int trac3 = 12; int trac4 = 13; int leftPWM = 5; int rightPWM = 6; Servo myServo; //舵机 int inputPin=7; // 定义超声波信号接收接口 int outputPin=8; // 定义超声波信号发出接口 void setup() { // put your setup code here, to run once: //串口初始化 Serial.begin(9600); //舵机引脚初始化 myServo.attach(9); //测速引脚初始化 pinMode(leftMotor1, OUTPUT); pinMode(leftMotor2, OUTPUT); pinMode(rightMotor1, OUTPUT); pinMode(rightMotor2, OUTPUT); pinMode(leftPWM, OUTPUT); pinMode(rightPWM, OUTPUT); //寻迹模块D0引脚初始化 pinMode(trac1, INPUT); pinMode(trac2, INPUT); pinMode(trac3, INPUT); pinMode(trac4, INPUT); } void loop() { // put your main code here, to run repeatedly: tracing(); } void motorRun(int cmd,int value) { analogWrite(leftPWM, value); //设置PWM输出,即设置速度 analogWrite(rightPWM, value); switch(cmd){ case FORWARD: Serial.println("FORWARD"); //输出状态 digitalWrite(leftMotor1, HIGH); digitalWrite(leftMotor2, LOW); digitalWrite(rightMotor1, HIGH); digitalWrite(rightMotor2, LOW); break; case BACKWARD: Serial.println("BACKWARD"); //输出状态 digitalWrite(leftMotor1, LOW); digitalWrite(leftMotor2, HIGH); digitalWrite(rightMotor1, LOW); digitalWrite(rightMotor2, HIGH); break; case TURNLEFT: Serial.println("TURN LEFT"); //输出状态 digitalWrite(leftMotor1, HIGH); digitalWrite(leftMotor2, LOW); digitalWrite(rightMotor1, LOW); digitalWrite(rightMotor2, HIGH); break; case TURNRIGHT: Serial.println("TURN RIGHT"); //输出状态 digitalWrite(leftMotor1, LOW); digitalWrite(leftMotor2, HIGH); digitalWrite(rightMotor1, HIGH); digitalWrite(rightMotor2, LOW); break; default: Serial.println("STOP"); //输出状态 digitalWrite(leftMotor1, LOW); digitalWrite(leftMotor2, LOW); digitalWrite(rightMotor1, LOW); digitalWrite(rightMotor2, LOW); } } void tracing() { int data[4]; data[0] = digitalRead(10); data[1] = digitalRead(11); data[2] = digitalRead(12); data[3] = digitalRead(13); if(!data[0] && !data[1] && !data[2] && !data[3]) //左右都没有检测到黑线 { motorRun(FORWARD, 200); } if(data[0] || data[1]) //右边检测到黑线 { motorRun(TURNRIGHT, 150); } if(data[2] || data[3]) //左边检测到黑线 { motorRun(TURNLEFT, 150); } if(data[0] && data[3]) //左右都检测到黑线是停止 { motorRun(STOP, 0); while(1); } Serial.print(data[0]); Serial.print("---"); Serial.print(data[1]); Serial.print("---"); Serial.print(data[2]); Serial.print("---"); Serial.println(data[3]); }
代码详解
小车装有4个TCRT5000,从最右边模块开始读入数据,放入
data[]
数组中data[0] = digitalRead(10); data[1] = digitalRead(11); data[2] = digitalRead(12); data[3] = digitalRead(13);
4个模块可能存在的检测状态如下,其中“1”表示检测到黑线,“0”代表没有检测到黑线:
data[0] | data[1] | data[2] | data[3] | 小车运动状态 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 停止 |
