精华内容
下载资源
问答
  • NEON指令集

    千次阅读 2017-04-17 15:50:21
    Intel公司的单指令多数据流式扩展(SSE,Streaming SIMD Extensions)技术能够有效增强CPU浮点运算的能力。 SIMD(single-instruction, multiple-data)是一种使用单道指令处理多道数据流的CPU执行模式,即在一个CPU...

    Intel公司的单指令多数据流式扩展(SSE,Streaming SIMD Extensions)技术能够有效增强CPU浮点运算的能力。

    SIMD(single-instruction, multiple-data)是一种使用单道指令处理多道数据流的CPU执行模式,即在一个CPU指令执行周期内用一道指令完成处理多个数据的操作。

    http://blog.csdn.net/tonyfield2015/article/details/8602611

    GCC支持的ARM NEON 内联SIMD Intrinsics


    NEON中的正常指令、宽指令、窄指令、饱和指令、长指令

    正常指令:生成大小相同且类型通常与操作数向量相同到结果向量

    长指令:对双字向量操作数执行运算,生产四字向量到结果。所生成的元素一般是操作数元素宽度到两倍,并属于同一类型。L标记,如VMOVL。

    宽指令:一个双字向量操作数和一个四字向量操作数执行运算,生成四字向量结果。W标记,如VADDW。

    窄指令:四字向量操作数执行运算,并生成双字向量结果,所生成的元素一般是操作数元素宽度的一半。N标记,如VMOVN。

    饱和指令:当超过数据类型指定到范围则自动限制在该范围内。Q标记,如VQSHRUN


    逻辑运算

    VADD:按位与;VBIC:位清除;VEOR:按位异或;VORN:按位或非;VORR:按位或

     

    移位指令:

    VSHL:左移、VSHLL:左移扩展、VQSHL:左移饱和、VQSHLU:无符号左移饱和扩展

    VSHR:右移、VSHRN:右移窄、VRSHR:右移舍入、VQSHRUN:无符号右移饱和舍入

     

    ARM NEON基本指令集

    ARM Neon Intrinsics各函数介绍

    支持目标平台为ARM CPU的主流编译器基本都支持NEON指令。可以通过在代码中嵌入NEON汇编来使用NEON,但是更加常见的方式是通过类似C函数的NEON Instrinsic来编写NEON代码。NEON Instrinsic是编译器支持的一种buildin类型和函数的集合,基本涵盖NEON的所有指令,通常这些Instrinsic包含在arm_neon.h头文件中。


    • 16个通用寄存器(32bit),R0-R15
    • 16个NEON寄存器(128bit),Q0-Q15(同时也可以被视为32个64bit的寄存器,D0-D31)
    • 16个VFP寄存器(32bit),S0-S15

    • NEON和VFP的区别在于VFP是加速浮点计算的硬件不具备数据并行能力,同时VFP更尽兴双精度浮点数(double)的计算,NEON只有单精度浮点计算能力

    • 正常指令:生成大小相同且类型通常与操作数向量相同到结果向量。
    • 长指令:对双字向量操作数执行运算,生产四字向量到结果。所生成的元素一般是操作数元素宽度的两倍,并属于同一类型。L标记,如VMOVL。
    • 宽指令:一个双字向量操作数和一个四字向量操作数执行运算,生成四字向量结果。W标记,如VADDW。
    • 窄指令:四字向量操作数执行运算,并生成双字向量结果,所生成的元素一般是操作数元素宽度的一半。N标记,如VMOVN。
    • 饱和指令:当超过数据类型指定到范围则自动限制在该范围内。Q标记,如VQSHRUN


    double vector 64

    quad vector 128

    展开全文
  • NEON指令集释义

    千次阅读 2019-09-24 16:14:33
    常用NEON指令集 neon指令总结 知识直通车 neon指令权威官网:https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics neon指令中文速查:...

    目录

    知识直通车

    常用NEON指令集

    neon指令总结

    NEON指令大全


    知识直通车

    neon指令权威官网:https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics

    neon指令中文速查:https://blog.csdn.net/billbliss/article/details/78924636

    neon指令总结,参考这篇文章:https://blog.csdn.net/xiongtiancheng/article/details/77103810 
     

    常用NEON指令集

    float32x4_t vld1q_f32 (float32_t const * ptr)

    加载4个32位float型数据

     

    uint8x8_t vld1_dup_u8 (uint8_t const * ptr)

    重复赋值到8个uint8

     

    uint16x8_t vmovl_u8 (uint8x8_t a)

    对读取的uint8x8进行宽度扩展,左边补零

     

    int16x8_t vreinterpretq_s16_u16 (uint16x8_t a)

    数据类型强制转换

     

    uint16x8_t vsubl_u8 (uint8x8_t a, uint8x8_t b)

    长指令,相减并扩展到16bit

     

    int32x4_t vmlal_lane_s16 (int32x4_t a, int16x4_t b, int16x4_t v, const int lane)

    释义:

    for(i)

    a[i]+b[i]*v[lane]

     

    float32x4_t vmlaq_lane_f32 (float32x4_t a, float32x4_t b, float32x2_t v, const int lane)

    类上

     

    int16x4_t vget_low_s16 (int16x8_t a)

    取低16x4

     

    int32x4_t vrshlq_s32 (int32x4_t a, int32x4_t b)

