-
软件工程设计模式之策略模式
2019-03-22 08:55:28策略模式例子代码,对不同类型的对象执行同一函数,会使用该类型自有的算法,无需指定 -
软件工程设计模式——行为型模式之策略模式简要概述
2020-12-10 19:42:24行为型模式之——策略模式 行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。本文所介绍的策略模式即属于后者对象行为模式。 文章目录行为型模式...行为型模式之——策略模式
行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。本文所介绍的策略模式即属于后者对象行为模式。
前言
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作,共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。
一、什么是策略模式?
当实现某一个功能存在多种算法或者策略,我们可以根据环境或者条件的不同选择不同的算法或者策略来完成该功能,如数据排序策略有冒泡排序、选择排序、插入排序、二叉树排序等。如果使用多重条件转移语句实现(即硬编码),不但使条件语句变得很复杂,而且增加、删除或更换算法要修改原代码,不易维护,违背开闭原则。如果采用策略模式就能很好解决该问题。
二、策略模式详解
1.模式的定义与特点
策略(Strategy)模式的定义:该模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算法的客户。策略模式属于对象行为模式,它通过对算法进行封装,把使用算法的责任和算法的实现分割开来,并委派给不同的对象对这些算法进行管理。
策略模式的主要优点如下:
a) 多重条件语句不易维护,而使用策略模式可以避免使用多重条件语句。
b) 策略模式提供了一系列的可供重用的算法族,恰当使用继承可以把算法族的公共代码转移到父类里面,从而避免重复的代码。
c)策略模式可以提供相同行为的不同实现,客户可以根据不同时间或空间要求选择不同的。
d) 策略模式提供了对开闭原则的完美支持,可以在不修改原代码的情况下,灵活增加新算法。
e) 策略模式把算法的使用放到环境类中,而算法的实现移到具体策略类中,实现了二者的分离。2.模式组织与实现
策略模式是准备一组算法,并将这组算法封装到一系列的策略类里面,作为一个抽象策略类的子类。策略模式的重心不是如何实现算法,而是如何组织这些算法,从而让程序结构更加灵活,具有更好的维护性和扩展性。
策略模式的主要角色如下:
a) 抽象策略(Strategy)类:定义了一个公共接口,各种不同的算法以不同的方式实现这个接口,环境角色使用这个接口调用不同的算法,一般使用接口或抽象类实现。
b) 具体策略(Concrete Strategy)类:实现了抽象策略定义的接口,提供具体的算法实现。
c) 环境(Context)类:持有一个策略类的引用,最终给客户端调用。
三、实例
实现了策略模式一个简单例子:
代码如下:
public class StrategyPattern { public static void main(String[] args) { //获取环境对象 Context c = new Context(); //获取策略对象 Strategy s = new ConcreteStrategyA(); //把策略对象传给环境对象的成员变量 c.setStrategy(s); //执行环境对象提供的对应方法 c.strategyMethod(); System.out.println("-----------------"); Strategy b = new ConcreteStrategyB(); c.setStrategy(b); c.strategyMethod(); } }
抽象策略类:
//抽象策略类 public interface Strategy { public void strategyMethod(); //策略方法 }
具体策略类A:
//具体策略类A public class ConcreteStrategyA implements Strategy { public void strategyMethod() { System.out.println("具体策略A的策略方法被访问!"); } }
具体策略类B:
//具体策略类B public class ConcreteStrategyB implements Strategy{ public void strategyMethod() { System.out.println("具体策略B的策略方法被访问!"); } }
环境类:
//环境类 public class Context { private Strategy strategy; public Strategy getStrategy() { return strategy; } public void setStrategy(Strategy strategy) { this.strategy = strategy; } public void strategyMethod() { strategy.strategyMethod(); } }
-
-
软件工程之设计模式
2017-11-14 14:00:04设计模式的概念最早起源于建筑设计大师Alexander的《建筑的永恒方法》一书,尽管Alexander的著作是针对建筑领域的,但他的观点实际上适用于所有的工程设计领域,其中也包括软件设计领域。在《建筑的永恒方法》一书中...一、起源及基本概念:设计模式的概念最早起源于建筑设计大师Alexander的《建筑的永恒方法》一书,尽管Alexander的著作是针对建筑领域的,但他的观点实际上适用于所有的工程设计领域,其中也包括软件设计领域。在《建筑的永恒方法》一书中,Alexander是这样描述模式的:
模式是一条由三个部分组成的通用规则:它表示了一个特定环境、一类问题和一个解决方案之间的关系。每一个模式描述了一个不断重复发生的问题,以及该问题解决方案的核心设计。
软件领域的设计模式也有类似的定义:设计模式是对处于特定环境下,经常出现的某类软件开发问题的,一种相对成熟的设计方案。
根据Erich Gamma、Richard Helm、Ralph Johnson、John Vlissides(他们是软件设计模式的奠基人)的说法,设计模式常常被分成如下三类:
创建型:创建对象时,不再由我们直接实例化对象;而是根据特定场景,由程序来确定创建对象的方式,从而保证更大的性能、更好的架构优势。创建型模式主要有简单工厂模式(并不是23种设计模式之一)、工厂方法、抽象工厂模式、单例模式、生成器模式和原型模式。
结构型:用于帮助将多个对象组织成更大的结构。结构型模式主要有适配器模式、桥接模式、组合器模式、装饰器模式、门面模式、享元模式和代理模式。
行为型:用于帮助系统间各对象的通信,以及如何控制复杂系统中流程。行为型模式主要有命令模式、解释器模式、迭代器模式、中介者模式、备忘录模式、观察者模式、状态模式、策略模式、模板模式和访问者模式。
二、设计模式的分类
总体来说设计模式分为三大类:
创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。
结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。
行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。
其实还有两类:并发型模式和线程池模式。用一个图片来整体描述一下:
三、设计模式的六大原则
总原则:开闭原则(Open Close Principle)
开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,而是要扩展原有代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类等,后面的具体设计中我们会提到这点。
1、单一职责原则
不要存在多于一个导致类变更的原因,也就是说每个类应该实现单一的职责,如若不然,就应该把类拆分。
2、里氏替换原则(Liskov Substitution Principle)
里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Baidu 百科
历史替换原则中,子类对父类的方法尽量不要重写和重载。因为父类代表了定义好的结构,通过这个规范的接口与外界交互,子类不应该随便破坏它。
3、依赖倒转原则(Dependence Inversion Principle)
这个是开闭原则的基础,具体内容:面向接口编程,依赖于抽象而不依赖于具体。写代码时用到具体类时,不与具体类交互,而与具体类的上层接口交互。
4、接口隔离原则(Interface Segregation Principle)
这个原则的意思是:每个接口中不存在子类用不到却必须实现的方法,如果不然,就要将接口拆分。使用多个隔离的接口,比使用单个接口(多个接口方法集合到一个的接口)要好。
5、迪米特法则(最少知道原则)(Demeter Principle)
就是说:一个类对自己依赖的类知道的越少越好。也就是说无论被依赖的类多么复杂,都应该将逻辑封装在方法的内部,通过public方法提供给外部。这样当被依赖的类变化时,才能最小的影响该类。
最少知道原则的另一个表达方式是:只与直接的朋友通信。类之间只要有耦合关系,就叫朋友关系。耦合分为依赖、关联、聚合、组合等。我们称出现为成员变量、方法参数、方法返回值中的类为直接朋友。局部变量、临时变量则不是直接的朋友。我们要求陌生的类不要作为局部变量出现在类中。
6、合成复用原则(Composite Reuse Principle)
原则是尽量首先使用合成/聚合的方式,而不是使用继承。
四、Java的23中设计模式
A、创建模式
从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。
首先,简单工厂模式不属于23中涉及模式,简单工厂一般分为:普通简单工厂、多方法简单工厂、静态方法简单工厂。
0、简单工厂模式
简单工厂模式模式分为三种:
就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:
举例如下:(我们举一个发送邮件和短信的例子)
首先,创建二者的共同接口:
[java] view plaincopy- public interface Sender {
- public void Send();
- }
其次,创建实现类:
[java] view plaincopy- public class MailSender implements Sender {
- @Override
- public void Send() {
- System.out.println("this is mailsender!");
- }
- }
[java] view plaincopy- public class SmsSender implements Sender {
- @Override
- public void Send() {
- System.out.println("this is sms sender!");
- }
- }
最后,建工厂类:
[java] view plaincopy- public class SendFactory {
- public Sender produce(String type) {
- if ("mail".equals(type)) {
- return new MailSender();
- } else if ("sms".equals(type)) {
- return new SmsSender();
- } else {
- System.out.println("请输入正确的类型!");
- return null;
- }
- }
- }
我们来测试下:
- public class FactoryTest {
- public static void main(String[] args) {
- SendFactory factory = new SendFactory();
- Sender sender = factory.produce("sms");
- sender.Send();
- }
- }
输出:this is sms sender!
