精华内容
下载资源
问答
  • 三种强大的物体识别算法

    万次阅读 2015-08-13 22:52:48
    三种强大的物体识别算法 —— SIFT/SURF 、 haar 特征、广义 hough 变换 的特性对比分析   收藏   识别算法概述:       SIFT/SURF 基于灰度图,   一、首先建立图像金字塔,形成三维的图像...

    SIFT/SURF基于灰度图,

    一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变。

    二、在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT采用在一个正方形邻域内统计所有点的梯度方向,找到占80%以上的方向作为主方向;而SURF则选择圆形邻域,并且使用活动扇形的方法求出特征点主方向,以主方向对齐即完成旋转不变。

    三、以主方向为轴可以在每个特征点建立坐标,SIFT在特征点选择一块大小与尺度相应的方形区域,分成16块,统计每一块沿着八个方向占的比例,于是特征点形成了128维特征向量,对图像进行归一化则完成强度不变;而SURF分成64块,统计每一块的dx,dy,|dx|,|dy|的累积和,同样形成128维向量,再进行归一化则完成了对比度不变与强度不变。

     

    haar特征也是基于灰度图,

    首先通过大量的具有比较明显的haar特征(矩形)的物体图像用模式识别的方法训练出分类器,分类器是个级联的,每级都以大概相同的识别率保留进入下一级的具有物体特征的候选物体,而每一级的子分类器则由许多haar特征构成(由积分图像计算得到,并保存下位置),有水平的、竖直的、倾斜的,并且每个特征带一个阈值和两个分支值,每级子分类器带一个总的阈值。识别物体的时候,同样计算积分图像为后面计算haar特征做准备,然后采用与训练的时候有物体的窗口同样大小的窗口遍历整幅图像,以后逐渐放大窗口,同样做遍历搜索物体;每当窗口移动到一个位置,即计算该窗口内的haar特征,加权后与分类器中haar特征的阈值比较从而选择左或者右分支值,累加一个级的分支值与相应级的阈值比较,大于该阈值才可以通过进入下一轮筛选。当通过分类器所以级的时候说明这个物体以大概率被识别。

     

    广义hough变换同样基于灰度图,

    使用轮廓作为特征,融合了梯度信息,以投票的方式识别物体,在本blog的另一篇文章中有详细讨论,这里不再赘述。

     

     

    特点异同对比及其适用场合:

     

    三种算法都只是基于强度(灰度)信息,都是特征方法,但SIFT/SURF的特征是一种具有强烈方向性及亮度性的特征,这使得它适用于刚性形变,稍有透视形变的场合;haar特征识别方法带有一点人工智能的意味,对于像人脸这种有明显的、稳定结构的haar特征的物体最适用,只要结构相对固定即使发生扭曲等非线性形变依然可识别;广义hough变换完全是精确的匹配,可得到物体的位置方向等参数信息。前两种方法基本都是通过先获取局部特征然后再逐个匹配,只是局部特征的计算方法不同,SIFT/SURF比较复杂也相对稳定,haar方法比较简单,偏向一种统计的方法形成特征,这也使其具有一定的模糊弹性;广义hough变换则是一种全局的特征——轮廓梯度,但也可以看做整个轮廓的每一个点的位置和梯度都是特征,每个点都对识别有贡献,用直观的投票,看票数多少去确定是否识别出物体。

    转自:http://blog.csdn.net/cy513/article/details/4285579
    展开全文
  • 三种强大的物体识别算法——SIFT/SURF、haar特征、广义hough变换的特性对比分析 识别算法概述:    SIFT/SURF基于灰度图, 一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大...
    
