精华内容
下载资源
问答
  • matlab仪表表盘识别程序matlab2020-11-30下载地址https://www.codedown123.com/52302.html仪表表盘识别程序,基于matlab编写。可识别数字表盘和指针表盘。对于清晰可辨的图片有较高的可靠性资源下载此资源下载价格为...

    matlab仪表表盘识别程序

    matlab

    2020-11-30

    下载地址

    https://www.codedown123.com/52302.html

    仪表表盘识别程序,基于matlab编写。可识别数字表盘和指针表盘。对于清晰可辨的图片有较高的可靠性

    资源下载此资源下载价格为2D币,请先登录

    资源文件列表

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-10.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-11.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-12.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-13.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-14.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-15.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-16.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-17.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-18.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-19.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/28-20.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/3.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/4.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/6.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/digital/Thumbs.db , 11776

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/1.1.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/1.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/10.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/2.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/3.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/4.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/5.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/6.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/7.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/8.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/image/pointer/9.tif , 2004178

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/plan1.mat , 164026

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/readplan.m , 10196

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/recognise.m , 2253

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/╦╡├≈.docx , 874007

    ╩²╫╓╓╕╒δ▒φ┼╠╩╢▒≡╫▄╜ß/╦╡├≈.pdf , 338456

    发表评论

    要发表评论,您必须先登录。

    展开全文
  • 图像识别通过Python3+Opencv+Numpy对圆形仪表盘识别,包括轮廓识别、指针识别及刻度识别
  • Halcon 汽车仪表盘识别

    2018-03-14 13:35:29
    list_image_files ('D:/halcon 10_study/仪表盘_识别', 'default', [], ImageFiles) for i := 0 to |ImageFiles|-1 by 1 read_image (Image, ImageFiles) if (i=0) get_image_size (Image, Width, Height) ...
  • 文件中从main.m文件开始执行,给了3张示例图片,均可以实现仪表盘计数的自动读取;代码中圆检测算法耗时较长,需20s。代码是本人单独实现,仅供参考!
  • 数显仪表,就是一种显示数字的仪器,便于人们了解相关信息。目前,数显仪表被广泛的应用于航天、农业、工业等各个行业中,但出于工作条件和成本控制等原因,仍...数显仪表识别便可以先通过相机对仪表进行拍摄获取...

    数显仪表,就是一种显示数字的仪器,便于人们了解相关信息。目前,数显仪表被广泛的应用于航天、农业、工业等各个行业中,但出于工作条件和成本控制等原因,仍有很多的仪表无法直接获得读数,大多由人工读取。但是人工无法长时间且实时记录,还有些地方工人不方便记录,这些都会对后期工作产生不利影响。

    随着科学技术的发展,计算机视觉技术可以通过相机拍摄的图片获取有效信息。数显仪表的识别便可以先通过相机对仪表进行拍摄获取图片,接着对图片进行图像处理操作,然后经过图像识别算法得到数值信息。在汉斯出版社《计算机科学与应用》期刊中,有学者提出提出了一种基于传统图像处理和改进的卷积神经网络的数显仪表识别方法。

    基于计算机视觉的仪表识别主要包括三个部分:图像处理、图像分割和图像识别。但图像识别是最关键的部分。传统的图像识别是通过图像的颜色、纹理和形状来提取特征进行识别,是一个非常困难且复杂的工程。目前,随着深度学习技术的发展,基于卷积神经网络的图像识别技术得到了广泛的应用,数显仪表识别的普适性和泛化能力也有了较大提高。视觉注意机制能快速找到图像的显著区域,忽略背景信息,可以提高网络的识别速度与精度。因此,本文提出了一种基于传统图像处理与基于注意机制的卷积神经网络数显仪表识别方法。

    数字仪表的识别最初是使用模糊识别方法,利用最大隶属原构造数字识别器,是由张海波等人提出。有学者提出了一种基于模板匹配的最大稳定极值区域定位分割算法TM-MSER,首先利用人工制作模板去匹配定位出原图像中的数显区域,然后再通过二值化、去噪等图像处理方法对数显区域进一步处理,最后利用投影法对每个字符进行分割,并对分割完成的字符进行识别。这种方法比较复杂,匹配过程比较耗时,且正确率不高。有学者提出了一种基于全卷积神经网络的数字仪表识别算法,该算法是通过全卷积神经网络实现了图到图的像素级预测,通过融合加权融合全卷积网络中的多尺度特征和多层级特征,实现数字的识别分类。但是该方法需要海量数据进行训练,前期工作繁琐。