是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:
将上面的代码做下修改,改动下SendFactory类就行,如下:
public Sender produceMail(){- return new MailSender();
- }
- public Sender produceSms(){
- return new SmsSender();
- }
- }
测试类如下:
[java] view plaincopy- public class FactoryTest {
- public static void main(String[] args) {
- SendFactory factory = new SendFactory();
- Sender sender = factory.produceMail();
- sender.Send();
- }
- }
输出:this is mailsender!
将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。
[java] view plaincopy- public class SendFactory {
- public static Sender produceMail(){
- return new MailSender();
- }
- public static Sender produceSms(){
- return new SmsSender();
- }
- }
[java] view plaincopy- public class FactoryTest {
- public static void main(String[] args) {
- Sender sender = SendFactory.produceMail();
- sender.Send();
- }
- }
输出:this is mailsender!
总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。
1、工厂方法模式(Factory Method)
简单工厂模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到工厂方法模式,创建一个工厂接口和创建多个工厂实现类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
请看例子:
[java] view plaincopy- public interface Sender {
- public void Send();
- }
两个实现类:
[java] view plaincopy- public class MailSender implements Sender {
- @Override
- public void Send() {
- System.out.println("this is mailsender!");
- }
- }
[java] view plaincopy- public class SmsSender implements Sender {
- @Override
- public void Send() {
- System.out.println("this is sms sender!");
- }
- }
两个工厂类:
[java] view plaincopy- public class SendMailFactory implements Provider {
- @Override
- public Sender produce(){
- return new MailSender();
- }
- }
[java] view plaincopy- public class SendSmsFactory implements Provider{
- @Override
- public Sender produce() {
- return new SmsSender();
- }
- }
在提供一个接口:
[java] view plaincopy- public interface Provider {
- public Sender produce();
- }
测试类:
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- Provider provider = new SendMailFactory();
- Sender sender = provider.produce();
- sender.Send();
- }
- }
其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!
2、抽象工厂模式
工厂方法模式和抽象工厂模式不好分清楚,他们的区别如下:
<span style="background-color: rgb(255, 255, 255);">工厂方法模式: 一个抽象产品类,可以派生出多个具体产品类。 一个抽象工厂类,可以派生出多个具体工厂类。 每个具体工厂类只能创建一个具体产品类的实例。 抽象工厂模式: 多个抽象产品类,每个抽象产品类可以派生出多个具体产品类。 一个抽象工厂类,可以派生出多个具体工厂类。 每个具体工厂类可以创建多个具体产品类的实例,也就是创建的是一个产品线下的多个产品。 区别: 工厂方法模式只有一个抽象产品类,而抽象工厂模式有多个。 工厂方法模式的具体工厂类只能创建一个具体产品类的实例,而抽象工厂模式可以创建多个。</span>
<span style="background-color: rgb(255, 255, 255);"><span style="font-family: Helvetica, Tahoma, Arial, sans-serif; line-height: 25.1875px;">工厂方法创建 "一种" 产品,他的着重点在于"怎么创建",也就是说如果你开发,你的大量代码很可能围绕着这种产品的构造,初始化这些细节上面。也因为如此,类似的产品之间有很多可以复用的特征,所以会和模版方法相随。 </span><br style="font-family: Helvetica, Tahoma, Arial, sans-serif; line-height: 25.1875px;" /><br style="font-family: Helvetica, Tahoma, Arial, sans-serif; line-height: 25.1875px;" /><span style="font-family: Helvetica, Tahoma, Arial, sans-serif; line-height: 25.1875px;">抽象工厂需要创建一些列产品,着重点在于"创建哪些"产品上,也就是说,如果你开发,你的主要任务是划分不同差异的产品线,并且尽量保持每条产品线接口一致,从而可以从同一个抽象工厂继承。</span></span>
对于java来说,你能见到的大部分抽象工厂模式都是这样的: ---它的里面是一堆工厂方法,每个工厂方法返回某种类型的对象。 比如说工厂可以生产鼠标和键盘。那么抽象工厂的实现类(它的某个具体子类)的对象都可以生产鼠标和键盘,但可能工厂A生产的是罗技的键盘和鼠标,工厂B是微软的。 这样A和B就是工厂,对应于抽象工厂; 每个工厂生产的鼠标和键盘就是产品,对应于工厂方法; 用了工厂方法模式,你替换生成键盘的工厂方法,就可以把键盘从罗技换到微软。但是用了抽象工厂模式,你只要换家工厂,就可以同时替换鼠标和键盘一套。如果你要的产品有几十个,当然用抽象工厂模式一次替换全部最方便(这个工厂会替你用相应的工厂方法) 所以说抽象工厂就像工厂,而工厂方法则像是工厂的一种产品生产线
3、单例模式(Singleton)
单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:
1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。
2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。
3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。
首先我们写一个简单的单例类:
[java] view plaincopy- public class Singleton {
- /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
- private static Singleton instance = null;
- /* 私有构造方法,防止被实例化 */
- private Singleton() {
- }
- /* 静态工程方法,创建实例 */
- public static Singleton getInstance() {
- if (instance == null) {
- instance = new Singleton();
- }
- return instance;
- }
- /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
- public Object readResolve() {
- return instance;
- }
- }
这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:[java] view plaincopy- public static synchronized Singleton getInstance() {
- if (instance == null) {
- instance = new Singleton();
- }
- return instance;
- }
但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:
[java] view plaincopy- public static Singleton getInstance() {
- if (instance == null) {
- synchronized (instance) {
- if (instance == null) {
- instance = new Singleton();
- }
- }
- }
- return instance;
- }
似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:
a>A、B线程同时进入了第一个if判断
b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();
c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。
d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。
e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。
所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:
[java] view plaincopy- private static class SingletonFactory{
- private static Singleton instance = new Singleton();
- }
- public static Singleton getInstance(){
- return SingletonFactory.instance;
- }
实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:
[java] view plaincopy- public class Singleton {
- /* 私有构造方法,防止被实例化 */
- private Singleton() {
- }
- /* 此处使用一个内部类来维护单例 */
- private static class SingletonFactory {
- private static Singleton instance = new Singleton();
- }
- /* 获取实例 */
- public static Singleton getInstance() {
- return SingletonFactory.instance;
- }
- /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
- public Object readResolve() {
- return getInstance();
- }
- }
其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:
[java] view plaincopy- public class SingletonTest {
- private static SingletonTest instance = null;
- private SingletonTest() {
- }
- private static synchronized void syncInit() {
- if (instance == null) {
- instance = new SingletonTest();
- }
- }
- public static SingletonTest getInstance() {
- if (instance == null) {
- syncInit();
- }
- return instance;
- }
- }
考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。
补充:采用"影子实例"的办法为单例对象的属性同步更新
[java] view plaincopy- public class SingletonTest {
- private static SingletonTest instance = null;
- private Vector properties = null;
- public Vector getProperties() {
- return properties;
- }
- private SingletonTest() {
- }
- private static synchronized void syncInit() {
- if (instance == null) {
- instance = new SingletonTest();
- }
- }
- public static SingletonTest getInstance() {
- if (instance == null) {
- syncInit();
- }
- return instance;
- }
- public void updateProperties() {
- SingletonTest shadow = new SingletonTest();
- properties = shadow.getProperties();
- }
- }
通过单例模式的学习告诉我们:
1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。
2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。
到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?
首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)
其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。
再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。
最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!
4、建造者模式(Builder)
5、原型模式(Prototype)
原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:
[java] view plaincopy- public class Prototype implements Cloneable {
- public Object clone() throws CloneNotSupportedException {
- Prototype proto = (Prototype) super.clone();
- return proto;
- }
- }
很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名,如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法,而在Object类中,clone()是native的,具体怎么实现,我会在另一篇文章中,关于解读Java中本地方法的调用,此处不再深究。在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:
浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。
深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。
此处,写一个深浅复制的例子:
[java] view plaincopy- public class Prototype implements Cloneable, Serializable {
- private static final long serialVersionUID = 1L;
- private String string;
- private SerializableObject obj;
- /* 浅复制 */
- public Object clone() throws CloneNotSupportedException {
- Prototype proto = (Prototype) super.clone();
- return proto;
- }
- /* 深复制 */
- public Object deepClone() throws IOException, ClassNotFoundException {
- /* 写入当前对象的二进制流 */
- ByteArrayOutputStream bos = new ByteArrayOutputStream();
- ObjectOutputStream oos = new ObjectOutputStream(bos);
- oos.writeObject(this);
- /* 读出二进制流产生的新对象 */
- ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
- ObjectInputStream ois = new ObjectInputStream(bis);
- return ois.readObject();
- }
- public String getString() {
- return string;
- }
- public void setString(String string) {
- this.string = string;
- }
- public SerializableObject getObj() {
- return obj;
- }
- public void setObj(SerializableObject obj) {
- this.obj = obj;
- }
- }
- class SerializableObject implements Serializable {
- private static final long serialVersionUID = 1L;
- }
要实现深复制,需要采用流的形式读入当前对象的二进制输入,再写出二进制数据对应的对象。B、结构模式(7种)
我们接着讨论设计模式,上篇文章我讲完了5种创建型模式,这章开始,我将讲下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模式是各种模式的起源,我们看下面的图:
6、适配器模式
适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。
核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口是Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码:
[java] view plaincopy- public class Source {
- public void method1() {
- System.out.println("this is original method!");
- }
- }
[java] view plaincopy- public interface Targetable {
- /* 与原类中的方法相同 */
- public void method1();
- /* 新类的方法 */
- public void method2();
- }
[java] view plaincopy- public class Adapter extends Source implements Targetable {
- @Override
- public void method2() {
- System.out.println("this is the targetable method!");
- }
- }
Adapter类继承Source类,实现Targetable接口,下面是测试类:
[java] view plaincopy- public class AdapterTest {
- public static void main(String[] args) {
- Targetable target = new Adapter();
- target.method1();
- target.method2();
- }
- }
输出:
this is original method!