    

    http://youzitool.com 新博客,欢迎访问】

    三种强大的物体识别算法——SIFT/SURF、haar特征、广义hough变换的特性对比分析

    识别算法概述:

     

     SIFT/SURF基于灰度图,

    一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到 粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变。

    二、在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT采用在一个正方形邻域内统计所有点的梯度方向,找到占80%以上的方向作为主方 向;而SURF则选择圆形邻域,并且使用活动扇形的方法求出特征点主方向,以主方向对齐即完成旋转不变。

    三、以主方向为轴可以在每个特征点建立坐标,SIFT在特征点选择一块大小与尺度相应的方形区域,分成16块,统计每一块沿着八个方向占的比例,于 是特征点形成了128维特征向量,对图像进行归一化则完成强度不变;而SURF分成64块,统计每一块的dx,dy,|dx|,|dy|的累积和,同样形 成128维向量,再进行归一化则完成了对比度不变与强度不变。

     

    haar特征也是基于灰度图,

    首先通过大量的具有比较明显的haar特征(矩形)的物体图像用模式识别的方法训练出分类器,分类器是个级联的,每级都以大概相同的识别率保留进入 下一级的具有物体特征的候选物体,而每一级的子分类器则由许多haar特征构成(由积分图像计算得到,并保存下位置),有水平的、竖直的、倾斜的,并且每 个特征带一个阈值和两个分支值,每级子分类器带一个总的阈值。识别物体的时候,同样计算积分图像为后面计算haar特征做准备,然后采用与训练的时候有物 体的窗口同样大小的窗口遍历整幅图像,以后逐渐放大窗口,同样做遍历搜索物体;每当窗口移动到一个位置,即计算该窗口内的haar特征,加权后与分类器中 haar特征的阈值比较从而选择左或者右分支值,累加一个级的分支值与相应级的阈值比较,大于该阈值才可以通过进入下一轮筛选。当通过分类器所以级的时候 说明这个物体以大概率被识别。

     

    广义hough变换同样基于灰度图,

    使用轮廓作为特征,融合了梯度信息,以投票的方式识别物体,在本blog的另一篇文章中有详细讨论,这里不再赘述。

     

    特点异同对比及其适用场合: 

    三种算法都只是基于强度(灰度)信息,都是特征方法,但SIFT/SURF的特征是一种具有强烈方向性及亮度性的特征,这使得它适用于刚性形变,稍 有透视形变的场合;haar特征识别方法带有一点人工智能的意味,对于像人脸这种有明显的、稳定结构的haar特征的物体最适用,只要结构相对固定即使发 生扭曲等非线性形变依然可识别;广义hough变换完全是精确的匹配,可得到物体的位置方向等参数信息。前两种方法基本都是通过先获取局部特征然后再逐个 匹配,只是局部特征的计算方法不同,SIFT/SURF比较复杂也相对稳定,haar方法比较简单,偏向一种统计的方法形成特征,这也使其具有一定的模糊 弹性;广义hough变换则是一种全局的特征——轮廓梯度,但也可以看做整个轮廓的每一个点的位置和梯度都是特征,每个点都对识别有贡献,用直观的投票, 看票数多少去确定是否识别出物体。

    展开全文
  • 著作权归作者所有。...识别算法概述:SIFT/SURF基于灰度图,一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使
    著作权归作者所有。
    商业转载请联系作者获得授权,非商业转载请注明出处。
    作者:cvvision
    链接:http://www.cvvision.cn/7780.html
    来源:CV视觉网