    本文提出了一种基于传统图像处理和改进的卷积神经网络的数显仪表识别方法。首先通过传统图像处理分割出待识别的数字,再将数字送进卷积网络模型进行识别。改进的网络模型先通过深度可分离卷积减少模型参数,可以大大减少训练时间,接着采用的注意机制模块通过通道注意和空间注意的融合能够有效地提高网络特征提取能力,提高网络的数字识别率,并在试验中证实了该算法得高效性。

    展开全文
  • Automatic Recognition of Dial Instrument Based on Deep LearningHE Jiaqi1贺嘉琪(1992-),男,硕士研究生,主要研究方向:计算机视觉、图像识别、机器学习XIONG Yongping1熊永平(1982-),男,副教授,博导,主要...

    Automatic Recognition of Dial Instrument Based on Deep Learning

    HE Jiaqi

    1

    贺嘉琪(1992-),男,硕士研究生,主要研究方向:计算机视觉、图像识别、机器学习

    XIONG Yongping

    1

    熊永平(1982-),男,副教授,博导,主要研究方向:自然语言处理、图像识别、机器学习;

    WU Guibin

    1

    伍贵宾(1980-),男,博士,主要研究方向:数据挖掘、图像识别;

    1、Institute of Network Technology, Beijing University of Posts and Telecommunications,Beijing 100876

    Abstract:With the continuous development of technology and the continuous improvement of industrial informationization and digitization, it is especially important to carry out efficient and accurate data entry for traditional pointer instruments in industrial production. Aiming at the problem of the demanding environment and the single type of instrument recognition in the current automatic recognition system, this paper combines the related techniques of deep learning and computer vision to research and improve the existing process identification algorithm.By constructing the instrument training data set and learning and adjusting the target detection model MASKRCNN to realize the image segmentation and effective information extraction of the instrument panel in the natural scene.According to the design of image feature extraction, this paper use the Ostu threshold segmentation method and KNN to identify the instrument numbers, use the probabilistic Hough line method to fit and locate the pointer, and use the distance method to determine the indication at last in order to improving the robustness and generalization of the pointer type automatic identification system.

    展开全文
  • 导 读( 小库 )今天了解一下深度学习和图像识别。欢迎添加小库微信,加入智能制造知识库交流群。分享朋友圈获取3600份行业分析报告!深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言...

    导 读 ( 小库 )

    今天了解一下深度学习和图像识别。

    1f5230431b6ef1e028774ee92a565409.png

    欢迎添加小库微信,加入智能制造知识库交流群。

    分享朋友圈获取3600份行业分析报告!

    深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域都取得了巨大成功。本文将重点介绍深度学习在物体识别、物体检测、视频分析的最新研究进展,并探讨其发展趋势。 

    1.     深度学习发展历史的回顾

    现有的深度学习模型属于神经网络。神经网络的历史可追述到上世界四十年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理,解决各种机器学习的问题。1986年Rumelhart,Hinton和Williams在《自然》发表了著名的反向传播算法用于训练神经网络[1],直到今天仍被广泛应用。但是后来由于种种原因,大多数学者在相当长的一段的时间内放弃了神经网络。神经网络有大量的参数,经常发生过拟合问题,即往往在训练集上准确率很高,而在测试集上效果差。这部分归因于当时的训练数据集规模都较小。而且计算资源有限,即便是训练一个较小的网络也需要很长的时间。总体而言,神经网络与其它模型相比并未在识别的准确率上体现出明显的优势,而且难于训练。因此更多的学者开始采用诸如支持向量机、Boosting、最近邻等分类器。这些分类器可以用具有一个或两个隐含层的神经网络模拟,因此被称作浅层机器学习模型。它们不再模拟大脑的认知机理;相反,针对不同的任务设计不同的系统,并采用不同的手工设计的特征。例如语音识别采用高斯混合模型和隐马尔可夫模型,物体识别采用SIFT特征,人脸识别采用LBP特征,行人检测采用HOG特征。2006年,Geoffrey  Hinton提出了深度学习。之后深度学习在诸多领域取得了巨大成功,受到广泛关注。神经网络能够重新焕发青春的原因有几个方面。首先是大数据的出现在很大程度上缓解了训练过拟合的问题。例如ImageNet[2]训练集拥有上百万有标注的图像。计算机硬件的飞速发展提供了强大的计算能力,使得训练大规模神经网络成为可能。一片GPU可以集成上千个核。此外神经网络的模型设计和训练方法都取得了长足的进步。例如,为了改进神经网络的训练,学者提出了非监督和逐层的预训练。它使得在利用反向传播对网络进行全局优化之前,网络参数能达到一个好的起始点,从而训练完成时能达到一个较好的局部极小点。