this is the targetable method!这样Targetable接口的实现类就具有了Source类的功能。
基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:
只需要修改Adapter类的源码即可:
[java] view plaincopy- public class Wrapper implements Targetable {
- private Source source;
- public Wrapper(Source source){
- super();
- this.source = source;
- }
- @Override
- public void method2() {
- System.out.println("this is the targetable method!");
- }
- @Override
- public void method1() {
- source.method1();
- }
- }
测试类:
[java] view plaincopy- public class AdapterTest {
- public static void main(String[] args) {
- Source source = new Source();
- Targetable target = new Wrapper(source);
- target.method1();
- target.method2();
- }
- }
输出与第一种一样,只是适配的方法不同而已。
第三种适配器模式是接口的适配器模式,接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图:
这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在一些实现类中并不是都需要。看代码:
[java] view plaincopy- public interface Sourceable {
- public void method1();
- public void method2();
- }
抽象类Wrapper2:
[java] view plaincopy- public abstract class Wrapper2 implements Sourceable{
- public void method1(){}
- public void method2(){}
- }
[java] view plaincopy- public class SourceSub1 extends Wrapper2 {
- public void method1(){
- System.out.println("the sourceable interface's first Sub1!");
- }
- }
[java] view plaincopy- public class SourceSub2 extends Wrapper2 {
- public void method2(){
- System.out.println("the sourceable interface's second Sub2!");
- }
- }
[java] view plaincopy- public class WrapperTest {
- public static void main(String[] args) {
- Sourceable source1 = new SourceSub1();
- Sourceable source2 = new SourceSub2();
- source1.method1();
- source1.method2();
- source2.method1();
- source2.method2();
- }
- }
测试输出:
the sourceable interface's first Sub1!
the sourceable interface's second Sub2!达到了我们的效果!
讲了这么多,总结一下三种适配器模式的应用场景:
类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。
对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。
接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。
7、装饰模式(Decorator)
顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:
Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:
[java] view plaincopy- public interface Sourceable {
- public void method();
- }
[java] view plaincopy- public class Source implements Sourceable {
- @Override
- public void method() {
- System.out.println("the original method!");
- }
- }
[java] view plaincopy- public class Decorator implements Sourceable {
- private Sourceable source;
- public Decorator(Sourceable source){
- super();
- this.source = source;
- }
- @Override
- public void method() {
- System.out.println("before decorator!");
- source.method();
- System.out.println("after decorator!");
- }
- }
测试类:
[java] view plaincopy- public class DecoratorTest {
- public static void main(String[] args) {
- Sourceable source = new Source();
- Sourceable obj = new Decorator(source);
- obj.method();
- }
- }
输出:
before decorator!
the original method!
after decorator!装饰器模式的应用场景:
1、需要扩展一个类的功能。
2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)
缺点:产生过多相似的对象,不易排错!
8、代理模式(Proxy)
其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图:
根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:
[java] view plaincopy- public interface Sourceable {
- public void method();
- }
[java] view plaincopy- public class Source implements Sourceable {
- @Override
- public void method() {
- System.out.println("the original method!");
- }
- }
[java] view plaincopy- public class Proxy implements Sourceable {
- private Source source;
- public Proxy(){
- super();
- this.source = new Source();
- }
- @Override
- public void method() {
- before();
- source.method();
- atfer();
- }
- private void atfer() {
- System.out.println("after proxy!");
- }
- private void before() {
- System.out.println("before proxy!");
- }
- }
测试类:
[java] view plaincopy- public class ProxyTest {
- public static void main(String[] args) {
- Sourceable source = new Proxy();
- source.method();
- }
- }
输出:
before proxy!
the original method!
after proxy!代理模式的应用场景:
如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:
1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。
2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。
使用代理模式,可以将功能划分的更加清晰,有助于后期维护!
9、外观模式(Facade)
外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)
我们先看下实现类:
[java] view plaincopy- public class CPU {
- public void startup(){
- System.out.println("cpu startup!");
- }
- public void shutdown(){
- System.out.println("cpu shutdown!");
- }
- }
[java] view plaincopy- public class Memory {
- public void startup(){
- System.out.println("memory startup!");
- }
- public void shutdown(){
- System.out.println("memory shutdown!");
- }
- }
[java] view plaincopy- public class Disk {
- public void startup(){
- System.out.println("disk startup!");
- }
- public void shutdown(){
- System.out.println("disk shutdown!");
- }
- }
[java] view plaincopy- public class Computer {
- private CPU cpu;
- private Memory memory;
- private Disk disk;
- public Computer(){
- cpu = new CPU();
- memory = new Memory();
- disk = new Disk();
- }
- public void startup(){
- System.out.println("start the computer!");
- cpu.startup();
- memory.startup();
- disk.startup();
- System.out.println("start computer finished!");
- }
- public void shutdown(){
- System.out.println("begin to close the computer!");
- cpu.shutdown();
- memory.shutdown();
- disk.shutdown();
- System.out.println("computer closed!");
- }
- }
User类如下:
[java] view plaincopy- public class User {
- public static void main(String[] args) {
- Computer computer = new Computer();
- computer.startup();
- computer.shutdown();
- }
- }
输出:
start the computer!
cpu startup!
memory startup!
disk startup!
start computer finished!
begin to close the computer!
cpu shutdown!
memory shutdown!
disk shutdown!
computer closed!如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式!
10、桥接模式(Bridge)
桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图:
实现代码:
先定义接口:
[java] view plaincopy- public interface Sourceable {
- public void method();
- }
分别定义两个实现类:
[java] view plaincopy- public class SourceSub1 implements Sourceable {
- @Override
- public void method() {
- System.out.println("this is the first sub!");
- }
- }
[java] view plaincopy- public class SourceSub2 implements Sourceable {
- @Override
- public void method() {
- System.out.println("this is the second sub!");
- }
- }
定义一个桥,持有Sourceable的一个实例:
[java] view plaincopy- public abstract class Bridge {
- private Sourceable source;
- public void method(){
- source.method();
- }
- public Sourceable getSource() {
- return source;
- }
- public void setSource(Sourceable source) {
- this.source = source;
- }
- }
[java] view plaincopy- public class MyBridge extends Bridge {
- public void method(){
- getSource().method();
- }
- }
测试类:
[java] view plaincopy- public class BridgeTest {
- public static void main(String[] args) {
- Bridge bridge = new MyBridge();
- /*调用第一个对象*/
- Sourceable source1 = new SourceSub1();
- bridge.setSource(source1);
- bridge.method();
- /*调用第二个对象*/
- Sourceable source2 = new SourceSub2();
- bridge.setSource(source2);
- bridge.method();
- }
- }
output:
this is the first sub!