    识别算法概述:SIFT/SURF基于灰度图,一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变。二、在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT采用在一个正方形邻域内统计所有点的梯度方向,找到占80%以上的方向作为主方向;而SURF则选择圆形邻域,并且使用活动扇形的方法求出特征点主方向,以主方向对齐即完成旋转不变。三、以主方向为轴可以在每个特征点建立坐标,SIFT在特征点选择一块大小与尺度相应 的方形区域,分成16块,统计每一块沿着八个方向占的比例,于是特征点形成了128维特征向量,对图像进行归一化则完成强度不变;而SURF分成64块, 统计每一块的dx,dy,|dx|,|dy|的累积和,同样形成128维向量,再进行归一化则完成了对比度不变与强度不变。 Haar特征也是基于灰度图,首先通过大量的具有比较明显的haar特征(矩形)的物体图像用模式识别的方法训练出 分类器,分类器是个级联的,每级都以大概相同的识别率保留进入下一级的具有物体特征的候选物体,而每一级的子分类器则由许多haar特征构成(由积分图像 计算得到,并保存下位置),有水平的、竖直的、倾斜的,并且每个特征带一个阈值和两个分支值,每级子分类器带一个总的阈值。识别物体的时候,同样计算积分 图像为后面计算haar特征做准备,然后采用与训练的时候有物体的窗口同样大小的窗口遍历整幅图像,以后逐渐放大窗口,同样做遍历搜索物体;每当窗口移动 到一个位置,即计算该窗口内的haar特征,加权后与分类器中haar特征的阈值比较从而选择左或者右分支值,累加一个级的分支值与相应级的阈值比较,大 于该阈值才可以通过进入下一轮筛选。当通过分类器所以级的时候说明这个物体以大概率被识别。 广义hough变换同样基于灰度图,使用轮廓作为特征,融合了梯度信息,以投票的方式识别物体,在本blog的另一篇文章中有详细讨论,这里不再赘述。 特点异同对比及其适用场合:三种算法都只是基于强度(灰度)信息,都是特征方法,但SIFT/SURF的特征是一种具有强烈方向性及亮度性的特征,这使得它适用于刚性形变,稍有透视形变的场合;haar特征识别方法带有一点人工智能的 意味,对于像人脸这种有明显的、稳定结构的haar特征的物体最适用,只要结构相对固定即使发生扭曲等非线性形变依然可识别;广义hough变换完全是精 确的匹配,可得到物体的位置方向等参数信息。前两种方法基本都是通过先获取局部特征然后再逐个匹配,只是局部特征的计算方法不同,SIFT/SURF比较 复杂也相对稳定,haar方法比较简单,偏向一种统计的方法形成特征,这也使其具有一定的模糊弹性;广义hough变换则是一种全局的特征——轮廓梯度, 但也可以看做整个轮廓的每一个点的位置和梯度都是特征,每个点都对识别有贡献,用直观的投票,看票数多少去确定是否识别出物体。 SIFT/SURF算法的深入剖析——谈SIFT的精妙与不足SURF算法是SIFT算法的加速版,OpenCV的SURF算法在适中的条件下完成两幅图像中物体的匹配基本实现了实时处理,其快速的基础实际上只有一个——积分图像haar求导,对于它们其他方面的不同可以参考本blog的另外一篇关于SIFT的文章。不论科研还是应用上都希望可以和人类的视觉一样通过程序自动找出两幅图像里面相同的景物,并且建立它们之间的对应,前几年才被提出的SIFT(尺度不变特 征)算法提供了一种解决方法,通过这个算法可以使得满足一定条件下两幅图像中相同景物的某些点(后面提到的关键点)可以匹配起来,为什么不是每一点都匹配 呢?下面的论述将会提到。SIFT算法实现物体识别主要有三大工序,1、提取关键点;2、对关键点附加详细的信息(局部特征)也就是所谓的描述器;3、通过两方特征点(附带上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,也就建立了景物间的对应关系。日常的应用中,多数情况是给出一幅包含物体的参考图像,然后在另外一幅同样含有该物体的图像中实现它们的匹配。两幅图像中的物体一般只是旋转和缩放的关 系,加上图像的亮度及对比度的不同,这些就是最常见的情形。基于这些条件下要实现物体之间的匹配,SIFT算法的先驱及其发明者想到只要找到多于三对物体 间的匹配点就可以通过射影几何的理论建立它们的一一对应。首先在形状上物体既有旋转又有缩小放大的变化,如何找到这样的对应点呢?于是他们的想法是首先找 到图像中的一些“稳定点”,这些点是一些十分突出的点不会因光照条件的改变而消失,比如角点、边缘点、暗区域的亮点以及亮区域的暗点,既然两幅图像中有相 同的景物,那么使用某种方法分别提取各自的稳定点,这些点之间会有相互对应的匹配点,正是基于这样合理的假设,SIFT算法的基础是稳定点。SIFT算法 找稳定点的方法是找灰度图的局部最值,由于数字图像是离散的,想求导和求最值这些操作都是使用滤波器,而滤波器是有尺寸大小的,使用同一尺寸的滤波器对两 幅包含有不同尺寸的同一物体的图像求局部最值将有可能出现一方求得最值而另一方却没有的情况,但是容易知道假如物体的尺寸都一致的话它们的局部最值将会相 同。SIFT的精妙之处在于采用图像金字塔的方法解决这一问题,我们可以把两幅图像想象成是连续的,分别以它们作为底面作四棱锥,就像金字塔,那么每一个 截面与原图像相似,那么两个金字塔中必然会有包含大小一致的物体的无穷个截面,但应用只能是离散的,所以我们只能构造有限层,层数越多当然越好,但处理时 间会相应增加,层数太少不行,因为向下采样的截面中可能找不到尺寸大小一致的两个物体的图像。有了图像金字塔就可以对每一层求出局部最值,但是这样的稳定 点数目将会十分可观,所以需要使用某种方法抑制去除一部分点,但又使得同一尺度下的稳定点得以保存。有了稳定点之后如何去让程序明白它们之间是物体的同一 位置?研究者想到以该点为中心挖出一小块区域,然后找出区域内的某些特征,让这些特征附件在稳定点上,SIFT的又一个精妙之处在于稳定点附加上特征向量 之后就像一个根系发达的树根一样牢牢的抓住它的“土地”,使之成为更稳固的特征点,但是问题又来了,遇到旋转的情况怎么办?发明者的解决方法是找一个“主 方向”然后以它看齐,就可以知道两个物体的旋转夹角了。下面就讨论一下SIFT算法的缺陷。SIFT/SURT采用henssian矩阵获取图像局部最值还是十分稳定的,但是在求主方向阶段太过于依赖局部区域像素的梯度方向,有可能使得找到的主 方向不准确,后面的特征向量提取以及匹配都严重依赖于主方向,即使不大偏差角度也可以造成后面特征匹配的放大误差,从而匹配不成功;另外图像金字塔的层取 得不足够紧密也会使得尺度有误差,后面的特征向量提取同样依赖相应的尺度,发明者在这个问题上的折中解决方法是取适量的层然后进行插值。SIFT是一种只 利用到灰度性质的算法,忽略了色彩信息,后面又出现了几种据说比SIFT更稳定的描述器其中一些利用到了色彩信息,让我们拭目以待。最后要提一下,我们知道同样的景物在不同的照片中可能出现不同的形状、大小、角度、亮度,甚至扭曲;计算机视觉的知识表明通过光学镜头获取的图像,对于平 面形状的两个物体它们之间可以建立射影对应,对于像人脸这种曲面物体在不同角度距离不同相机参数下获取的两幅图像,它们之间不是一个线性对应关系,就是说 我们即使获得两张图像中的脸上若干匹配好的点对,还是无法从中推导出其他点的对应。
    展开全文
  • 人类是如何识别一个物体的呢,当然要对面前的这个物体为何物要有一个概念,人类一生下来就开始通过视觉获取世间万物的信息,包括一种物体形状、颜色、成分等,以及通过学习认识到这种物体的其他信息比如物理的、化学...