0 | 0 | 1 | 1 | 左转 |
0 | 0 | 0 | 1 | 左转 |
0 | 0 | 1 | 0 | 左转 |
1 | 1 | 0 | 0 | 右转 |
1 | 0 | 0 | 0 | 右转 |
0 | 1 | 0 | 0 | 右转 |
0 | 0 | 0 | 0 | 直行 |
第一种情况,四个模块都没有检测到黑线时,直行:
if(!data[0] && !data[1] && !data[2] && !data[3]) //左右都没有检测到黑线
{
motorRun(FORWARD, 200);
}
右边任意一个模块检测到黑线时,右转:
if(data[0] || data[1]) //右边检测到黑线
{
motorRun(TURNRIGHT, 150);
}
左边任意一个模块检测到黑线时,左转:
if(data[2] || data[3]) //左边检测到黑线
{
motorRun(TURNLEFT, 150);
}
当四个模块都检测到黑线时,说明已经运动到轨道终点,此时停止运动:
if(data[0] && data[3]) //左右都检测到黑线是停止
{
motorRun(STOP, 0);
while(1);
}
在起点出准备出发
弯道中
欢迎各位有兴趣的朋友加入Q群1:789127261点评、交流
Arduino智能小车——蓝牙小车
Arduino智能小车系列教程时空门:
- Arduino智能小车——拼装篇 点击跳转
- Arduino智能小车——测试篇 点击跳转
- Arduino智能小车——调速篇 点击跳转
- Arduino智能小车——超声波避障 点击跳转
- Arduino智能小车——蓝牙小车 点击跳转
- Arduino智能小车——循迹篇 点击跳转
- Arduino智能小车——小车测速 点击跳转
上一章我们完成了小车的运动控制,虽然小车已经可以运动,但是不能远程遥控,不够高大上。在这一篇,我们将尝试用手机蓝牙遥控小车。
蓝牙模块
蓝牙( Bluetooth® ):是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换(使用2.4—2.485GHz的ISM波段的UHF无线电波)。
我们在此使用的蓝牙模块(HC-05)已经在内部实现了蓝牙协议,不用我们再去自己开发调试协议。这类模块一般都是借助于串口协议通信,因此我们只需借助串口将我们需要发送的数据发送给蓝牙模块,蓝牙模块会自动将数据通过蓝牙协议发送给配对好的蓝牙设备。
![]()
串口通信
由于要借助串口实现蓝牙通信功能,所以我们在此要先了解下Arduino的串口通信。
Arduino UNO开发板上的串口为0->RX,1->TX,在开发板内部也已经配置好了串口的功能,我们只需调用函数借口即可。以下列出串口通信里面常用的函数,并加以简单解释,详细用法可在用到时自行查询。
开启串行通信接口并设置通信波特率
Serial.begin(speed);
关闭串口通信
Serial.end();
判断串口缓冲器是否有数据写入
Serial.available();
读取串口数据
Serial.read();
返回下一字节(字符)输入数据,但不删除它
Serial.peek();
清空串口缓存
Serial.flush();
写入字符串数据到串口
Serial.print();
写入字符串数据+换行到串口
Serial.println();
写入二进制数据到串口
Serial.write();
read时触发的事件函数
Serial.SerialEvent();
读取固定长度的二进制流
Serial.readBytes(buffer,length);
打印接到数据十进制表示的ascii码
Serial.println(incomingByte, DEC);
蓝牙模块连接
![]()
TX: 接Arduino UNO开发板"RX"引脚
RX: 接Arduino UNO开发板"TX"引脚
GND: 接Arduino UNO开发板"GND"引脚
VCC: 接Arduino UNO开发板"5V"或"3.3V"引脚![]()
手机蓝牙助手
想实现手机蓝牙遥控小车,手机APP是必不可少的,目前网上有很多蓝牙串口助手,省去了我们自己写APP的时间,当然如果朋友你有能力或者想自己DIY的话也可以尝试自己写APP,在这里我推荐大家用这款手机蓝牙助手(百度上搜手机蓝牙串口助手就可以搜到,挺好用的)
如果不想自己去找的话可以到我的百度网盘下载 [点击这里下载](http://pan.baidu.com/s/1pKClRTL) ![]()
下载并安装后打开APP,在这里可能会提示你有新版本请求更新,建议点击以后再说(暂时不更新),以我的经验,一般点击立即更新都会更新失败。
进入主界面,左上角会提示"蓝牙未连接",这个时候我们可以先对蓝牙助手的界面进行自定义设置。点击右下角的三个点(在我这里是这样的,其他手机可能不同,如果没有这三个点可以试着点击手机的功能键),选择“更多”。 ![]()
然后选择“地面站设置”进入自定义界面,往下拖动,找到“自定义按键[x]”,在此我们对按键[1][2][3][4][6]进行自定义设置。 ![]()
** 点击自定义按键[1],将其“显示名称”属性改为“停止”,“点击发送”属性改为“00”,并点击“确定”保存** ![]()
同理更改其他按键: ![]()
点击自定义按键[2],将其“显示名称”属性改为“前进”,“点击发送”属性改为“01”,并点击“确定”保存
点击自定义按键[4],将其“显示名称”属性改为“左转”,“点击发送”属性改为“03”,并点击“确定”保存
点击自定义按键[5],将其“显示名称”属性改为“后退”,“点击发送”属性改为“02”,并点击“确定”保存
点击自定义按键[6],将其“显示名称”属性改为“右转”,“点击发送”属性改为“04”,并点击“确定”保存以上修改的属性值即为我们点击对应按键之后,蓝牙串口助手自动通过蓝牙发送的数据,与上一篇所定义的小车的几个状态一致,这样方便在Arduino在接收到蓝牙模块的数据后对小车的状态进行控制。