this is the second sub!这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。
11、组合模式(Composite)
组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便,看看关系图:
直接来看代码:
[java] view plaincopy- public class TreeNode {
- private String name;
- private TreeNode parent;
- private Vector<TreeNode> children = new Vector<TreeNode>();
- public TreeNode(String name){
- this.name = name;
- }
- public String getName() {
- return name;
- }
- public void setName(String name) {
- this.name = name;
- }
- public TreeNode getParent() {
- return parent;
- }
- public void setParent(TreeNode parent) {
- this.parent = parent;
- }
- //添加孩子节点
- public void add(TreeNode node){
- children.add(node);
- }
- //删除孩子节点
- public void remove(TreeNode node){
- children.remove(node);
- }
- //取得孩子节点
- public Enumeration<TreeNode> getChildren(){
- return children.elements();
- }
- }
[java] view plaincopy- public class Tree {
- TreeNode root = null;
- public Tree(String name) {
- root = new TreeNode(name);
- }
- public static void main(String[] args) {
- Tree tree = new Tree("A");
- TreeNode nodeB = new TreeNode("B");
- TreeNode nodeC = new TreeNode("C");
- nodeB.add(nodeC);
- tree.root.add(nodeB);
- System.out.println("build the tree finished!");
- }
- }
使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。
12、享元模式(Flyweight)
享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。
FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象,如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池,想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。
看个例子:
看下数据库连接池的代码:
[java] view plaincopy- public class ConnectionPool {
- private Vector<Connection> pool;
- /*公有属性*/
- private String url = "jdbc:mysql://localhost:3306/test";
- private String username = "root";
- private String password = "root";
- private String driverClassName = "com.mysql.jdbc.Driver";
- private int poolSize = 100;
- private static ConnectionPool instance = null;
- Connection conn = null;
- /*构造方法,做一些初始化工作*/
- private ConnectionPool() {
- pool = new Vector<Connection>(poolSize);
- for (int i = 0; i < poolSize; i++) {
- try {
- Class.forName(driverClassName);
- conn = DriverManager.getConnection(url, username, password);
- pool.add(conn);
- } catch (ClassNotFoundException e) {
- e.printStackTrace();
- } catch (SQLException e) {
- e.printStackTrace();
- }
- }
- }
- /* 返回连接到连接池 */
- public synchronized void release() {
- pool.add(conn);
- }
- /* 返回连接池中的一个数据库连接 */
- public synchronized Connection getConnection() {
- if (pool.size() > 0) {
- Connection conn = pool.get(0);
- pool.remove(conn);
- return conn;
- } else {
- return null;
- }
- }
- }
通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!C、关系模式(11种)
先来张图,看看这11中模式的关系:
第一类:通过父类与子类的关系进行实现。
第二类:两个类之间。
第三类:类的状态。
第四类:通过中间类
父类与子类关系
13、策略模式(strategy)
策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数,关系图如下:
图中ICalculator提供同意的方法,
AbstractCalculator是辅助类,提供辅助方法,接下来,依次实现下每个类:首先统一接口:
[java] view plaincopy- public interface ICalculator {
- public int calculate(String exp);
- }
辅助类:
[java] view plaincopy- public abstract class AbstractCalculator {
- public int[] split(String exp,String opt){
- String array[] = exp.split(opt);
- int arrayInt[] = new int[2];
- arrayInt[0] = Integer.parseInt(array[0]);
- arrayInt[1] = Integer.parseInt(array[1]);
- return arrayInt;
- }
- }
三个实现类:
[java] view plaincopy- public class Plus extends AbstractCalculator implements ICalculator {
- @Override
- public int calculate(String exp) {
- int arrayInt[] = split(exp,"\\+");
- return arrayInt[0]+arrayInt[1];
- }
- }
[java] view plaincopy- public class Minus extends AbstractCalculator implements ICalculator {
- @Override
- public int calculate(String exp) {
- int arrayInt[] = split(exp,"-");
- return arrayInt[0]-arrayInt[1];
- }
- }
[java] view plaincopy- public class Multiply extends AbstractCalculator implements ICalculator {
- @Override
- public int calculate(String exp) {
- int arrayInt[] = split(exp,"\\*");
- return arrayInt[0]*arrayInt[1];
- }
- }
简单的测试类:
[java] view plaincopy- public class StrategyTest {
- public static void main(String[] args) {
- String exp = "2+8";
- ICalculator cal = new Plus();
- int result = cal.calculate(exp);
- System.out.println(result);
- }
- }
输出:10
策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。
14、模板方法模式(Template Method)
解释一下模板方法模式,就是指:一个抽象类中,有一个主方法,再定义1...n个方法,可以是抽象的,也可以是实际的方法,定义一个类,继承该抽象类,重写抽象方法,通过调用抽象类,实现对子类的调用,先看个关系图:
就是在AbstractCalculator类中定义一个主方法calculate,calculate()调用spilt()等,Plus和Minus分别继承AbstractCalculator类,通过对AbstractCalculator的调用实现对子类的调用,看下面的例子:
[java] view plaincopy- public abstract class AbstractCalculator {
- /*主方法,实现对本类其它方法的调用*/
- public final int calculate(String exp,String opt){
- int array[] = split(exp,opt);
- return calculate(array[0],array[1]);
- }
- /*被子类重写的方法*/
- abstract public int calculate(int num1,int num2);
- public int[] split(String exp,String opt){
- String array[] = exp.split(opt);
- int arrayInt[] = new int[2];
- arrayInt[0] = Integer.parseInt(array[0]);
- arrayInt[1] = Integer.parseInt(array[1]);
- return arrayInt;
- }
- }
[java] view plaincopy- public class Plus extends AbstractCalculator {
- @Override
- public int calculate(int num1,int num2) {
- return num1 + num2;
- }
- }
测试类:
[java] view plaincopy- public class StrategyTest {
- public static void main(String[] args) {
- String exp = "8+8";
- AbstractCalculator cal = new Plus();
- int result = cal.calculate(exp, "\\+");
- System.out.println(result);
- }
- }
我跟踪下这个小程序的执行过程:首先将exp和"\\+"做参数,调用AbstractCalculator类里的calculate(String,String)方法,在calculate(String,String)里调用同类的split(),之后再调用calculate(int ,int)方法,从这个方法进入到子类中,执行完return num1 + num2后,将值返回到AbstractCalculator类,赋给result,打印出来。正好验证了我们开头的思路。
类之间的关系
15、观察者模式(Observer)
包括这个模式在内的接下来的四个模式,都是类和类之间的关系,不涉及到继承,学的时候应该 记得归纳,记得本文最开始的那个图。观察者模式很好理解,类似于邮件订阅和RSS订阅,当我们浏览一些博客或wiki时,经常会看到RSS图标,就这的意思是,当你订阅了该文章,如果后续有更新,会及时通知你。其实,简单来讲就一句话:当一个对象变化时,其它依赖该对象的对象都会收到通知,并且随着变化!对象之间是一种一对多的关系。先来看看关系图:
我解释下这些类的作用:MySubject类就是我们的主对象,Observer1和Observer2是依赖于MySubject的对象,当MySubject变化时,Observer1和Observer2必然变化。AbstractSubject类中定义着需要监控的对象列表,可以对其进行修改:增加或删除被监控对象,且当MySubject变化时,负责通知在列表内存在的对象。我们看实现代码:
一个Observer接口:
[java] view plaincopy- public interface Observer {
- public void update();
- }
两个实现类:
[java] view plaincopy- public class Observer1 implements Observer {
- @Override
- public void update() {
- System.out.println("observer1 has received!");
- }
- }
[java] view plaincopy- public class Observer2 implements Observer {
- @Override
- public void update() {
- System.out.println("observer2 has received!");
- }
- }
Subject接口及实现类:
[java] view plaincopy- public interface Subject {
- /*增加观察者*/
- public void add(Observer observer);
- /*删除观察者*/
- public void del(Observer observer);
- /*通知所有的观察者*/
- public void notifyObservers();
- /*自身的操作*/
- public void operation();
- }
[java] view plaincopy- public abstract class AbstractSubject implements Subject {
- private Vector<Observer> vector = new Vector<Observer>();
- @Override
- public void add(Observer observer) {
- vector.add(observer);
- }
- @Override
- public void del(Observer observer) {
- vector.remove(observer);
- }
- @Override
- public void notifyObservers() {
- Enumeration<Observer> enumo = vector.elements();
- while(enumo.hasMoreElements()){
- enumo.nextElement().update();
- }
- }
- }
[java] view plaincopy- public class MySubject extends AbstractSubject {
- @Override
- public void operation() {
- System.out.println("update self!");
- notifyObservers();
- }
- }
测试类:[java] view plaincopy- public class ObserverTest {
- public static void main(String[] args) {
- Subject sub = new MySubject();
- sub.add(new Observer1());
- sub.add(new Observer2());
- sub.operation();
- }
- }
输出:
update self!
observer1 has received!
observer2 has received!这些东西,其实不难,只是有些抽象,不太容易整体理解,建议读者:根据关系图,新建项目,自己写代码(或者参考我的代码),按照总体思路走一遍,这样才能体会它的思想,理解起来容易!