    (参考CSDN博主cy513的分析内容)


    首先,介绍一下人类是如何识别物体的:


    人类是如何识别一个物体的呢,当然要对面前的这个物体为何物要有一个概念,人类一生下来就开始通过视觉获取世间万物的信息,包括一种物体形状、颜色、成分等,以及通过学习认识到这种物体的其他信息比如物理的、化学的特性,这些信息是不能通过观察得到的;就这样人对一种新物就有了把握,并且物体的各种特征形成了数据存放在人的大脑里面,以后每当又遇到同类物体的时候通过抓住物体的特征识别出这种物体。图像学中基于特征的识别算法,完全是通过计算的方法去获取、比较特征;毕竟人类智能的机理到目前为止人类自己也只认识到一些表层的东西,可以说人类抓住特征,比较特征的方法完全不像图像学算法那样要通过复杂的程序、精密的计算去完成,为什么我们可以一眼就认出一个东西是什么,无论它被扭曲成什么形状,无论它变成什么样的颜色,无论我们从什么地方什么视角去观察,人类总能快速的认出物体的特征来,这主要是因为人具有强大的知识库和推理系统以及不为人知的大脑存储和搜索机理,人类无时无刻不在获取输入,并加入到知识库,更多时候通过推理、归纳、抽象等思维方法进一步扩充人的知识库,通过复杂的联系建立起索引,以备搜索;而人在识别的时候方法也不是唯一的,可以是计算、搜索、推理、模拟等各种方法的一种或者多种综合。图像学的识别算法使用了特征方法,却和人类的识别有本质的区别,不过虽然只是这么一小步,但也足以产生巨大的应用,并且在不断完善。