    饱和移位,b为正数左移,b为负数右移

     

    uint8x16x2_t vld2q_u8 (uint8_t const * ptr)

    一次取2个u8分别放到2个128位寄存器中

    uint8x16x2_t v = vld2q_u8(ptr);

    a = v.val[0]; 

    b = v.val[1];

    同理还有vld3q_u8/vld4q_u8

     

    uint8x16_t vqsubq_u8 (uint8x16_t a, uint8x16_t b)

    uint8饱和相减,unsigned类型>=0

     

    总结neon指令的组成规律:

    v<noen函数前缀>q<饱和操作>ops<具体操作>tyep<指令类型  q,l,w,n>_flag<标识  n,lane,high or low>_dtype<返回值类型或参数类型>

    neon指令总结

    正常指令(q)
    正常指令可对上述任意向量类型执行运算,并生成大小相同且类型通常与操作数向量相同的结果向量。

    长指令(l)
    长指令对双字向量操作数执行运算,并生成四字向量结果。 所生成的元素通常是操作数元素宽度的两倍,并属于同一类型。

    宽指令(w)
    宽指令对一个双字向量操作数和一个四字向量操作数执行运算。 此类指令生成四字向量结果。 所生成的元素和第一个操作数的元素是第二个操作数元素宽度的两倍。

    窄指令(n)
    窄指令对四字向量操作数执行运算,并生成双字向量结果。 所生成的元素通常是操作数元素宽度的一半。

    饱和指令(q)
    通过在 V 和指令助记符之间使用 Q 前缀可以指定饱和指令。

    数据类型 x 的饱和范围 (s 就是signed,有符号的意思,u就是unsigned,无符号的意思) 
    s8 –2^7 <= x < 2^7 
    s16 –2^15 <= x < 2^15 
    s32 –2^31 <= x < 2^31 
    s64 –2^63 <= x < 2^63 
    u8 0 <= x < 2^8 
    u16 0 <= x < 2^16 
    u32 0 <= x < 2^32 
    u64 0 <= x < 2^64

    neon指令集关键字
    add 加法 
    mul 乘法 
    sub 减法 
    mla 乘加 
    mls 乘减 
    ceq 比较,类似与 == 
    cge 比较,类似与 >= 
    cle 比较,类似与 <= 
    cgt 比较,类似与 > 
    clt 比较,类似与 < 
    tst 做与运算后,判断是否等于0 ,ri = (ai & bi != 0) ? 1…1:0…0; 
    abd 两个向量相减后的绝对值,vabd -> ri = |ai - bi|; 
    max 求最大值,ri = ai >= bi ? ai : bi; 
    min 求最小值,ri = ai >= bi ? bi : ai; 
    shl 左移位, ri = ai << b; 
    shr 右移位, ri = ai >> b; 
    abs 求绝对值,ri = |ai|; 
    neg 取反,ri = -ai; 
    mvn 按位取反,ri = ~ai; 
    and 与运算,ri = ai & bi; 
    orr 或运算,ri = ai | bi; 
    eor 异或运算,ri = ai ^ bi; 
    cls 计算连续相同的位数 
    get 取值,从向量中取出一个值,所谓的向量可以认为是一个数组,给数组中的某个元素赋值 
    set 赋值,给向量中赋值 
    dup 构造一个向量,并赋上初始值,ri = a; 
    combine 合并操作,把两个向量合并 
    mov 改变数据类型,数据范围,比如把u8 变成u16,或者u16变成u8 
    zip 压缩操作 
    uzp 解压操作 
    ld1 加载数据,给定的buffer 指针中拷贝数据,注意是ld后面的是数字1,而不是字母l 
    st1 拷贝数据,将neon数据类型拷贝到指定buffer中