16、迭代子模式(Iterator)
顾名思义,迭代器模式就是顺序访问聚集中的对象,一般来说,集合中非常常见,如果对集合类比较熟悉的话,理解本模式会十分轻松。这句话包含两层意思:一是需要遍历的对象,即聚集对象,二是迭代器对象,用于对聚集对象进行遍历访问。我们看下关系图:
这个思路和我们常用的一模一样,MyCollection中定义了集合的一些操作,MyIterator中定义了一系列迭代操作,且持有Collection实例,我们来看看实现代码:
两个接口:
[java] view plaincopy- public interface Collection {
- public Iterator iterator();
- /*取得集合元素*/
- public Object get(int i);
- /*取得集合大小*/
- public int size();
- }
[java] view plaincopy- public interface Iterator {
- //前移
- public Object previous();
- //后移
- public Object next();
- public boolean hasNext();
- //取得第一个元素
- public Object first();
- }
两个实现:
[java] view plaincopy- public class MyCollection implements Collection {
- public String string[] = {"A","B","C","D","E"};
- @Override
- public Iterator iterator() {
- return new MyIterator(this);
- }
- @Override
- public Object get(int i) {
- return string[i];
- }
- @Override
- public int size() {
- return string.length;
- }
- }
[java] view plaincopy- public class MyIterator implements Iterator {
- private Collection collection;
- private int pos = -1;
- public MyIterator(Collection collection){
- this.collection = collection;
- }
- @Override
- public Object previous() {
- if(pos > 0){
- pos--;
- }
- return collection.get(pos);
- }
- @Override
- public Object next() {
- if(pos<collection.size()-1){
- pos++;
- }
- return collection.get(pos);
- }
- @Override
- public boolean hasNext() {
- if(pos<collection.size()-1){
- return true;
- }else{
- return false;
- }
- }
- @Override
- public Object first() {
- pos = 0;
- return collection.get(pos);
- }
- }
测试类:
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- Collection collection = new MyCollection();
- Iterator it = collection.iterator();
- while(it.hasNext()){
- System.out.println(it.next());
- }
- }
- }
输出:A B C D E
此处我们貌似模拟了一个集合类的过程,感觉是不是很爽?其实JDK中各个类也都是这些基本的东西,加一些设计模式,再加一些优化放到一起的,只要我们把这些东西学会了,掌握好了,我们也可以写出自己的集合类,甚至框架!
17、责任链模式(Chain of Responsibility)
接下来我们将要谈谈责任链模式,有多个对象,每个对象持有对下一个对象的引用,这样就会形成一条链,请求在这条链上传递,直到某一对象决定处理该请求。但是发出者并不清楚到底最终那个对象会处理该请求,所以,责任链模式可以实现,在隐瞒客户端的情况下,对系统进行动态的调整。先看看关系图:Abstracthandler类提供了get和set方法,方便MyHandle类设置和修改引用对象,MyHandle类是核心,实例化后生成一系列相互持有的对象,构成一条链。
[java] view plaincopy- public interface Handler {
- public void operator();
- }
[java] view plaincopy- public abstract class AbstractHandler {
- private Handler handler;
- public Handler getHandler() {
- return handler;
- }
- public void setHandler(Handler handler) {
- this.handler = handler;
- }
- }
[java] view plaincopy- public class MyHandler extends AbstractHandler implements Handler {
- private String name;
- public MyHandler(String name) {
- this.name = name;
- }
- @Override
- public void operator() {
- System.out.println(name+"deal!");
- if(getHandler()!=null){
- getHandler().operator();
- }
- }
- }
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- MyHandler h1 = new MyHandler("h1");
- MyHandler h2 = new MyHandler("h2");
- MyHandler h3 = new MyHandler("h3");
- h1.setHandler(h2);
- h2.setHandler(h3);
- h1.operator();
- }
- }
输出:
h1deal!
h2deal!
h3deal!此处强调一点就是,链接上的请求可以是一条链,可以是一个树,还可以是一个环,模式本身不约束这个,需要我们自己去实现,同时,在一个时刻,命令只允许由一个对象传给另一个对象,而不允许传给多个对象。
18、命令模式(Command)
命令模式很好理解,举个例子,司令员下令让士兵去干件事情,从整个事情的角度来考虑,司令员的作用是,发出口令,口令经过传递,传到了士兵耳朵里,士兵去执行。这个过程好在,三者相互解耦,任何一方都不用去依赖其他人,只需要做好自己的事儿就行,司令员要的是结果,不会去关注到底士兵是怎么实现的。我们看看关系图:
Invoker是调用者(司令员),Receiver是被调用者(士兵),MyCommand是命令,实现了Command接口,持有接收对象,看实现代码:
[java] view plaincopy- public interface Command {
- public void exe();
- }
[java] view plaincopy- public class MyCommand implements Command {
- private Receiver receiver;
- public MyCommand(Receiver receiver) {
- this.receiver = receiver;
- }
- @Override
- public void exe() {
- receiver.action();
- }
- }
[java] view plaincopy- public class Receiver {
- public void action(){
- System.out.println("command received!");
- }
- }
[java] view plaincopy- public class Invoker {
- private Command command;
- public Invoker(Command command) {
- this.command = command;
- }
- public void action(){
- command.exe();
- }
- }
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- Receiver receiver = new Receiver();
- Command cmd = new MyCommand(receiver);
- Invoker invoker = new Invoker(cmd);
- invoker.action();
- }
- }
输出:command received!
这个很哈理解,命令模式的目的就是达到命令的发出者和执行者之间解耦,实现请求和执行分开,熟悉Struts的同学应该知道,Struts其实就是一种将请求和呈现分离的技术,其中必然涉及命令模式的思想!
其实每个设计模式都是很重要的一种思想,看上去很熟,其实是因为我们在学到的东西中都有涉及,尽管有时我们并不知道,其实在Java本身的设计之中处处都有体现,像AWT、JDBC、集合类、IO管道或者是Web框架,里面设计模式无处不在。因为我们篇幅有限,很难讲每一个设计模式都讲的很详细,不过我会尽我所能,尽量在有限的空间和篇幅内,把意思写清楚了,更好让大家明白。本章不出意外的话,应该是设计模式最后一讲了,首先还是上一下上篇开头的那个图:
本章讲讲第三类和第四类。
类的状态
19、备忘录模式(Memento)
主要目的是保存一个对象的某个状态,以便在适当的时候恢复对象,个人觉得叫备份模式更形象些,通俗的讲下:假设有原始类A,A中有各种属性,A可以决定需要备份的属性,备忘录类B是用来存储A的一些内部状态,类C呢,就是一个用来存储备忘录的,且只能存储,不能修改等操作。做个图来分析一下:
Original类是原始类,里面有需要保存的属性value及创建一个备忘录类,用来保存value值。Memento类是备忘录类,Storage类是存储备忘录的类,持有Memento类的实例,该模式很好理解。直接看源码:
[java] view plaincopy- public class Original {
- private String value;
- public String getValue() {
- return value;
- }
- public void setValue(String value) {
- this.value = value;
- }
- public Original(String value) {
- this.value = value;
- }
- public Memento createMemento(){
- return new Memento(value);
- }
- public void restoreMemento(Memento memento){
- this.value = memento.getValue();
- }
- }
[java] view plaincopy- public class Memento {
- private String value;
- public Memento(String value) {
- this.value = value;
- }
- public String getValue() {
- return value;
- }
- public void setValue(String value) {
- this.value = value;
- }
- }
[java] view plaincopy- public class Storage {
- private Memento memento;
- public Storage(Memento memento) {
- this.memento = memento;
- }
- public Memento getMemento() {
- return memento;
- }
- public void setMemento(Memento memento) {
- this.memento = memento;
- }
- }
测试类:
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- // 创建原始类
- Original origi = new Original("egg");
- // 创建备忘录
- Storage storage = new Storage(origi.createMemento());
- // 修改原始类的状态
- System.out.println("初始化状态为:" + origi.getValue());
- origi.setValue("niu");
- System.out.println("修改后的状态为:" + origi.getValue());
- // 回复原始类的状态
- origi.restoreMemento(storage.getMemento());
- System.out.println("恢复后的状态为:" + origi.getValue());
- }
- }
输出:
初始化状态为:egg
修改后的状态为:niu
恢复后的状态为:egg简单描述下:新建原始类时,value被初始化为egg,后经过修改,将value的值置为niu,最后倒数第二行进行恢复状态,结果成功恢复了。其实我觉得这个模式叫“备份-恢复”模式最形象。
20、状态模式(State)
核心思想就是:当对象的状态改变时,同时改变其行为,很好理解!就拿QQ来说,有几种状态,在线、隐身、忙碌等,每个状态对应不同的操作,而且你的好友也能看到你的状态,所以,状态模式就两点:1、可以通过改变状态来获得不同的行为。2、你的好友能同时看到你的变化。看图:
State类是个状态类,Context类可以实现切换,我们来看看代码:
[java] view plaincopy- package com.xtfggef.dp.state;
- /**
- * 状态类的核心类
- * 2012-12-1
- * @author erqing
- *
- */
- public class State {
- private String value;
- public String getValue() {
- return value;
- }
- public void setValue(String value) {
- this.value = value;
- }
- public void method1(){
- System.out.println("execute the first opt!");
- }
- public void method2(){
- System.out.println("execute the second opt!");
- }
- }
[java] view plaincopy- package com.xtfggef.dp.state;
- /**
- * 状态模式的切换类 2012-12-1
- * @author erqing
- *
- */
- public class Context {
- private State state;
- public Context(State state) {
- this.state = state;
- }
- public State getState() {
- return state;
- }
- public void setState(State state) {
- this.state = state;
- }
- public void method() {
- if (state.getValue().equals("state1")) {
- state.method1();
- } else if (state.getValue().equals("state2")) {
- state.method2();
- }
- }
- }
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- State state = new State();
- Context context = new Context(state);
- //设置第一种状态
- state.setValue("state1");
- context.method();
- //设置第二种状态
- state.setValue("state2");
- context.method();
- }
- }
execute the first opt!