    SIFT/SURF基于灰度图,

    一、首先建立图像金字塔  ,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变。

    二、在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT采用在一个正方形邻域内统计所有点的梯度方向,找到占80%以上的方向作为主方向;而SURF则选择圆形邻域,并且使用活动扇形的方法求出特征点主方向,以主方向对齐即完成旋转不变。

    三、以主方向为轴可以在每个特征点建立坐标,SIFT在特征点选择一块大小与尺度相应的方形区域,分成16块,统计每一块沿着八个方向占的比例,于是特征点形成了128维特征向量,对图像进行归一化则完成强度不变;而SURF分成64块,统计每一块的dx,dy,|dx|,|dy|的累积和,同样形成128维向量,再进行归一化则完成了对比度不变与强度不变。



     SURF算法是SIFT算法的加速版,其快速的基础实际上只有一个——积分图像haar求导。


    不论科研还是应用上都希望可以和人类的视觉一样通过程序自动找出两幅图像里面相同的景物,并且建立它们之间的对应,前几年才被提出的SIFT(尺度不变特征)算法提供了一种解决方法,通过这个算法可以使得满足一定条件下两幅图像中相同景物的某些点(后面提到的关键点)可以匹配起来,为什么不是每一点都匹配呢?下面的论述将会提到。


     SIFT算法实现物体识别主要有三大工序,1、提取关键点;2、对关键点附加详细的信息(局部特征)也就是所谓的描述器;3、通过两方特征点(附带上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,也就建立了景物间的对应关系。


    日常的应用中,多数情况是给出一幅包含物体的参考图像,然后在另外一幅同样含有该物体的图像中实现它们的匹配。两幅图像中的物体一般只是旋转和缩放的关系,加上图像的亮度及对比度的不同,这些就是最常见的情形。基于这些条件下要实现物体之间的匹配,SIFT算法的先驱及其发明者想到只要找到多于三对物体间的匹配点就可以通过射影几何的理论建立它们的一一对应。首先在形状上物体既有旋转又有缩小放大的变化,如何找到这样的对应点呢?于是他们的想法是首先找到图像中的一些“稳定点”,这些点是一些十分突出的点不会因光照条件的改变而消失,比如角点、边缘点、暗区域的亮点以及亮区域的暗点,既然两幅图像中有相同的景物,那么使用某种方法分别提取各自的稳定点,这些点之间会有相互对应的匹配点,正是基于这样合理的假设,SIFT算法的基础是稳定点。


    SIFT算法找稳定点的方法是找灰度图的局部最值,由于数字图像是离散的,想求导和求最值这些操作都是使用滤波器,而滤波器是有尺寸大小的,使用同一尺寸的滤波器对两幅包含有不同尺寸的同一物体的图像求局部最值将有可能出现一方求得最值而另一方却没有的情况,但是容易知道假如物体的尺寸都一致的话它们的局部最值将会相同。SIFT的精妙之处在于采用图像金字塔的方法解决这一问题,我们可以把两幅图像想象成是连续的,分别以它们作为底面作四棱锥,就像金字塔,那么每一个截面与原图像相似,那么两个金字塔中必然会有包含大小一致的物体的无穷个截面,但应用只能是离散的,所以我们只能构造有限层,层数越多当然越好,但处理时间会相应增加,层数太少不行,因为向下采样的截面中可能找不到尺寸大小一致的两个物体的图像。有了图像金字塔就可以对每一层求出局部最值,但是这样的稳定点数目将会十分可观,所以需要使用某种方法抑制去除一部分点,但又使得同一尺度下的稳定点得以保存。有了稳定点之后如何去让程序明白它们之间是物体的同一位置?研究者想到以该点为中心挖出一小块区域,然后找出区域内的某些特征,让这些特征附件在稳定点上,SIFT的又一个精妙之处在于稳定点附加上特征向量之后就像一个根系发达的树根一样牢牢的抓住它的“土地”,使之成为更稳固的特征点,但是问题又来了,遇到旋转的情况怎么办?发明者的解决方法是找一个“主方向”然后以它看齐,就可以知道两个物体的旋转夹角了。下面就讨论一下SIFT算法的缺陷。