    NEON指令大全

     
    /******************************************************Addition*************************/
    /*--1、Vector add(正常指令): vadd -> ri = ai + bi; r, a, b have equal lane sizes--*/
    int8x8_t vadd_s8 (int8x8_t __a, int8x8_t __b);//_mm_add_epi8
    int16x4_t vadd_s16 (int16x4_t __a, int16x4_t __b);//_mm_add_epi16
    int32x2_t vadd_s32 (int32x2_t __a, int32x2_t __b);//_mm_add_epi32
    int64x1_t vadd_s64 (int64x1_t __a, int64x1_t __b);//_mm_add_epi64
    //_mm_add_ps, SSE, use only low 64 bits
    float32x2_t vadd_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vadd_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_add_epi8
    uint16x4_t vadd_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_add_epi16
    uint32x2_t vadd_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_add_epi32
    uint64x1_t vadd_u64 (uint64x1_t __a, uint64x1_t __b);//_mm_add_epi64
    int8x16_t vaddq_s8 (int8x16_t __a, int8x16_t __b);//_mm_add_epi8
    int16x8_t vaddq_s16 (int16x8_t __a, int16x8_t __b);//_mm_add_epi16
    int32x4_t vaddq_s32 (int32x4_t __a, int32x4_t __b);//_mm_add_epi32
    int64x2_t vaddq_s64 (int64x2_t __a, int64x2_t __b);//_mm_add_epi64
    float32x4_t vaddq_f32 (float32x4_t __a, float32x4_t __b);//_mm_add_ps
    uint8x16_t vaddq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_add_epi8
    uint16x8_t vaddq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_add_epi16
    uint32x4_t vaddq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_add_epi32
    uint64x2_t vaddq_u64 (uint64x2_t __a, uint64x2_t __b);//_mm_add_epi64
    /*--2、Vector long add(长指令): vaddl -> ri = ai + bi; a, b have equal lane sizes, 
    result is a 128 bit vector of lanes that are twice the width--*/
    int16x8_t vaddl_s8 (int8x8_t __a, int8x8_t __b);
    int32x4_t vaddl_s16 (int16x4_t __a, int16x4_t __b);
    int64x2_t vaddl_s32 (int32x2_t __a, int32x2_t __b);
    uint16x8_t vaddl_u8 (uint8x8_t __a, uint8x8_t __b);
    uint32x4_t vaddl_u16 (uint16x4_t __a, uint16x4_t __b);
    uint64x2_t vaddl_u32 (uint32x2_t __a, uint32x2_t __b);
    /*--3、Vector wide add(宽指令): vaddw -> ri = ai + bi--*/
    int16x8_t vaddw_s8 (int16x8_t __a, int8x8_t __b);
    int32x4_t vaddw_s16 (int32x4_t __a, int16x4_t __b);
    int64x2_t vaddw_s32 (int64x2_t __a, int32x2_t __b);
    uint16x8_t vaddw_u8 (uint16x8_t __a, uint8x8_t __b);
    uint32x4_t vaddw_u16 (uint32x4_t __a, uint16x4_t __b);
    uint64x2_t vaddw_u32 (uint64x2_t __a, uint32x2_t __b);
    /*--4、Vector halving add: vhadd -> ri = (ai + bi) >> 1; 
    shifts each result right one bit, Results are truncated--*/
    int8x8_t vhadd_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vhadd_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vhadd_s32 (int32x2_t __a, int32x2_t __b);
    uint8x8_t vhadd_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vhadd_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vhadd_u32 (uint32x2_t __a, uint32x2_t __b);
    int8x16_t vhaddq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vhaddq_s16 (int16x8_t __a, int16x8_t __b)
    int32x4_t vhaddq_s32 (int32x4_t __a, int32x4_t __b)
    uint8x16_t vhaddq_u8 (uint8x16_t __a, uint8x16_t __b)
    uint16x8_t vhaddq_u16 (uint16x8_t __a, uint16x8_t __b)
    uint32x4_t vhaddq_u32 (uint32x4_t __a, uint32x4_t __b);
    /*--5、Vector rounding halving add: vrhadd -> ri = (ai + bi + 1) >> 1; 
    shifts each result right one bit, Results are rounded(四舍五入)--*/
    int8x8_t vrhadd_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vrhadd_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vrhadd_s32 (int32x2_t __a, int32x2_t __b);
    uint8x8_t vrhadd_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_avg_epu8
    uint16x4_t vrhadd_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_avg_epu16
    uint32x2_t vrhadd_u32 (uint32x2_t __a, uint32x2_t __b);
    int8x16_t vrhaddq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vrhaddq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vrhaddq_s32 (int32x4_t __a, int32x4_t __b);
    uint8x16_t vrhaddq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_avg_epu8
    uint16x8_t vrhaddq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_avg_epu16
    uint32x4_t vrhaddq_u32 (uint32x4_t __a, uint32x4_t __b);
    /*--6、Vector saturating add(饱和指令): vqadd -> ri = sat(ai + bi); 
    the results are saturated if they overflow--*/
    int8x8_t vqadd_s8 (int8x8_t __a, int8x8_t __b);//_mm_adds_epi8
    int16x4_t vqadd_s16 (int16x4_t __a, int16x4_t __b);//_mm_adds_epi16
    int32x2_t vqadd_s32 (int32x2_t __a, int32x2_t __b);
    int64x1_t vqadd_s64 (int64x1_t __a, int64x1_t __b);