     深度学习在计算机视觉领域最具影响力的突破发生在2012年,Hinton的研究小组采用深度学习赢得了ImageNet  [2]  图像分类的比赛[3]。ImageNet是当今计算机视觉领域最具影响力的比赛之一。它的训练和测试样本都来自于互联网图片。训练样本超过百万,任务是将测试样本分成1000类。自2009年,包括工业界在内的很多计算机视觉小组都参加了每年一度的比赛,各个小组的方法逐渐趋同。在2012年的比赛中,排名2到4位的小组都采用的是传统的计算机视觉方法,手工设计的特征,他们准确率的差别不超过1%。Hinton的研究小组是首次参加比赛,深度学习比第二名超出了10%以上。这个结果在计算机视觉领域产生了极大的震动,掀起了深度学习的热潮。

    计算机视觉领域另一个重要的挑战是人脸识别。Labeled  Faces in  the  Wild (LFW)  [4]  是当今最著名的人脸识别测试集,创建于2007年。在此之前,人脸识别测试集大多采集于实验室可控的条件下。LFW从互联网收集了五千多个名人的人脸照片,用于评估人脸识别算法在非可控条件下的性能。这些照片往往具有复杂的光线、表情、姿态、年龄和遮挡等方面的变化。LFW的测试集包含了6000对人脸图像。其中3000对是正样本,每对的两张图像属于同一个人;剩下3000对是负样本,每对的两张图像属于不同的人。随机猜的准确率是50%。有研究表明[5],如果只把不包括头发在内的人脸的中心区域给人看,人眼在LFW测试集上的识别率是97.53%。如果把整张图像,包括背景和头发给人看,人眼的识别率是99.15%。经典的人脸识别算法Eigenface [6] 在这个测试集上只有60%的识别率。在非深度学习的算法中,最好的识别率是96.33% [7]。目前深度学习可以达到99.47%的识别率[8]。在学术界收到广泛关注的同时,深度学习也在工业界产生了巨大的影响。在Hinton的科研小组赢得ImageNet比赛之后6个月,谷歌和百度发都布了新的基于图像内容的搜索引擎。他们沿用了Hinton在ImageNet竞赛中用的深度学习模型,应用在各自的数据上,发现图像搜索的准确率得到了大幅度的提高。百度在2012年就成立了深度学习研究院,于2014年五月又在美国硅谷成立了新的深度学习实验室,聘请斯坦福著名教授吴恩达担任首席科学家。

    Facebook于2013年12月在纽约成立了新的人工智能实验室,聘请深度学习领域的著名学者,卷积网路的发明人Yann LeCun作为首席科学家。2014年1月,谷歌四亿美金收购了一家深度学习的创业公司,DeepMind。鉴于深度学习在学术和工业界的巨大影响力,2013年MIT  Technology Review将其列为世界十大技术突破之首。

    2.     深度学习有何与众不同?

    许多人会问,深度学习和其它机器学习方法相比有哪些关键的不同点,它成功的秘密在哪里?我们下面将对这此从几个方面作简要的阐述。 

    2.1特征学习

    深度学习与传统模式识别方法的最大不同在于它是从大数据中自动学习特征,而非采用手工设计的特征。好的特征可以极大提高模式识别系统的性能。在过去几十年模式识别的各种应用中,手工设计的特征处于同统治地位。它主要依靠设计者的先验知识,很难利用大数据的优势。由于依赖手工调参数,特征的设计中只允许出现少量的参数。深度学习可以从大数据中自动学习特征的表示,其中可以包含成千上万的参数。

    手工设计出有效的特征是一个相当漫长的过程。回顾计算机视觉发展的历史,往往需要五到十年才能出现一个受到广泛认可的好的特征。而深度学习可以针对新的应用从训练数据中很快学习得到新的有效的特征表示。一个模式识别系统包括特征和分类器两个主要的组成部分,二者关系密切,而在传统的方法中它们的优化是分开的。在神经网络的框架下,特征表示和分类器是联合优化的,可以最大程度发挥二者联合协作的性能。