execute the second opt!根据这个特性,状态模式在日常开发中用的挺多的,尤其是做网站的时候,我们有时希望根据对象的某一属性,区别开他们的一些功能,比如说简单的权限控制等。
通过中间类
21、访问者模式(Visitor)
访问者模式把数据结构和作用于结构上的操作解耦合,使得操作集合可相对自由地演化。访问者模式适用于数据结构相对稳定算法又易变化的系统。因为访问者模式使得算法操作增加变得容易。若系统数据结构对象易于变化,经常有新的数据对象增加进来,则不适合使用访问者模式。访问者模式的优点是增加操作很容易,因为增加操作意味着增加新的访问者。访问者模式将有关行为集中到一个访问者对象中,其改变不影响系统数据结构。其缺点就是增加新的数据结构很困难。—— From 百科
简单来说,访问者模式就是一种分离对象数据结构与行为的方法,通过这种分离,可达到为一个被访问者动态添加新的操作而无需做其它的修改的效果。简单关系图:
来看看原码:一个Visitor类,存放要访问的对象,
[java] view plaincopy- public interface Visitor {
- public void visit(Subject sub);
- }
[java] view plaincopy- public class MyVisitor implements Visitor {
- @Override
- public void visit(Subject sub) {
- System.out.println("visit the subject:"+sub.getSubject());
- }
- }
[java] view plaincopy- public interface Subject {
- public void accept(Visitor visitor);
- public String getSubject();
- }
[java] view plaincopy- public class MySubject implements Subject {
- @Override
- public void accept(Visitor visitor) {
- visitor.visit(this);
- }
- @Override
- public String getSubject() {
- return "love";
- }
- }
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- Visitor visitor = new MyVisitor();
- Subject sub = new MySubject();
- sub.accept(visitor);
- }
- }
该模式适用场景:如果我们想为一个现有的类增加新功能,不得不考虑几个事情:1、新功能会不会与现有功能出现兼容性问题?2、以后会不会再需要添加?3、如果类不允许修改代码怎么办?面对这些问题,最好的解决方法就是使用访问者模式,访问者模式适用于数据结构相对稳定的系统,把数据结构和算法解耦,
22、中介者模式(Mediator)
中介者模式也是用来降低类类之间的耦合的,因为如果类类之间有依赖关系的话,不利于功能的拓展和维护,因为只要修改一个对象,其它关联的对象都得进行修改。如果使用中介者模式,只需关心和Mediator类的关系,具体类类之间的关系及调度交给Mediator就行,这有点像spring容器的作用。先看看图:
User类统一接口,User1和User2分别是不同的对象,二者之间有关联,如果不采用中介者模式,则需要二者相互持有引用,这样二者的耦合度很高,为了解耦,引入了Mediator类,提供统一接口,MyMediator为其实现类,里面持有User1和User2的实例,用来实现对User1和User2的控制。这样User1和User2两个对象相互独立,他们只需要保持好和Mediator之间的关系就行,剩下的全由MyMediator类来维护!基本实现:
[java] view plaincopy- public interface Mediator {
- public void createMediator();
- public void workAll();
- }
[java] view plaincopy- public class MyMediator implements Mediator {
- private User user1;
- private User user2;
- public User getUser1() {
- return user1;
- }
- public User getUser2() {
- return user2;
- }
- @Override
- public void createMediator() {
- user1 = new User1(this);
- user2 = new User2(this);
- }
- @Override
- public void workAll() {
- user1.work();
- user2.work();
- }
- }
[java] view plaincopy- public abstract class User {
- private Mediator mediator;
- public Mediator getMediator(){
- return mediator;
- }
- public User(Mediator mediator) {
- this.mediator = mediator;
- }
- public abstract void work();
- }
[java] view plaincopy- public class User1 extends User {
- public User1(Mediator mediator){
- super(mediator);
- }
- @Override
- public void work() {
- System.out.println("user1 exe!");
- }
- }
[java] view plaincopy- public class User2 extends User {
- public User2(Mediator mediator){
- super(mediator);
- }
- @Override
- public void work() {
- System.out.println("user2 exe!");
- }
- }
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- Mediator mediator = new MyMediator();
- mediator.createMediator();
- mediator.workAll();
- }
- }
user1 exe!
user2 exe!23、解释器模式(Interpreter)
解释器模式是我们暂时的最后一讲,一般主要应用在OOP开发中的编译器的开发中,所以适用面比较窄。Context类是一个上下文环境类,Plus和Minus分别是用来计算的实现,代码如下:
[java] view plaincopy- public interface Expression {
- public int interpret(Context context);
- }
[java] view plaincopy- public class Plus implements Expression {
- @Override
- public int interpret(Context context) {
- return context.getNum1()+context.getNum2();
- }
- }
[java] view plaincopy- public class Minus implements Expression {
- @Override
- public int interpret(Context context) {
- return context.getNum1()-context.getNum2();
- }
- }
[java] view plaincopy- public class Context {
- private int num1;
- private int num2;
- public Context(int num1, int num2) {
- this.num1 = num1;
- this.num2 = num2;
- }
- public int getNum1() {
- return num1;
- }
- public void setNum1(int num1) {
- this.num1 = num1;
- }
- public int getNum2() {
- return num2;
- }
- public void setNum2(int num2) {
- this.num2 = num2;
- }
- }
[java] view plaincopy- public class Test {
- public static void main(String[] args) {
- // 计算9+2-8的值
- int result = new Minus().interpret((new Context(new Plus()
- .interpret(new Context(9, 2)), 8)));
- System.out.println(result);
- }
- }
基本就这样,解释器模式用来做各种各样的解释器,如正则表达式等的解释器等等!
-
设计模式——软件工程
2013-01-10 16:45:08设计模式是一本软件工程方面的经典书籍,对与软件开发有非常大的作用 -
软件工程与设计模式
2018-07-25 10:10:022、j2ee常用的设计模式?说明工厂模式。 总共23种,分为三大类:创建型,结构型,行为型 我只记得其中常用的6、7种,分别是: 创建型(工厂、工厂方法、抽象工厂、单例) 结构型(包装、适配器,组合,代理) ...1、UML方面
标准建模语言UML。用例图,静态图(包括类图、对象图和包图),行为图,交互图(顺序图,合作图),实现图。
总共23种,分为三大类:创建型,结构型,行为型
我只记得其中常用的6、7种,分别是:
创建型(工厂、工厂方法、抽象工厂、单例)
结构型(包装、适配器,组合,代理)
行为(观察者,模版,策略)
然后再针对你熟悉的模式谈谈你的理解即可。
Java中的23种设计模式:
Factory(工厂模式), Builder(建造模式), FactoryMethod(工厂方法模式),
Prototype(原始模型模式),Singleton(单例模式), Facade(门面模式),
Adapter(适配器模式), Bridge(桥梁模式), Composite(合成模式),
Decorator(装饰模式), Flyweight(享元模式), Proxy(代理模式),
Command(命令模式), Interpreter(解释器模式), Visitor(访问者模式),
Iterator(迭代子模式), Mediator(调停者模式), Memento(备忘录模式),
Observer(观察者模式), State(状态模式), Strategy(策略模式),
Template Method(模板方法模式), Chain Of Responsibleity(责任链模式)
工厂模式:工厂模式是一种经常被使用到的模式,根据工厂模式实现的类可以根据提供的数据生成一组类中某一个类的实例,通常这一组类有一个公共的抽象父类并且实现了相同的方法,但是这些方法针对不同的数据进行了不同的操作。首先需要定义一个基类,该类的子类通过不同的方法实现了基类中的方法。然后需要定义一个工厂类,工厂类可以根据条件生成不同的子类实例。当得到子类的实例后,开发人员可以调用基类中的方法而不必考虑到底返回的是哪一个子类的实例。
每个模式都描述了一个在我们的环境中不断出现的问题,然后描述了该问题的解决方案的核心。通过这种方式,你可以无数次地使用那些已有的解决方案,无需在重复相同的工作。主要用到了MVC的设计模式。用来开发JSP/Servlet或者J2EE的相关应用。简单工厂模式等。
-
[软件工程-设计模式] GRASP软件设计的模式和原则
2020-06-03 00:12:09GRASP 模式前言1. 信息专家 (Information Expert)2. 创造者(Creator)3. Low coupling (低耦合)4. High cohesion (高内聚)5. 控制器 (Controller)6. Polymorphism (多态)7. 纯虚构 (Pure Fabrication)8. Indirection ...GRASP 模式
前言
每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的解决方案的核心。”
这是关于模式最经典的定义,作者是建筑大师Christopher Alexander。如果是第一次看到这句话,多数人会觉得有些抽象难懂。其实“模式”两个字只是一个代号,就像我的英文名字叫Justin,如果我改叫Tom也没什么问题,只是我更喜欢Justin这个名字,所以从Christopher开始,有了“模式”这个词,人们也都把关于“重复发生的问题的描述和解决办法”统称为模式。
“模式”这个词是不局限于软件开发行业的,它几乎无处不在,它其实就是一种经验的积累,就象大多数人的教育经历都是从小学到初中再到高中再到大学,这也是一种模式,是中国的教育模式;现在越来越火的出国热,也是另一种模式:海外留学模式。因为GOF的《设计模式:可复用面向对象软件的基础》一书描述的23种经典设计模式,奠定了模式在软件行业的地位,从此人们提到“设计模式”就是默指“面向对象设计模式”,但是如前文所述,模式绝对不局限于软件行业,即使在软件行业,也不局限于GOF描述的23种设计模式,例如最著名的Martin Flower的《企业架构模式》,还有我们常用的MVC、IOC等架构模式。
因为模式是一种经验的积累和总结,所以通过模式,我们可以站在巨人的肩膀上去思考问题、解决问题,熟练使用设计模式可以提高我们的工作效率,改善产品质量,最终带来经济效益。因此对于任何想开发出灵活高效、健壮的软件产品的个人或团体,熟练掌握并正确使用设计模式都是必须掌握的基本技能。要学习设计模式,有些基础知识是我们必须要先知道的,设计模式是关于类和对象的一种高效、灵活的使用方式,也就是说,必须先有类和对象,才能有设计模式的用武之地,否则一切都是空谈,那么类和对象是从那冒出来的呢?这时就需要比23种设计模式更重要更经典的GRASP模式登场了。
GRASP,全称为General Responsibility Assignment Software Pattern,即通用职责分配软件模式,它由《UML和模式应用》(Applying UML and Patterns)一书作者Craig Larman提出。与其将它们称之为设计模式,不如称之为设计原则,因为它是站在面向对象设计的角度,告诉我们怎样设计问题空间中的类与分配它们的行为职责,以及明确类之间的相互关系等,而不像GoF模式一样是针对特定问题而提出的解决方案。因此GRASP站在一个更高的角度来看待面向对象软件的设计,它是GoF设计模式的基础。GRASP是对象职责分配的基本原则,其核心思想是职责分配(Responsibility Assignment),用职责设计对象(Designing Objects with Responsibilities)。它包含如下9个基本特征或原则:
1. 信息专家 (Information Expert)
(1) 问题:给对象分配职责的通用原则是什么?