    uint8x8_t vqadd_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_adds_epu8
    uint16x4_t vqadd_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_adds_epu16
    uint32x2_t vqadd_u32 (uint32x2_t __a, uint32x2_t __b);
    uint64x1_t vqadd_u64 (uint64x1_t __a, uint64x1_t __b);
    int8x16_t vqaddq_s8 (int8x16_t __a, int8x16_t __b);//_mm_adds_epi8
    int16x8_t vqaddq_s16 (int16x8_t __a, int16x8_t __b);//_mm_adds_epi16
    int32x4_t vqaddq_s32 (int32x4_t __a, int32x4_t __b);
    int64x2_t vqaddq_s64 (int64x2_t __a, int64x2_t __b);
    uint8x16_t vqaddq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_adds_epu8
    uint16x8_t vqaddq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_adds_epu16
    uint32x4_t vqaddq_u32 (uint32x4_t __a, uint32x4_t __b);
    uint64x2_t vqaddq_u64 (uint64x2_t __a, uint64x2_t __b);
    /*--7、Vector add high half(窄指令): vaddhn -> ri = sat(ai + bi); 
    selecting High half, The results are truncated--*/
    int8x8_t vaddhn_s16 (int16x8_t __a, int16x8_t __b);
    int16x4_t vaddhn_s32 (int32x4_t __a, int32x4_t __b);
    int32x2_t vaddhn_s64 (int64x2_t __a, int64x2_t __b);
    uint8x8_t vaddhn_u16 (uint16x8_t __a, uint16x8_t __b);
    uint16x4_t vaddhn_u32 (uint32x4_t __a, uint32x4_t __b);
    uint32x2_t vaddhn_u64 (uint64x2_t __a, uint64x2_t __b);
    /*--8、Vector rounding add high half(窄指令): vraddhn -> ri = ai + bi; 
    selecting High half, The results are rounded--*/
    int8x8_t vraddhn_s16 (int16x8_t __a, int16x8_t __b);
    int16x4_t vraddhn_s32 (int32x4_t __a, int32x4_t __b)
    int32x2_t vraddhn_s64 (int64x2_t __a, int64x2_t __b)
    uint8x8_t vraddhn_u16 (uint16x8_t __a, uint16x8_t __b)
    uint16x4_t vraddhn_u32 (uint32x4_t __a, uint32x4_t __b)
    uint32x2_t vraddhn_u64 (uint64x2_t __a, uint64x2_t __b);
    /*******************************************Multiplication******************************/
    /*--1、Vector multiply(正常指令): vmul -> ri = ai * bi;--*/
    int8x8_t vmul_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vmul_s16 (int16x4_t __a, int16x4_t __b);//_mm_mullo_epi16
    int32x2_t vmul_s32 (int32x2_t __a, int32x2_t __b);
    float32x2_t vmul_f32 (float32x2_t __a, float32x2_t __b);//_mm_mul_ps
    uint8x8_t vmul_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vmul_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_mullo_epi16
    uint32x2_t vmul_u32 (uint32x2_t __a, uint32x2_t __b);
    poly8x8_t vmul_p8 (poly8x8_t __a, poly8x8_t __b);
    int8x16_t vmulq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vmulq_s16 (int16x8_t __a, int16x8_t __b);//_mm_mullo_epi16
    int32x4_t vmulq_s32 (int32x4_t __a, int32x4_t __b);
    float32x4_t vmulq_f32 (float32x4_t __a, float32x4_t __b);//_mm_mul_ps
    uint8x16_t vmulq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vmulq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_mullo_epi16
    uint32x4_t vmulq_u32 (uint32x4_t __a, uint32x4_t __b);
    poly8x16_t vmulq_p8 (poly8x16_t __a, poly8x16_t __b);
    /*--2、Vector multiply accumulate: vmla -> ri = ai + bi * ci; --*/
    int8x8_t vmla_s8 (int8x8_t __a, int8x8_t __b, int8x8_t __c);
    int16x4_t vmla_s16 (int16x4_t __a, int16x4_t __b, int16x4_t __c);
    int32x2_t vmla_s32 (int32x2_t __a, int32x2_t __b, int32x2_t __c);
    float32x2_t vmla_f32 (float32x2_t __a, float32x2_t __b, float32x2_t __c);
    uint8x8_t vmla_u8 (uint8x8_t __a, uint8x8_t __b, uint8x8_t __c);
    uint16x4_t vmla_u16 (uint16x4_t __a, uint16x4_t __b, uint16x4_t __c);
    uint32x2_t vmla_u32 (uint32x2_t __a, uint32x2_t __b, uint32x2_t __c);
    int8x16_t vmlaq_s8 (int8x16_t __a, int8x16_t __b, int8x16_t __c);
    int16x8_t vmlaq_s16 (int16x8_t __a, int16x8_t __b, int16x8_t __c);
    int32x4_t vmlaq_s32 (int32x4_t __a, int32x4_t __b, int32x4_t __c);
    float32x4_t vmlaq_f32 (float32x4_t __a, float32x4_t __b, float32x4_t __c);
    uint8x16_t vmlaq_u8 (uint8x16_t __a, uint8x16_t __b, uint8x16_t __c);
    uint16x8_t vmlaq_u16 (uint16x8_t __a, uint16x8_t __b, uint16x8_t __c);
    uint32x4_t vmlaq_u32 (uint32x4_t __a, uint32x4_t __b, uint32x4_t __c);
    /*--3、Vector multiply accumulate long: vmlal -> ri = ai + bi * ci --*/
    int16x8_t vmlal_s8 (int16x8_t __a, int8x8_t __b, int8x8_t __c);
    int32x4_t vmlal_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c);
    int64x2_t vmlal_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c);
    uint16x8_t vmlal_u8 (uint16x8_t __a, uint8x8_t __b, uint8x8_t __c);
    uint32x4_t vmlal_u16 (uint32x4_t __a, uint16x4_t __b, uint16x4_t __c);
    uint64x2_t vmlal_u32 (uint64x2_t __a, uint32x2_t __b, uint32x2_t __c);
    /*--4、Vector multiply subtract: vmls -> ri = ai - bi * ci --*/