    以2012年Hinton参加ImageNet比赛所采用的卷积网络模型[9]为例,这是他们首次参加ImageNet图像分类比赛,因此没有太多的先验知识。模型的特征表示包含了6千万个参数,从上百万样本中学习得到。令人惊讶的是,从ImageNet上学习得到的特征表示具有非常强的泛化能力,可以成功地应用到其它的数据集和任务,例如物体检测、跟踪和检索等等。在计算机视觉领域另外一个著名的竞赛是PSACALVOC。但是它的训练集规模较小,不适合训练深度学习模型。有学者将ImageNet上学习得到的特征表示用于PSACALVOC上的物体检测,将检测率提高了20%[10]。

    既然特征学习如此重要,什么是好的特征呢?一幅图像中,各种复杂的因素往往以非线性的方式结合在一起。例如人脸图像中就包含了身份、姿态、年龄、表情和光线等各种信息。深度学习的关键就是通过多层非线性映射将这些因素成功的分开,例如在深度模型的最后一个隐含层,不同的神经元代表了不同的因素。如果将这个隐含层当作特征表示,人脸识别、姿态估计、表情识别、年龄估计就会变得非常简单,因为各个因素之间变成了简单的线性关系,不再彼此干扰。

    2.2深层结构的优势

    深度学习模型意味着神经网络的结构深,由很多层组成。而支持向量机和Boosting等其它常用的机器学习模型都是浅层结构。有理论证明,三层神经网络模型(包括输入层、输出层和一个隐含层)可以近似任何分类函数。既然如此,为什么需要深层模型呢?

    理论研究表明,针对特定的任务,如果模型的深度不够,其所需要的计算单元会呈指数增加。这意味着虽然浅层模型可以表达相同的分类函数,其需要的参数和训练样本要多得多。浅层模型提供的是局部表达。它将高维图像空间分成若干局部区域,每个局部区域存储至少一个从训练数据中获得的模板。浅层模型将一个测试样本和这些模板逐一匹配,根据匹配的结果预测其类别。例如在支持向量机模型中,这些模板就是支持向量;在最近邻分类器中,这些模板是所有的训练样本。随着分类问题复杂度的增加,图像空间需要被划分成越来越多的局部区域,因而需要越来越多的参数和训练样本。深度模型能够减少参数的关键在于重复利用中间层的计算单元。例如,它可以学习针对人脸图像的分层特征表达。最底层可以从原始像素学习滤波器,刻画局部的边缘和纹理特征;通过对各种边缘滤波器进行组合,中层滤波器可以描述不同类型的人脸器官;最高层描述的是整个人脸的全局特征。 深度学习提供的是分布式的特征表示。在最高的隐含层,每个神经元代表了一个属性分类器,例如男女、人种和头发颜色等等。每个神经元将图像空间一分为二,N个神经元的组合就可以表达2N个局部区域,而用浅层模型表达这些区域的划分至少需要个2N模板。由此我们可以看到深度模型的表达能力更强,更有效率。

    2.3提取全局特征和上下文信息的能力

    深度模型具有强大的学习能力,高效的特征表达能力,从像素级原始数据到抽象的语义概念逐层提取信息。这使得它在提取图像的全局特征和上下文信息方面具有突出的优势。为解决一些传统的计算机视觉问题,如图像分割和关键点检测,带来了新的思路。

    以人脸的图像分割为例。为了预测每个像素属于哪个脸部器官(眼睛、鼻子、嘴、头发),通常的作法是在该像素周围取一个小的区域,提取纹理特征(例如局部二值模式),再基于该特征利用支持向量机等浅层模型分类。因为局部区域包含信息量有限,往往产生分类错误,因此要对分割后的图像加入平滑和形状先验等约束。事实上即使存在局部遮挡的情况下,人眼也可以根据脸部其它区域的信息估计被遮挡处的标注。这意味着全局和上下文的信息对于

    局部的判断是非常重要的,而这些信息在基于局部特征的方法中从最开始阶段就丢失了。理想的情况下,模型应该将整幅图像作为输入,直接预测整幅分割图。图像分割可以被当作一个高维数据转换的问题来解决。这样不但利用到了上下文信息,模型在高维数据转换过程中也隐式地加入了形状先验。但是由于整幅图像内容过于复杂,浅层模型很难有效地捕捉全特征。深度学习的出现使这一思路成为可能,在人脸分割[11]、人体分割[12]、人脸图像配准[13]和人体姿态估计等各个方面都取得了成功[14]。