(2) 解决方案:将职责分配给拥有履行一个职责所必需信息的类,即信息专家。
(3) 分析:信息专家模式是面向对象设计的最基本原则。通俗点来讲,就是一个类只干该干的事情,不该干的事情不干。在系统设计时,需要将职责分配给具有实现这个职责所需要信息的类。信息专家模式对应于面向对象设计原则中的单一职责原则。例如:常见的网上商店里的购物车(ShopCar),需要让每种商品(SKU)只在购物车内出现一次,购买相同商品,只需要更新商品的数量即可。如下图:
针对这个问题需要权衡的是,比较商品是否相同的方法需要放到那里类里来实现呢?分析业务得知需要根据商品的编号(SKUID)来唯一区分商品,而商品编号是唯一存在于商品类里的,所以根据信息专家模式,应该把比较商品是否相同的方法放在商品类里。2. 创造者(Creator)
(1) 问题:谁应该负责产生类的实例?
(2) 解决方案:如果符合下面的一个或者多个条件,则可将创建类A实例的职责分配给类B:- B包含A;
- B聚合A;
- B拥有初始化A的数据并在创建类A的实例时将数据传递给类A;
- B记录A的实例;
- B频繁使用A。
此时,我们称类B是类A对象的创建者。如果符合多个条件,类B聚合或者包含类A的条件优先。
(3) 分析:如果一个类创建了另一个类,那么这两个类之间就有了耦合,也可以说产生了依赖关系。依赖或耦合本身是没有错误的,但是它们带来的问题就是在以后的维护中会产生连锁反应,而必要的耦合是逃不掉的,我们能做的就是正确地创建耦合关系,不要随便建立类之间的依赖关系,那么该如何去做呢?就是要遵守创建者模式规定的基本原则,凡是不符合以上条件的情况,都不能随便用A创建B。创建对象是面向对象系统中最普遍的活动之一,因此,确定一个分配创建对象的通用职责非常重要。如果职责分配合理,设计就能降低耦合,提高设计的清晰度、封装性和重用性。通常情况下,如果对象的创建过程不是很复杂,则根据上述原则,由使用对象的类来创建对象。但是如果创建过程非常复杂,而且可能需要重复使用对象实例或者需要从外部注入一个对象实例,此时,可以委托一个专门的工厂类来辅助创建对象。创建者模式与各种工厂模式(简单工厂模式、工厂方法模式和抽象工厂模式)相对应。例如:因为订单(Order)是商品(SKU)的容器,所以应该由订单来创建商品。如下图:
这里因为订单是商品的容器,也只有订单持有初始化商品的信息,所以这个耦合关系是正确的且没办法避免的,所以由订单来创建商品。3. Low coupling (低耦合)
(1) 问题:怎样支持低的依赖性,减少变更带来的影响,提高重用性?
(2) 解决方案:分配一个职责,使得保持低耦合度。
(3) 分析:耦合是评价一个系统中各个元素之间连接或依赖强弱关系的尺度,具有低耦合的元素不过多依赖其他元素。此处的元素可以是类,也可以是模块、子系统或者系统。具有高耦合的类过多地依赖其他类,这种设计将会导致:一个类的修改导致其他类产生较大影响;系统难以维护和理解;系统重用性差,在重用一个高耦合的类时不得不重用它所依赖的其他类。因此需要对高耦合的系统进行重构。类A和类B之间的耦合关系体现如下:A具有一个B类型的属性;A调用B的方法;A的方法包含对B的引用,如方法参数类型为B或返回类型为B;A是B的直接或者间接子类;B是一个接口,A实现了该接口。低耦合模式鼓励在进行职责分配时不增加耦合性,从而避免高耦合可能产生的不良后果。在进行类设计时,需要保持类的独立性,减少类变更所带来的影响,它通常与信息专家模式和高内聚模式一起出现。为了达到低耦合,我们可以通过如下方式对设计进行改进:
- 在类的划分上,应当尽量创建松耦合的类,类之间的耦合度越低,就越有利于复用,一个处在松耦合中的类一旦被修改,不会对关联的类造成太大波及;
- 在类的设计上,每一个类都应当尽量降低其成员变量和成员函数的访问权限;
- 在类的设计上,只要有可能,一个类型应当设计成不变类;
- 在对其他类的引用上,一个对象对其他对象的引用应当降到最低。
例如:Creator模式的例子里,实际业务中需要另一个出货人来清点订单(Order)上的商品(SKU),并计算出商品的总价,但是由于订单和商品之间的耦合已经存在了,那么把这个职责分配给订单更合适,这样可以降低耦合,以便降低系统的复杂性。如下图:
这里我们在订单类里增加了一个TotalPrice()方法来执行计算总价的职责,没有增加不必要的耦合。4. High cohesion (高内聚)
(1) 问题:怎样使得复杂性可管理?
(2) 解决方案:分配一个职责,使得保持高内聚。
(3) 分析:内聚是评价一个元素的职责被关联和关注强弱的尺度。如果一个元素具有很多紧密相关的职责,而且只完成有限的功能,则这个元素就具有高内聚性。此处的元素可以是类,也可以是模块、子系统或者系统。在一个低内聚的类中会执行很多互不相关的操作,这将导致系统难于理解、难于重用、难于维护、过于脆弱,容易受到变化带来的影响。因此我们需要控制类的粒度,在分配类的职责时使其内聚保持为最高,提高类的重用性,控制类设计的复杂程度。为了达到低内聚,我们需要对类进行分解,使得分解出来的类具有独立的职责,满足单一职责原则。在一个类中只保留一组相关的属性和方法,将一些需要在多个类中重用的属性和方法或完成其他功能所需的属性和方法封装在其他类中。类只处理与之相关的功能,它将与其他类协作完成复杂的任务。
例如:一个订单数据存取类(OrderDAO),订单即可以保存为Excel模式,也可以保存到数据库中;那么,不同的职责最好由不同的类来实现,这样才是高内聚的设计,如下图:
这里我们把两种不同的数据存储功能分别放在了两个类里来实现,这样如果未来保存到Excel的功能发生错误,那么就去检查OrderDAOExcel类就可以了,这样也使系统更模块化,方便划分任务,比如这两个类就可以分配个不同的人同时进行开发,这样也提高了团队协作和开发进度。5. 控制器 (Controller)
(1) 问题:谁应该负责处理一个输入系统事件?