    int8x8_t vmls_s8 (int8x8_t __a, int8x8_t __b, int8x8_t __c);
    int16x4_t vmls_s16 (int16x4_t __a, int16x4_t __b, int16x4_t __c);
    int32x2_t vmls_s32 (int32x2_t __a, int32x2_t __b, int32x2_t __c);
    float32x2_t vmls_f32 (float32x2_t __a, float32x2_t __b, float32x2_t __c);
    uint8x8_t vmls_u8 (uint8x8_t __a, uint8x8_t __b, uint8x8_t __c);
    uint16x4_t vmls_u16 (uint16x4_t __a, uint16x4_t __b, uint16x4_t __c);
    uint32x2_t vmls_u32 (uint32x2_t __a, uint32x2_t __b, uint32x2_t __c);
    int8x16_t vmlsq_s8 (int8x16_t __a, int8x16_t __b, int8x16_t __c);
    int16x8_t vmlsq_s16 (int16x8_t __a, int16x8_t __b, int16x8_t __c);
    int32x4_t vmlsq_s32 (int32x4_t __a, int32x4_t __b, int32x4_t __c);
    float32x4_t vmlsq_f32 (float32x4_t __a, float32x4_t __b, float32x4_t __c);
    uint8x16_t vmlsq_u8 (uint8x16_t __a, uint8x16_t __b, uint8x16_t __c);
    uint16x8_t vmlsq_u16 (uint16x8_t __a, uint16x8_t __b, uint16x8_t __c);
    uint32x4_t vmlsq_u32 (uint32x4_t __a, uint32x4_t __b, uint32x4_t __c);
    /*--5、Vector multiply subtract long:vmlsl -> ri = ai - bi * ci --*/
    int16x8_t vmlsl_s8 (int16x8_t __a, int8x8_t __b, int8x8_t __c);
    int32x4_t vmlsl_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c);
    int64x2_t vmlsl_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c);
    uint16x8_t vmlsl_u8 (uint16x8_t __a, uint8x8_t __b, uint8x8_t __c);
    uint32x4_t vmlsl_u16 (uint32x4_t __a, uint16x4_t __b, uint16x4_t __c);
    uint64x2_t vmlsl_u32 (uint64x2_t __a, uint32x2_t __b, uint32x2_t __c);
    /*--6、Vector saturating doubling multiply high: vqdmulh -> ri = sat(ai * bi); 
    doubles the results and returns only the high half of the truncated results--*/
    int16x4_t vqdmulh_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vqdmulh_s32 (int32x2_t __a, int32x2_t __b);
    int16x8_t vqdmulhq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vqdmulhq_s32 (int32x4_t __a, int32x4_t __b);
    /*--7、Vector saturating rounding doubling multiply high vqrdmulh -> ri = ai * bi: 
    doubles the results and returns only the high half of the rounded results. 
    The results are saturated if they overflow--*/
    int16x4_t vqrdmulh_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vqrdmulh_s32 (int32x2_t __a, int32x2_t __b);
    int16x8_t vqrdmulhq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vqrdmulhq_s32 (int32x4_t __a, int32x4_t __b);
    /*--8、Vector saturating doubling multiply accumulate long: vqdmlal -> ri = ai + bi * ci;
    multiplies the elements in the second and third vectors, doubles the results and adds the
    results to the values in the first vector. The results are saturated if they overflow--*/
    int32x4_t vqdmlal_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c);
    int64x2_t  vqdmlal_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c);
    /*--9、Vector saturating doubling multiply subtract long: vqdmlsl -> ri = ai - bi * ci;
    multiplies the elements in the second and third vectors, doubles the results and subtracts 
    the results from the elements in the first vector. 
    The results are saturated if they overflow--*/
    int32x4_t vqdmlsl_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c);
    int64x2_t vqdmlsl_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c);
    /*--10、Vector long multiply(长指令): vmull -> ri = ai * bi;--*/
    int16x8_t vmull_s8 (int8x8_t __a, int8x8_t __b);
    int32x4_t vmull_s16 (int16x4_t __a, int16x4_t __b);
    int64x2_t vmull_s32 (int32x2_t __a, int32x2_t __b);
    uint16x8_t vmull_u8 (uint8x8_t __a, uint8x8_t __b);
    uint32x4_t vmull_u16 (uint16x4_t __a, uint16x4_t __b);
    uint64x2_t vmull_u32 (uint32x2_t __a, uint32x2_t __b);
    poly16x8_t vmull_p8 (poly8x8_t __a, poly8x8_t __b);
    /*--11、Vector saturating doubling long multiply: vqdmull -> ri = ai * bi;
    If any of the results overflow, they are saturated--*/
    int32x4_t vqdmull_s16 (int16x4_t __a, int16x4_t __b);
    int64x2_t vqdmull_s32 (int32x2_t __a, int32x2_t __b);
    /*--12、Fused multiply accumulate: vfma -> ri = ai + bi * ci; 
    The result of the multiply is not rounded before the accumulation--*/
    float32x2_t vfma_f32 (float32x2_t __a, float32x2_t __b, float32x2_t __c)
    float32x4_t vfmaq_f32 (float32x4_t __a, float32x4_t __b, float32x4_t __c);
    /*--13、Fused multiply subtract: vfms -> ri = ai - bi * ci; 
    The result of the multiply is not rounded before the subtraction--*/
    float32x2_t vfms_f32 (float32x2_t __a, float32x2_t __b, float32x2_t __c);
    float32x4_t vfmsq_f32 (float32x4_t __a, float32x4_t __b, float32x4_t __c);
    /******************************************************Round to integral****************/