    2.4联合深度学习

     一些计算机视觉学者将深度学习模型视为黑盒子,这种看法是不全面的。事实上我们可以发现传统计算机视觉系统和深度学习模型存在着密切的联系,而且可以利用这种联系提出新的深度模型和新的训练方法。这方面一个成功的例子是用于行人检测的联合深度学习[15]。一个计算机视觉系统包含了若干关键的组成模块。例如一个行人检测器就包括了特征提取、部件检测器、部件几何形变建模、部件遮挡推理、分类器等等。在联合深度学习中[15],深度模型的各个层和视觉系统的各个模块可以建立起对应关系。如果视觉系统中一些有效的关键模块在现有深度学习的模型中没有与之对应的层,它们可以启发我们提出新的深度模型。例如大量物体检测的研究工作证明对物体部件的几何形变建模可以有效地提高检测率,但是在常用的深度模型中没有与之相对应的层。于是联合深度学习[15]及其后续的工作[16]都提出了新的形变层和形变池化层实现这一功能。

    从训练方式上看,计算机视觉系统的各个模块是逐一训练或手工设计的;在深度模型的预训练阶段,各个层也是逐一训练的。如果我们能够建立起计算机视觉系统和深度模型之间的对应关系,在视觉研究中积累的经验可以对深度模型的预训练提供指导。这样预训练后得到的模型至少可以达到与传统计算机视觉系统可比的结果。在此基础上,深度学习还会利用反向传播对所有的层进行联合优化,使它们之间的相互协作达到最优,从而使整个网络的性能得到重大提升。 

    3.     深度学习在物体识别中的应用

    3.1  ImageNet图像分类

    深度学习在物体识别中最重要的进展体现在ImageNetILSVRC挑战中的图像分类任务。传统计算机视觉方法在这个测试集上最低的top5错误率是26.172%。2012年Hinton的研究小组利用卷积网络在这个测试集上把错误率大幅降到15.315%。这个网络的结构被称作AleNet[3]。与传统的卷积网络相比,它有三点比较重要的不同。首先是采用了dropout的训练策略,在训练过程中将一些输入层和中间层的神经元随机置零。这模拟了由于噪音和对输入数据的各种干扰,从而使一些神经元对一些视觉模式产生漏检的情况。Dropout使训练过程收敛更慢,但得到的网络模型更加鲁棒。其次,它采用整流线型单元作为非线性的激发函数。这不仅大大降低了计算的复杂度,而且使神经元的输出具有稀疏的性质。稀疏的特征表示对各种干扰更加鲁棒。第三,它通过对训练样本镜像映射,和加入随机平移扰动产生了更多的训练样本,以减少过拟合。

    ImageNet ILSVRC2013比赛中,排名前20的小组使用的都是深度学习,其影响力可见一斑。获胜者是来则纽约大学RobFergus的研究小组,所采用的深度模型还是卷积网络,对网络结构作了进一步优化。Top5错误率到11.197%,其模型称作Clarifai[17]。

    2014年深度学习又取得了重要进展,在ILSVRC2014比赛中,获胜者GooLeNet[18]将top5错误率降到6.656%。它突出的特点是大大增加了卷积网络的深度,超过20层,这在之前是不可想象的。很深的网络结构给预测误差的反向传播带了困难。因为预测误差是从最顶层传到底层的,传到底层的误差很小,难以驱动底层参数的更新。GooLeNet采取的策略是将监督信号直接加到多个中间层,这意味着中间和低层的特征表示也需要能够准确对训练数据分类。如何有效地训练很深的网络模型仍是未来研究的一个重要课题。虽然深度学习在ImageNet上取得了巨大成功,但是一个现实的问题是,很多应用的训练集是较小的,如何在这种情况下应用深度学习呢?有三种方法可供读者参考。(1)可以将ImageNet上训练得到的模型做为起点,利用目标训练集和反向传播对其进行继续训练,将模型适应到特定的应用[10]。ImageNet起到预训练的作用。(2)如果目标训练集不够大,也可以将低层的网络参数固定,沿用ImageNet上的训练集结果,只对上层进行更新。这是因为底层的网络参数是最难更新的,而从ImageNet学习得到的底层滤波器往往描述了各种不同的局部边缘和纹理信息,而这些滤波器对一般的图像有较好的普适性。(3)直接采用ImageNet上训练得到的模型,把最高的隐含层的输出作为特征表达,代替常用的手工设计的特征[19][20]。