(2) 解决方案:把接收或者处理系统事件消息的职责分配给一个类。这个类可以代表:- 整个系统、设备或者子系统;
- 系统事件发生时对应的用例场景,在相同的用例场景中使用相同的控制器来处理所有的系统事件。
(3) 分析:一个控制器是负责接收或者处理系统事件的非图形用户界面对象。一个控制器定义一组系统操作方法。在控制器模式中,要求系统事件的接收与处理通常由一个高级类来代替;一个子系统需要定义多个控制器,分别对应不同的事务处理。通常,一个控制器应当把要完成的功能委托给其他对象,它只负责协调和控制,本身不完成太多的功能。它可以将用户界面所提交的请求转发给其他类来处理,控制器可以重用,且不能包含太多业务逻辑,一个系统通常也不能设计一个统一的控制器。控制器模式与MVC模式相对应,MVC是一种比设计模式更加高级的架构模式。
6. Polymorphism (多态)
这里的多态跟OO三大基本特征之一的“多态”是一个意思。
(1) 问题:如何处理基于类型的不同选择?如何创建可嵌入的软件组件?
(2) 解决方案:当相关选择或行为随类型(类)变化而变化时,用多态操作为行为变化的类型分配职责。
(3) 分析:由条件变化引发同一类型的不同行为是程序的一个基本主题。如果用if-else或switch-case等条件语句来设计程序,当系统发生变化时必须修改程序的业务逻辑,这将导致很难方便地扩展有新变化的程序。另外对于服务器/客户端结构中的可视化组件,有时候需要在不影响客户端的前提下,将服务器的一个组件替换成另一个组件。此时可以使用多态来实现,将不同的行为指定给不同的子类,多态是设计系统如何处理相似变化的基本方法,基于多态分配职责的设计可以方便地处理新的变化。在使用多态模式进行设计时,如果需要对父类的行为进行修改,可以通过其子类来实现,不同子类可以提供不同的实现方式,将具体的职责分配给指定的子类。新的子类增加到系统中也不会对其他类有任何影响,多态是面向对象的三大基本特性之一(另外两个分别是封装和继承),通过引入多态,子类对象可以覆盖父类对象的行为,更好地适应变化,使变化点能够“经得起未来验证”。多态模式在多个GoF设计模式中都有所体现,如适配器模式、命令模式、组合模式、观察者模式、策略模式等等。例如:我们想设计一个绘图程序,要支持可以画不同类型的图形,我们定义一个抽象类Shape,矩形(Rectangle)、圆形(Round)分别继承这个抽象类,并重写(override)Shape类里的Draw()方法,这样我们就可以使用同样的接口(Shape抽象类)绘制出不同的图形,如下图:
这样的设计更符合高内聚和低耦合原则,虽然后来我们又增加了一个菱形(Diamond)类,对整个系统结构也没有任何影响,只要增加一个继承Shape的类就行了。7. 纯虚构 (Pure Fabrication)
(1) 问题:当不想破坏高内聚和低耦合的设计原则时,谁来负责处理这种情况?
(2) 解决方案:将一组高内聚的职责分配给一个虚构的或处理方便的“行为”类,它并不是问题域中的概念,而是虚构的事务,以达到支持高内聚、低耦合和重用的目的。
(3) 分析:纯虚构模式用于解决高内聚和低耦合之间的矛盾,它要求将一部分类的职责转移到纯虚构类中,在理想情况下,分配给这种虚构类的职责是为了达到高内聚和低耦合的目的。在实际操作过程中,纯虚构有很多种实现方式,例如将数据库操作的方法从数据库实体类中剥离出来,形成专门的数据访问类,通过对类的分解来实现类的重用,新增加的数据访问类对应于数据持久化存储,它不是问题域中的概念,而是软件开发者为了处理方便而产生的虚构概念。纯虚构可以消除由于信息专家模式带来的低内聚和高耦合的坏设计,得到一个具有更好重用性的设计。在系统中引入抽象类或接口来提高系统的扩展性也可以认为是纯虚构模式的一种应用。纯虚构模式通常基于相关功能的划分,是一种以功能为中心的对象或行为对象。在很多设计模式中都体现了纯虚构模式,例如适配器模式、策略模式等等。例如:上面多态模式的例子,如果我们的绘图程序需要支持不同的系统,那么因为不同系统的API结构不同,绘图功能也需要不同的实现方式,那么该如何设计更合适呢?如下图:
8. Indirection (中介)
(1) 问题:如何分配职责以避免两个(或多个)事物之间的直接耦合?如何解耦对象以降低耦合度并提高系统的重用性?
(2) 解决方案:分配职责给中间对象以协调组件或服务之间的操作,使得它们不直接耦合。中间对象就是在其他组件之间建立的中介。
(3) 分析:要避免对象之间的直接耦合,最常用的做法是在对象之间引入一个中间对象或中介对象,通过中介对象来间接相连。中介模式对应于面向对象设计原则中的迪米特法则,在外观模式、代理模式、中介者模式等设计模式中都体现了中介模式。“中介”顾名思义,就是这个事不能直接来办,需要绕个弯才行。绕个弯的好处就是,本来直接会连接在一起的对象彼此隔离开了,一个的变动不会影响另一个。就像前面的低耦合模式里说的一样,“两个不同模块的内部类之间不能直接连接”,但是我们可以通过中间类来间接连接两个不同的模块,这样对于这两个模块来说,他们之间仍然是没有耦合/依赖关系的。
9. Protected Variations (受保护变化)
(1) 问题:如何分配职责给对象、子系统和系统,使得这些元素中的变化或不稳定的点不会对其他元素产生不利影响?
(2) 解决方案:找出预计有变化或不稳定的元素,为其创建稳定的“接口”而分配职责。
(3) 分析:受保护变化模式简称PV,它是大多数编程和设计的基础,是模式的基本动机之一,它使系统能够适应和隔离变化。它与面向对象设计原则中的开闭原则相对应,即在不修改原有元素(类、模块、子系统或系统)的前提下扩展元素的功能。开闭原则又可称为“可变性封装原则(Principle of Encapsulation of Variation, EVP)”,要求找到系统的可变因素并将其封装起来。如将抽象层的不同实现封装到不同的具体类中,而且EVP要求尽量不要将一种可变性和另一种可变性混合在一起,这将导致系统中类的个数急剧增长,增加系统的复杂度。在具体实现时,为了符合受保护变化模式,我们通常需要对系统进行抽象化设计,定义系统的抽象层,再通过具体类来进行扩展。如果需要扩展系统的行为,无须对抽象层进行任何改动,只需要增加新的具体类来实现新的业务功能即可,在不修改已有代码的基础上扩展系统的功能。大多数设计原则和GoF模式都是受保护变化模式的体现。 -
软件工程-设计模式
2019-10-22 10:20:09https://blog.csdn.net/qunqunstyle99/article/details/82153640 -
设计模式关于软件工程
2014-02-25 17:40:00设计模式设计模式(Design... 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石脉络,如同大厦的结构一样。 转载于:https://www.cnblogs.com/jsjblc/p/35673... -
软件架构设计模式——从事机器人工程师必须掌握的基本设计模式盘点:适配器模式
2020-05-24 17:19:15设计模式在软件工程中的定义是: 解决软件设计中常见问题的一种通用和可重用的解决方案。 我们的UML类图可以转换成代码的骨架,想要运行代码,内容需要我们来填充。 在我们掌握设计模式的定义,引入的意义,我们... -
详谈软件工程之系统设计模式
2019-09-27 11:22:19详谈软件工程之系统设计模式一:人机界面设计1、至于用户控制之下:2、减少用户的记忆负担3、保持界面的一致性:二、结构化设计1、结构化设计需要遵循的原则:(1)抽象化(2)自顶向下、逐步求精(3)信息隐蔽(4)... -
B8.软件工程与设计模式
2020-11-01 14:14:473、j2ee常用的设计模式?说明工厂模式。 总共23种,分为三大类:创建型,结构型,行为型 我只记得其中常用的6、7种,分别是: 创建型(工厂、工厂方法、抽象工厂、单例) 结构型(包装、适配器,组合,代理) ... -
iOS软件工程架构与设计模式
2021-02-25 04:01:20单例模式,为了保证一个类有且只有一个实例,无论创建多少次,都是同一个对象比如UIApplication的,UIAccelerometer(重力加速),NSUserDefaults的,NSNotificationCenter。单例模式的优点:1.安全。由于创建方法都... -
软件工程的23种设计模式
2019-11-22 22:07:00设计模式 模式 在一定环境中解决某一问题的方案,包括三个基本元素–问题,解决方案和环境。 大白话:在一定环境下,用固定套路解决问题。 设计模式(Design pattern) ...设计模式使代码编制真正工程化; ... -
C#设计模式(软件工程)
2009-05-26 17:57:51C#设计模式,对理论研究帮助很大!按照软件工程的模式进行讲解! -
8.软件工程与设计模式
2018-03-15 17:16:132.j2ee常用的设计模式?说明工厂模式。总共23种,分为三大类:创建型,结构型,行为型我只记得其中常用的6、7种,分别是:创建型(工厂、工厂方法、抽象工厂、单例)结构型(包装、适配器,组合,代理)行为(观察... -
软件工程23种设计模式全解析
2019-01-07 22:49:5823种设计模式全解析 一、设计模式的分类 总体来说设计模式分为三大类: 创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。 结构型模式,共七种:适配器模式、装饰器模式、代理模式...