    SIFT/SURT采用henssian矩阵获取图像局部最值还是十分稳定的,但是在求主方向阶段太过于依赖局部区域像素的梯度方向,有可能使得找到的主方向不准确,后面的特征向量提取以及匹配都严重依赖于主方向,即使不大偏差角度也可以造成后面特征匹配的放大误差,从而匹配不成功;另外图像金字塔的层取得不足够紧密也会使得尺度有误差,后面的特征向量提取同样依赖相应的尺度,发明者在这个问题上的折中解决方法是取适量的层然后进行插值。SIFT是一种只利用到灰度性质的算法,忽略了色彩信息,后面又出现了几种据说比SIFT更稳定的描述器其中一些利用到了色彩信息,让我们拭目以待。


    最后要提一下,我们知道同样的景物在不同的照片中可能出现不同的形状、大小、角度、亮度,甚至扭曲;计算机视觉的知识表明通过光学镜头获取的图像,对于平面形状的两个物体它们之间可以建立射影对应,对于像人脸这种曲面物体在不同角度距离不同相机参数下获取的两幅图像,它们之间不是一个线性对应关系,就是说我们即使获得两张图像中的脸上若干匹配好的点对,还是无法从中推导出其他点的对应。


    haar特征也是基于灰度图,

    首先通过大量的具有比较明显的haar特征(矩形)的物体图像用模式识别的方法训练出分类器,分类器是个级联的,每级都以大概相同的识别率保留进入下一级的具有物体特征的候选物体,而每一级的子分类器则由许多haar特征构成(由积分图像计算得到,并保存下位置),有水平的、竖直的、倾斜的,并且每个特征带一个阈值和两个分支值,每级子分类器带一个总的阈值。识别物体的时候,同样计算积分图像为后面计算haar特征做准备,然后采用与训练的时候有物体的窗口同样大小的窗口遍历整幅图像,以后逐渐放大窗口,同样做遍历搜索物体;每当窗口移动到一个位置,即计算该窗口内的haar特征,加权后与分类器中haar特征的阈值比较从而选择左或者右分支值,累加一个级的分支值与相应级的阈值比较,大于该阈值才可以通过进入下一轮筛选。当通过分类器所以级的时候说明这个物体以大概率被识别。

    广义hough变换同样基于灰度图,

    使用轮廓作为特征,融合了梯度信息,以投票的方式识别物体。


    特点异同对比及其适用场合:

     

    三种算法都只是基于强度(灰度)信息,都是特征方法,但SIFT/SURF的特征是一种具有强烈方向性及亮度性的特征,这使得它适用于刚性形变,稍有透视形变的场合;haar特征识别方法带有一点人工智能的意味,对于像人脸这种有明显的、稳定结构的haar特征的物体最适用,只要结构相对固定即使发生扭曲等非线性形变依然可识别;广义hough变换完全是精确的匹配,可得到物体的位置方向等参数信息。前两种方法基本都是通过先获取局部特征然后再逐个匹配,只是局部特征的计算方法不同,SIFT/SURF比较复杂也相对稳定,haar方法比较简单,偏向一种统计的方法形成特征,这也使其具有一定的模糊弹性;广义hough变换则是一种全局的特征——轮廓梯度,但也可以看做整个轮廓的每一个点的位置和梯度都是特征,每个点都对识别有贡献,用直观的投票,看票数多少去确定是否识别出物体。

    展开全文
  • 首先通过大量的具有比较明显的haar特征(矩形)的物体图像用模式识别的方法训练出分类器,分类器是个级联的,每级都以大概相同的识别率保留进入下一级的具有物体特征的候选物体,而每一级的子分类器则由许多haar特征...
  • 多类物体实时识别算法

    千次阅读 2012-12-29 11:07:08
    在获得检测目标物粗略位置信息的基础上,研究出了基于模型和非基于模型的物体实时分割识别算法。本算法通过获得目标物体区别于背景与其他物体的精确信息如行人体貌、车辆类型等,进一步进行目标物体的识别,为后续的...
  • 在识别率的问题进行优化,通过算法可以对遮蔽防止监控的人进行识别,目前达到遮掩识别率超过其他类似识别算法。其中对于监控的摄像设备其使用当今的普通摄像头即可。 产品的展示效果 代码专区: 客户端 from...
  • 目标物体跟踪识别算法综述