    3.2人脸识别

    深度学习在物体识别上了另一个重要突破是人脸识别。人脸识别的最大挑战是如何区分由于光线、姿态和表情等因素引起的类内变化和由于身份不同产生的类间变化。这两种变化分布是非线性的且极为复杂,传统的线性模型无法将它们有效区分开。深度学习的目的是通过多层的非线性变换得到新的特征表示。该特征须要尽可能多地去掉类内变化,而保留类间变化。

    人脸识别有两种任务,人脸确认和人脸辨识。人脸确认的任务是判断两张人脸照片是否属于同一个人,属二分类问题,随机猜的正确率是50%。人脸辨识的任务是将一张人脸图像分为N个类别之一,类别是由人脸的身份定义的。这是个多分类问题,更具挑战性,其难度随着类别数的增多而增大,随机猜的正确率是1/N。两个任务都可以用来通过深度模型学习人脸的特征表达。2013年,[21]采用人脸确认任务作为监督信号,利用卷积网络学习人脸特征,在LFW上取得了92.52%的识别率。这一结果虽然与后续的深度学习方法相比较低,但也超过了大多数非深度学习的算法。由于人脸确认是一个二分类的问题,用它学习人脸特征效率比较低。这个问题可以从几个方面理解。深度学习面临的一个主要问题是过拟合。作为一个二分类问题,人脸确认任务相对简单,容易在训练集上发生过拟合。与之不同,人脸辨识是一个更具挑战性的多分类问题,不容易发生过拟合,更适合通过深度模型学习人脸特征。另一方面,在人脸确认中,每一对训练样本被人工标注成两类之一,所含信息量较少。而在人脸辨识中,每个训练样本都被人工标注成N类之一,信息量要大的多。

    2014年CVPR,DeepID[22]和DeepFace[23]都采用人脸辨识作为监督信号,在LFW上取得了97.45%和97.35%的识别率。他们利用卷积网络预测N维标注向量,将最高的隐含层作为人脸特征。这一层在训练过程中要区分大量的人脸类别(例如在DeepID中要区分1000类人脸),因此包含了丰富的类间变化的信息,而且有很强的泛化能力。虽然训练中采用的是人脸辨识任务,得到特征可以应用到人脸确认任务,以及识别训练集中没有新人。例如LFW上用于测试的任务是人脸确认任务,不同于训练中采用的人脸辨识任务;DeepID[22]和DeepFace[23]的训练集与LFW测试集的人物身份是不重合的。

    通过人脸辨识任务学习得到的人脸特征包含了较多的类内变化。DeepID2[24]联合使用人脸确认和人脸辨识作为监督信号,得到的人脸特征在保持类间变化的同时最小化类内变化,从而将LFW上的人脸识别率提高到99.15%。利用TitanGPU,DeepID2提取一幅人脸图像的特征只需要35毫秒,而且可以离线进行。经过PCA压缩最终得到80维的特征向量,可以用于快速人脸在线比对。在后续的工作中,DeepID2+[25]对DeepID2通过加大网络结构,增加训练数据,以及在每一层都加入监督信息进行了进一步改进,在LFW达到了99.47%的识别率。

    一些人认为深度学习的成功在于用具有大量参数的复杂模型去拟合数据集。这个看法也是不全面的。事实上,进一步的研究[25]表明DeepID2+的特征有很多重要有趣的性质。例如,它最上层的神经元响应是中度稀疏的,对人脸身份和各种人脸属性具有很强的选择性,对局部遮挡有很强的鲁棒性。以往的研究中,为了得到这些属性,我们往往需要对模型加入各种显示的约束。而DeepID2+通过大规模学习自动拥有了这些引人注目的属性,其背后的理论分析值得未来进一步研究。 