    /*--1、to nearest, ties to even--*/
    float32x2_t vrndn_f32 (float32x2_t __a);
    float32x4_t vrndqn_f32 (float32x4_t __a);
    /*--2、to nearest, ties away from zero--*/
    float32x2_t vrnda_f32 (float32x2_t __a);
    float32x4_t vrndqa_f32 (float32x4_t __a);
    /*--3、towards +Inf--*/
    float32x2_t vrndp_f32 (float32x2_t __a);
    float32x4_t vrndqp_f32 (float32x4_t __a);
    /*--4、towards -Inf--*/
    float32x2_t vrndm_f32 (float32x2_t __a);
    float32x4_t vrndqm_f32 (float32x4_t __a);
    /*--5、towards 0--*/
    float32x2_t vrnd_f32 (float32x2_t __a);
    float32x4_t vrndq_f32 (float32x4_t __a);
    /**********************************************Subtraction******************************/
    /*--1、Vector subtract(正常指令):vsub -> ri = ai - bi;--*/
    int8x8_t vsub_s8 (int8x8_t __a, int8x8_t __b);//_mm_sub_epi8
    int16x4_t vsub_s16 (int16x4_t __a, int16x4_t __b);//_mm_sub_epi16
    int32x2_t vsub_s32 (int32x2_t __a, int32x2_t __b);//_mm_sub_epi32
    int64x1_t vsub_s64 (int64x1_t __a, int64x1_t __b);//_mm_sub_epi64
    float32x2_t vsub_f32 (float32x2_t __a, float32x2_t __b);//_mm_sub_ps
    uint8x8_t vsub_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_sub_epi8
    uint16x4_t vsub_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_sub_epi16
    uint32x2_t vsub_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_sub_epi32
    uint64x1_t vsub_u64 (uint64x1_t __a, uint64x1_t __b);//_mm_sub_epi64
    int8x16_t vsubq_s8 (int8x16_t __a, int8x16_t __b);//_mm_sub_epi8
    int16x8_t vsubq_s16 (int16x8_t __a, int16x8_t __b);//_mm_sub_epi16
    int32x4_t vsubq_s32 (int32x4_t __a, int32x4_t __b);//_mm_sub_epi32
    int64x2_t vsubq_s64 (int64x2_t __a, int64x2_t __b);//_mm_sub_epi64
    float32x4_t vsubq_f32 (float32x4_t __a, float32x4_t __b);//_mm_sub_ps
    uint8x16_t vsubq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_sub_epi8
    uint16x8_t vsubq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_sub_epi16
    uint32x4_t vsubq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_sub_epi32
    uint64x2_t vsubq_u64 (uint64x2_t __a, uint64x2_t __b);//_mm_sub_epi64
    /*--2、Vector long subtract(长指令): vsubl -> ri = ai - bi; --*/
    int16x8_t vsubl_s8 (int8x8_t __a, int8x8_t __b);
    int32x4_t vsubl_s16 (int16x4_t __a, int16x4_t __b);
    int64x2_t vsubl_s32 (int32x2_t __a, int32x2_t __b);
    uint16x8_t vsubl_u8 (uint8x8_t __a, uint8x8_t __b);
    uint32x4_t vsubl_u16 (uint16x4_t __a, uint16x4_t __b);
    uint64x2_t vsubl_u32 (uint32x2_t __a, uint32x2_t __b);
    /*--3、Vector wide subtract(宽指令): vsubw -> ri = ai - bi;--*/
    int16x8_t vsubw_s8 (int16x8_t __a, int8x8_t __b);
    int32x4_t vsubw_s16 (int32x4_t __a, int16x4_t __b);
    int64x2_t vsubw_s32 (int64x2_t __a, int32x2_t __b);
    uint16x8_t vsubw_u8 (uint16x8_t __a, uint8x8_t __b);
    uint32x4_t vsubw_u16 (uint32x4_t __a, uint16x4_t __b);
    uint64x2_t vsubw_u32 (uint64x2_t __a, uint32x2_t __b);
    /*--4、Vector saturating subtract(饱和指令): vqsub -> ri = sat(ai - bi);
    If any of the results overflow, they are saturated--*/
    int8x8_t vqsub_s8 (int8x8_t __a, int8x8_t __b);//_mm_subs_epi8
    int16x4_t vqsub_s16 (int16x4_t __a, int16x4_t __b);//_mm_subs_epi16
    int32x2_t vqsub_s32 (int32x2_t __a, int32x2_t __b);//_mm_subs_epi32
    int64x1_t vqsub_s64 (int64x1_t __a, int64x1_t __b);
    uint8x8_t vqsub_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_subs_epu8
    uint16x4_t vqsub_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_subs_epu16
    uint32x2_t vqsub_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_subs_epu32
    uint64x1_t vqsub_u64 (uint64x1_t __a, uint64x1_t __b);
    int8x16_t vqsubq_s8 (int8x16_t __a, int8x16_t __b);//_mm_subs_epi8
    int16x8_t vqsubq_s16 (int16x8_t __a, int16x8_t __b);//_mm_subs_epi16
    int32x4_t vqsubq_s32 (int32x4_t __a, int32x4_t __b);//_mm_subs_epi32
    int64x2_t vqsubq_s64 (int64x2_t __a, int64x2_t __b);
    uint8x16_t vqsubq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_subs_epu8
    uint16x8_t vqsubq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_subs_epu16
    uint32x4_t vqsubq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_subs_epu32
    uint64x2_t vqsubq_u64 (uint64x2_t __a, uint64x2_t __b);
    /*--5、Vector halving subtract: vhsub -> ri = (ai - bi) >> 1; 
    shifts each result right one bit, The results are truncated.--*/
    int8x8_t vhsub_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vhsub_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vhsub_s32 (int32x2_t __a, int32x2_t __b);