    千次阅读 2018-04-08 09:06:41
    再看一下相关算法的发展历程,看看算法改进在什么地方 近几年目标跟踪算法发展综述上 近几年目标跟踪算法发展综述中 近几年目标跟踪算法发展综述下 2016视觉目标跟踪总结 【计算机视觉】目标检测与跟踪简介1 ...
  • 算法干货 | 点云物体识别大致流程

    千次阅读 2019-10-14 11:09:49
    点云物体识别前沿滤波采样特征向量提取匹配 作者:李工 前沿 点云物体识别,一般包括:采集数据点集合,即点云、点云滤波、采样、特征提取、特征匹配、识别与论断等若干步骤。 点云点云滤波采样特征提取特征匹配识别...
  • KinectV2测试物体识别linemod算法 Ubuntu16 ROS-kinetic

    千次阅读 热门讨论 2018-01-03 21:17:33
    1、在ros indigo下安装kinect2的驱动libfreenect时,经常会安装不成功,出现GLFW...linemod算法配置记录
  • 萝卜头AI视觉服务平台提供基于TensorFlow 算法的、全面开放的物体识别API,目前已可识别60余种物体,最快半小时即可对接应用,将被应用于N多个应用场景。计算机视觉作为人工智能的核心领域,在科技大环境促动与国家...
  • 物体识别

    万次阅读 多人点赞 2018-07-18 22:33:05
    一、物体识别 图像识别:很重要,是很多算法的基础 图像识别+定位:识别出来是猫,且定位出猫的位置 物体检测:每个图像中含有多物体,检测出有几个个体,并框出来位置 图像分割:不仅仅框出来位置,还有勾勒...
  • 图像识别算法

    万次阅读 多人点赞 2019-08-15 17:36:40
    图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们...
  • 多路径识别算法

    千次阅读 2020-10-16 16:45:42
    随着各省市高速公路的不断建设,基本上建成了大小规模不等的联网收费...本文介绍了多路径识别的多种算法,并着重分析了识别算法中的汽车牌照识别,根据车牌图像特点,对车牌识别算法关键环节包括数字图像预处理,车牌
  • 大多数人看过一两次某样物体就能将它认出来,而驱动计算机视觉和语音识别算法则需要成千上万的例子才能够熟知某个新图像或者新词语。 谷歌DeepMind的研究人员如今有了解决这一问题的办法。他们对深度学习算法...
  • 人脸识别算法介绍

    万次阅读 2017-08-03 12:26:36
    人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较...
  • YOLO,是目前速度更快的物体检测算法之一。虽然它不再是最准确的物体检测算法,但当您需要实时检测时,它是一个非常好的选择,而不会损失太多的准确性。 Darknet-53 YOLO v2 使用自定义的深度架构 darknet-19,这是...
  • RoboMaster视觉教程(4)装甲板识别算法

    万次阅读 多人点赞 2019-07-18 11:58:08
    RoboMaster视觉教程(4)装甲板识别算法 概览 装甲板识别是RoboMaster视觉识别中比较成熟的了,到现在有很多战队开源了他们的算法。 基本上的思路都是一样的:利用装甲板灯条发光的特性将摄像头曝光值调低屏蔽环境光...
  • 物体识别与测距解决方案

    千次阅读 2019-07-12 18:28:32
    机器视觉的高速发展,在人工智能各个领域的应用越来越重要,逐渐应用于安防监控、医疗图像、机器人工业视觉、自动化驾驶、无人机等行业中,而随着图像识别技术和深度学习算法的不断发展,机器视觉的物体识别与测距也...
  • 使用OpenCV对物体搜索检测与识别

    千次阅读 2020-09-22 17:14:43
    在本教程中,我们将了解对象检测中称为“选择性搜索”的重要概念。我们还将用C ++和Python共享...所有物体检测算法的核心是物体识别算法。假设我们训练了一个物体识别模型,该模型识别图像斑块中的狗。该模型将判断

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 52,789
精华内容 21,115
关键字:

物体识别算法