    4.     深度学习在物体检测中的应用

    深度学习也对图像中的物体检测带来了巨大提升。物体检测是比物体识别更难的任务。一幅图像中可能包含属于不同类别的多个物体,物体检测需要确定每个物体的位置和类别。深度学习在物体检测中的进展也体现在ImageNetILSVRC挑战中。2013年比赛的组织者增加了物体检测的任务,需要在四万张互联网图片中检测200类物体。当年的比赛中赢得物体检测任务的方法使用的依然是手动设计的特征,平均物体检测率,即meanAveragedPrecision(mAP),只有22.581%。在ILSVRC2014中,深度学习将mAP大幅提高到43.933%。较有影响力的工作包括RCNN[10],Overfeat[26],GoogLeNet[18],DeepID‐Net[27],network in network[28],VGG[29],和spatial pyramidpooling in deep CNN[30]。被广泛采用的基于深度学习的物体检测流程是在RCNN[10]中提出的。首先采用非深度学习的方法(例如selective search[31])提出候选区域,利用深度卷积网络从候选区域提取特征,然后利用支持向量机等线性分类器基于特征将区域分为物体和背景。DeepID‐Net[27]将这一流程进行了进一步的完善使得检测率有了大幅提升,并且对每一个环节的贡献做了详细的实验分析。此外深度卷积网络结构的设计也至关重要。如果一个网络结构提高提高图像分类任务的准确性,通常也能使物体检测器的性能显著提升。深度学习的成功还体现在行人检测上。在最大的行人检测测试集(Caltech[32])上,被广泛采用的HOG特征和可变形部件模型[33]平均误检率是68%。目前基于深度学习最好的结果是20.86%[34]。在最新的研究进展中,很多在物体检测中已经被证明行之有效的思路都有其在深度学习中的实现。例如,联合深度学习[15]提出了形变层,对物体部件间的几何形变进行建模;多阶段深度学习[35]可以模拟在物体检测中常用的级联分类器;可切换深度网络[36]可以表达物体各个部件的混合模型;[37]通过迁移学习将一个深度模型行人检测器自适应到一个目标场景。

    5.     深度学习用于视频分析

    深度学习在视频分类上的应用总体而言还处于起步阶段,未来还有很多工作要做。描述视频的静态图像特征,可以采用用从ImageNet上学习得到的深度模型;难点是如何描述动态特征。以往的视觉方法中,对动态特征的描述往往依赖于光流估计,对关键点的跟踪,和动态纹理。如何将这些信息体现在深度模型中是个难点。最直接的做法是将视频视为三维图像,直接应用卷积网络[38],在每一层学习三维滤波器。但是这一思路显然没有考虑到时间维和空间维的差异性。另外一种简单但更加有效的思路是通过预处理计算光流场,作为卷积网络的一个输入通道[39]。也有研究工作利用深度编码器(deep autoencoder)以非线性的方式提取动态纹理[40],而传统的方法大多采用线性动态系统建模。在一些最新的研究工作中[41],长短记忆网络(LSTM)正在受到广泛关注,它可以捕捉长期依赖性,对视频中复杂的动态建模。

    3b9b6cf142a9f4d1cd80aa9550c711c1.png

    展开全文
  • 干货作者简介魏于晏,法大大高级大数据工程师,负责NOC实时监控仪表盘与OLAP多维分析平台研发,大数据技术创新工作。喜欢探索研究大数据和人工智能相关领域。相信大家这两年都被深度学习和机器学习等高大上的人工...
  • 行人重识别也称行人再识别(本文简称ReID),是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术,被广泛认为是一个图像检索的子问题,其目标是给定一个监控行人图像,检索跨设备下的该行人图像。...
  • 不过呢,这块内容太复杂了,所以就简单的介绍一下paddlepaddle的第一个“hello word”程序----mnist手写数字识别。下一次再介绍用PaddlePaddle做分布式训练的方案。其实之前也写过一篇用CNN识别手写数字集的文章...
  • 假期第一篇帖子只收藏不点赞的都是流氓~准备:pip install kerasTips of DeepLearning先检查在训练集上的训练效果,再检查测试集上的训练效果。1、如果在训练集上就表现不好,可以采取以下两种方法:方法1:使用新的...
  • 吴恩达教授曾经预言过,当语音识别的准确度从95%提升到99%的时候,它将成为与电脑交互的首要方式。下面就让我们来学习与深度学习进行语音室识别吧!机器学习并不总是一个黑盒!如果你想知道神经机器翻译是如何工作的...
  • 项目中我们分别采用了顺序式API和子类方法两种方式构建了LeNet模型训练mnist数据集,并编写了给图识物应用程序用于手写数字识别。一、LeNet模型LeNet由YanLeCun于20世纪90年代提出,主要用于手写字符的识别与分类。...
  • 数字仪表示数读取方法一:基于OpenCV和LSSVM的数字仪表读数自动识别步骤概括:数字仪表图像预处理①采集图像②仪表图像倾斜校正(Canny边缘检测与Hough变换相结合的倾斜校正方法)③图像的形体学处理(腐蚀、膨胀,简化...
  • 指针与仪表盘自动识别