    uint8x8_t vhsub_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vhsub_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vhsub_u32 (uint32x2_t __a, uint32x2_t __b);
    int8x16_t vhsubq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vhsubq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vhsubq_s32 (int32x4_t __a, int32x4_t __b);
    uint8x16_t vhsubq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vhsubq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4_t vhsubq_u32 (uint32x4_t __a, uint32x4_t __b);
    /*--6、Vector subtract high half(窄指令): vsubhn -> ri = ai - bi;
    It returns the most significant halves of the results. The results are truncated--*/
    int8x8_t vsubhn_s16 (int16x8_t __a, int16x8_t __b);
    int16x4_t vsubhn_s32 (int32x4_t __a, int32x4_t __b);
    int32x2_t vsubhn_s64 (int64x2_t __a, int64x2_t __b);
    uint8x8_t vsubhn_u16 (uint16x8_t __a, uint16x8_t __b);
    uint16x4_t vsubhn_u32 (uint32x4_t __a, uint32x4_t __b);
    uint32x2_t vsubhn_u64 (uint64x2_t __a, uint64x2_t __b);
    /*--7、Vector rounding subtract high half(窄指令): vrsubhn -> ai - bi; 
    It returns the most significant halves of the results. The results are rounded--*/
    int8x8_t vrsubhn_s16 (int16x8_t __a, int16x8_t __b);
    int16x4_t vrsubhn_s32 (int32x4_t __a, int32x4_t __b);
    int32x2_t vrsubhn_s64 (int64x2_t __a, int64x2_t __b)
    uint8x8_t vrsubhn_u16 (uint16x8_t __a, uint16x8_t __b);
    uint16x4_t vrsubhn_u32 (uint32x4_t __a, uint32x4_t __b);
    uint32x2_t vrsubhn_u64 (uint64x2_t __a, uint64x2_t __b);
    /******************************************************Comparison***********************/
    /*--1、Vector compare equal(正常指令): vceq -> ri = ai == bi ? 1...1 : 0...0; 
    If they are equal, the corresponding element in the destination vector is set to all ones.
    Otherwise, it is set to all zeros--*/
    uint8x8_t vceq_s8 (int8x8_t __a, int8x8_t __b);//_mm_cmpeq_epi8
    uint16x4_t vceq_s16 (int16x4_t __a, int16x4_t __b);//_mm_cmpeq_epi16
    uint32x2_t vceq_s32 (int32x2_t __a, int32x2_t __b);//_mm_cmpeq_epi32
    uint32x2_t vceq_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vceq_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_cmpeq_epi8
    uint16x4_t vceq_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_cmpeq_epi16
    uint32x2_t vceq_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_cmpeq_epi32
    uint8x8_t vceq_p8 (poly8x8_t __a, poly8x8_t __b);//_mm_cmpeq_epi8
    uint8x16_t vceqq_s8 (int8x16_t __a, int8x16_t __b);//_mm_cmpeq_epi8
    uint16x8_t vceqq_s16 (int16x8_t __a, int16x8_t __b);//_mm_cmpeq_epi16
    uint32x4_t vceqq_s32 (int32x4_t __a, int32x4_t __b);//_mm_cmpeq_epi32
    uint32x4_t vceqq_f32 (float32x4_t __a, float32x4_t __b);
    uint8x16_t vceqq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_cmpeq_epi8
    uint16x8_t vceqq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_cmpeq_epi16
    uint32x4_t vceqq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_cmpeq_epi32
    uint8x16_t vceqq_p8 (poly8x16_t __a, poly8x16_t __b);//_mm_cmpeq_epi8
    /*--2、Vector compare greater-than or equal(正常指令): vcge-> ri = ai >= bi ? 1...1:0...0;
    If it is greater than or equal to it, the corresponding element in the destination 
    vector is set to all ones. Otherwise, it is set to all zeros.--*/
    uint8x8_t vcge_s8 (int8x8_t __a, int8x8_t __b);
    uint16x4_t vcge_s16 (int16x4_t __a, int16x4_t __b);
    uint32x2_t vcge_s32 (int32x2_t __a, int32x2_t __b);
    uint32x2_t vcge_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vcge_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vcge_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vcge_u32 (uint32x2_t __a, uint32x2_t __b);
    uint8x16_t vcgeq_s8 (int8x16_t __a, int8x16_t __b);
    uint16x8_t vcgeq_s16 (int16x8_t __a, int16x8_t __b);
    uint32x4_t vcgeq_s32 (int32x4_t __a, int32x4_t __b);
    uint32x4_t vcgeq_f32 (float32x4_t __a, float32x4_t __b);
    uint8x16_t vcgeq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vcgeq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4_t vcgeq_u32 (uint32x4_t __a, uint32x4_t __b);
    /*--3、Vector compare less-than or equal(正常指令): vcle -> ri = ai <= bi ? 1...1:0...0;
    If it is less than or equal to it, the corresponding element in the destination vector 
    is set to all ones. Otherwise, it is set to all zeros.--*/
    uint8x8_t vcle_s8 (int8x8_t __a, int8x8_t __b);
    uint16x4_t vcle_s16 (int16x4_t __a, int16x4_t __b);
    uint32x2_t vcle_s32 (int32x2_t __a, int32x2_t __b);
    uint32x2_t vcle_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vcle_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vcle_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vcle_u32 (uint32x2_t __a, uint32x2_t __b);