#define STOP 0 #define FORWARD 1 #define BACKWARD 2 #define TURNLEFT 3 #define TURNRIGHT 4
修改后属性如下图
![]()
下面就来看看我们修改的效果吧,点击“模式切换”
这时候你就可以看到我们自定义的按键咯,看看修改前后的对比吧。 ![]()
接下来我们将连接蓝牙,仍然点击右下角的三个点,然后点击“连接” ![]()
![]()
一般没有连接过蓝牙模块的时候“已配对的设备”下面没有可选择的设备名称,因此我们要点击“扫描新设备”来检测我们的蓝牙模块,扫描成功后蓝牙模块的名称将显示在“已配对的设备”一栏中 ![]()
点击我们的蓝牙模块的名称,输入密码进行配对。配对成功后在蓝牙串口助手的左上角会显示“蓝牙已连接”字样,恭喜你,这时候你已经连接成功。 ![]()
![]()
小科普:
蓝牙模块上电(只简单连接"VCC"和"GND"引脚)之后,其他蓝牙设备即可与其连接,一般蓝牙模块默认初始连接密码为"0000"或"1234",如果连接不上蓝牙,请尽快与厂商或者店家联系。蓝牙模块上电后LED指示灯不断闪亮,当有设备连接预期连接之后会隔一段闪两下,蓝牙串口助手也会有相应已连接的提示。##Arduino代码编写
新建一个工程,将下面代码复制到工程内#define STOP 0 #define FORWARD 1 #define BACKWARD 2 #define TURNLEFT 3 #define TURNRIGHT 4 int leftMotor1 = 4; int leftMotor2 = 5; int rightMotor1 = 6; int rightMotor2 = 7; void setup() { // put your setup code here, to run once: Serial.begin(9600); pinMode(leftMotor1, OUTPUT); pinMode(leftMotor2, OUTPUT); pinMode(rightMotor1, OUTPUT); pinMode(rightMotor2, OUTPUT); } void loop() { // put your main code here, to run repeatedly: //usart read if(Serial.available()>0) { char cmd = Serial.read();//读取蓝牙模块发送到串口的数据 Serial.print(cmd); motorRun(cmd); } } void motorRun(int cmd) { switch(cmd){ case FORWARD: Serial.println("FORWARD"); //输出状态 digitalWrite(leftMotor1, HIGH); digitalWrite(leftMotor2, LOW); digitalWrite(rightMotor1, HIGH); digitalWrite(rightMotor2, LOW); break; case BACKWARD: Serial.println("BACKWARD"); //输出状态 digitalWrite(leftMotor1, LOW); digitalWrite(leftMotor2, HIGH); digitalWrite(rightMotor1, LOW); digitalWrite(rightMotor2, HIGH); break; case TURNLEFT: Serial.println("TURN LEFT"); //输出状态 digitalWrite(leftMotor1, HIGH); digitalWrite(leftMotor2, LOW); digitalWrite(rightMotor1, LOW); digitalWrite(rightMotor2, HIGH); break; case TURNRIGHT: Serial.println("TURN RIGHT"); //输出状态 digitalWrite(leftMotor1, LOW); digitalWrite(leftMotor2, HIGH); digitalWrite(rightMotor1, HIGH); digitalWrite(rightMotor2, LOW); break; default: Serial.println("STOP"); //输出状态 digitalWrite(leftMotor1, LOW); digitalWrite(leftMotor2, LOW); digitalWrite(rightMotor1, LOW); digitalWrite(rightMotor2, LOW); } }
朋友们大概也发现了,这个代码和上一篇的代码基本上相同,只不过增加了串口的内容。
##代码详解
串口初始化函数,想要通过串口的库函数对串口进行操作,必须在void set_up()
函数中对其进行初始化。Serial.begin(9600);
在void loop()函数内,加入了检测串口接收内容的函数,并将接收到的命令输入到 void motorRun(int cmd)函数中控制小车运动。
if(Serial.available()>0) { char cmd = Serial.read(); Serial.print(cmd); motorRun(cmd); }
蓝牙小车测试
下载程序之后,重新连接蓝牙模块,切换到我们自定义的按键界面,快试试蓝牙遥控小车吧。
附件
安卓手机蓝牙串口点击下载,也可以复制链接 https://download.csdn.net/download/qq_16775293/11165678 到浏览器下载。
欢迎各位有兴趣的朋友加入Q群1:789127261点评、交流