    千次阅读 2019-07-01 07:12:16
    利用传统的计算机视觉方法识别仪表盘中的指针 参考链接 yolov3原理和实现参考上篇博客 首先基于yolov3定位出仪表盘的位置,然后剪切仪表盘进行下一步的分析 yolov3检测的IOU可能不是很精准接下来利用霍夫圆检测...
  • 广告关闭腾讯云11.11云上盛惠 ,精选热门产品助力上云,云服务器...获取仪表盘数据默认接口请求频率限制:20次秒。 推荐使用 api explorer 点击调试 api explorer 提供了在线调用、签名验证、sdk代码生成和快速检索...
  • 仪表显示的图像识别算法研究摘要:随着社会的逐渐发展,人类的生活越来越趋于智能化。本文根据当今社会对于图像识别研究的发展现状,针对目前人们生活中人工读表的弊端,提出了通过采集仪表显示的图像并进行图像识别...
  • 小小的汽车仪表盘上,有多少种图标?粗略统计后,给出的答案是64种!除了我们常见的大灯、转向灯、机油灯等图标外,还有许多图标车友们可能未必能读懂它们的用途。小小的汽车仪表盘上,有多少种图标?粗略统计后,给...
  • 一种指针式仪表识别方法杨世杰,张平【摘要】当前指针式仪表识别技术日益成熟,其中指针形状和位置的识别大多采用Hough变换算法,传统的Hough变换算法运算时间长、储存空间大,使得识别过程效率低下。针对以上缺点...
  • 仪表盘上面有很多灯,亮起来时颜色不同,有的是黄色,代表高压预警,再不停车可能要出故障。有的是红色的,代表压力已经超过最高水平,比如水温线不正常。不管是什么灯,只要亮了,建议车主们上点心,赶紧检查原因,...
  • 因此,在我寻求自动化一些基于图像识别的软件时,我开始利用opencv的模板匹配和pyautogui库学习一些python。我知道像autohotkey或autoit这样的工具可能更容易完成工作,但我想用python,因为我对机器学习也很感兴趣...
  • 指针式仪表自动识别和读数

    万次阅读 多人点赞 2019-03-26 10:52:03
    《指针式仪表自动识别和读数》系列文章 本系列文章是关于“指针式仪表的自动读数与识别”,主要内容包括仪表图像预处理、表盘定位、指针定位和读数等,并基于Hough变换(HT)、随机霍夫变换(RHT)等法方,提出了新的圆...
  • 这些仪表没有明显的圆形表盘,因此无法通过直接Hough圆检测来定位表盘圆。观察仪表特点,可以发现虽然表盘不是圆形,但是表盘上的刻度均在同一个圆弧上,所以可以通过刻度线所在圆弧来确定圆弧所在圆的圆心和半径。...
  • 项目需求要对汽车仪表盘的字符识别,从网上选取的仪表盘位置比较清晰的数据集
  • 仪表OCR字符识别

    2020-08-27 20:15:42
    使用仪器仪表盘读数识别技术,可对采集到的仪器仪表数值信息自动识别,并快速录入到业务系统中,有效解决人工抄录过程中抄错、抄漏等问题,提升抄录效率,减少人工录入工作量,降低企业人力成本,实现仪器仪表数据...
  • 该技术提高了表盘识别的自动化程度及实时性,将代替传统工业仪表的读取方式得到广泛应用。 2 目的 (1)了解机械式表盘自动读表技术的基本原理。 (2)了解仪器表盘识别技术的基本方法和相关算法。 (3)学会利用...
  • 车辆仪表盘的刹车盘指示灯  该指示灯是用来显示车辆刹车盘磨损的状况。一般,该指示灯为熄灭状态,当刹车盘出现故障或磨损过渡时,该灯点亮,修复后熄灭。  盘式制动器  盘式制动器又称为碟式制动器...
  • 表盘识别(数字与指针)

    千次阅读 2020-08-01 17:59:00
    OpenCV 指针仪表盘参数读取(一) 方案设计 OpenCV 指针仪表盘参数读取(二) 预处理 OpenCV 指针仪表盘参数读取(三) 圆检测 OpenCV 指针仪表盘参数读取(四) 指针定位 OpenCV 指针仪表盘参数读取(五) 参数计算...
  • 该技术提高了表盘识别的自动化程度及实时性,将代替传统工业仪表的读取方式得到广泛应用。 2 目的 (1)了解机械式表盘自动读表技术的基本原理。 (2)了解仪器表盘识别技术的基本方法和相关算法。 (3)学会利用...

空空如也

空空如也

1 2 3 4 5 ... 7
收藏数 121
精华内容 48
关键字:

仪表盘识别