    uint8x16_t vcleq_s8 (int8x16_t __a, int8x16_t __b);
    uint16x8_t vcleq_s16 (int16x8_t __a, int16x8_t __b);
    uint32x4_t vcleq_s32 (int32x4_t __a, int32x4_t __b);
    uint32x4_t vcleq_f32 (float32x4_t __a, float32x4_t __b);
    uint8x16_t vcleq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vcleq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4_t vcleq_u32 (uint32x4_t __a, uint32x4_t __b);
    /*--4、Vector compare greater-than(正常指令): vcgt -> ri = ai > bi ? 1...1:0...0;
    If it is greater than it, the corresponding element in the destination vector is
    set to all ones. Otherwise, it is set to all zeros--*/
    uint8x8_t vcgt_s8 (int8x8_t __a, int8x8_t __b);
    uint16x4_t vcgt_s16 (int16x4_t __a, int16x4_t __b);
    uint32x2_t vcgt_s32 (int32x2_t __a, int32x2_t __b);
    uint32x2_t vcgt_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vcgt_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vcgt_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vcgt_u32 (uint32x2_t __a, uint32x2_t __b);
    uint8x16_t vcgtq_s8 (int8x16_t __a, int8x16_t __b);
    uint16x8_t vcgtq_s16 (int16x8_t __a, int16x8_t __b);
    uint32x4_t vcgtq_s32 (int32x4_t __a, int32x4_t __b);
    uint32x4_t vcgtq_f32 (float32x4_t __a, float32x4_t __b);
    uint8x16_t vcgtq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vcgtq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4_t vcgtq_u32 (uint32x4_t __a, uint32x4_t __b);
    /*--5、Vector compare less-than(正常指令): vclt -> ri = ai < bi ? 1...1:0...0;
    If it is less than it, the corresponding element in the destination vector is set 
    to all ones.Otherwise, it is set to all zeros--*/
    uint8x8_t vclt_s8 (int8x8_t __a, int8x8_t __b);
    uint16x4_t vclt_s16 (int16x4_t __a, int16x4_t __b);
    uint32x2_t vclt_s32 (int32x2_t __a, int32x2_t __b);
    uint32x2_t vclt_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vclt_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vclt_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vclt_u32 (uint32x2_t __a, uint32x2_t __b);
    uint8x16_t vcltq_s8 (int8x16_t __a, int8x16_t __b);
    uint16x8_t vcltq_s16 (int16x8_t __a, int16x8_t __b);
    uint32x4_t vcltq_s32 (int32x4_t __a, int32x4_t __b);
    uint32x4_t vcltq_f32 (float32x4_t __a, float32x4_t __b);
    uint8x16_t vcltq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vcltq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4_t vcltq_u32 (uint32x4_t __a, uint32x4_t __b);
    /*--6、Vector compare absolute greater-than or equal(正常指令): 
    vcage -> ri = |ai| >= |bi| ? 1...1:0...0;
    compares the absolute value of each element in a vector with the absolute value of the 
    corresponding element of a second vector. If it is greater than or equal to it, 
    the corresponding element in the destination vector is set to all ones.
    Otherwise, it is set to all zeros.--*/
    uint32x2_t vcage_f32 (float32x2_t __a, float32x2_t __b);
    uint32x4_t vcageq_f32 (float32x4_t __a, float32x4_t __b);
    /*--7、Vector compare absolute less-than or equal(正常指令):
    vcale -> ri = |ai| <= |bi| ? 1...1:0...0;
    compares the absolute value of each element in a vector with the absolute value of the 
    corresponding element of a second vector. If it is less than or equal to it, 
    the corresponding element in the destination vector is set to all ones.
    Otherwise, it is set to all zeros--*/
    uint32x2_t vcale_f32 (float32x2_t __a, float32x2_t __b);
    uint32x4_t vcaleq_f32 (float32x4_t __a, float32x4_t __b);
    /*--8、Vector compare absolute greater-than(正常指令):
    vcage -> ri = |ai| > |bi| ? 1...1:0...0;
    compares the absolute value of each element in a vector with the absolute value of the
    corresponding element of a second vector. If it is greater than it, 
    the corresponding element in the destination vector is set to all ones. 
    Otherwise, it is set to all zeros.--*/
    uint32x2_t vcagt_f32 (float32x2_t __a, float32x2_t __b);
    uint32x4_t vcagtq_f32 (float32x4_t __a, float32x4_t __b);
    /*--9、Vector compare absolute less-than(正常指令):
    vcalt -> ri = |ai| < |bi| ? 1...1:0...0;
    compares the absolute value of each element in a vector with the absolute value of the
    corresponding element of a second vector.If it is less than it, the corresponding 
    element in the destination vector is set to all ones. Otherwise,it is set to all zeros--*/
    uint32x2_t vcalt_f32 (float32x2_t __a, float32x2_t __b);
    uint32x4_t vcaltq_f32 (float32x4_t __a, float32x4_t __b);
    /**********************************************Vector test bits*************************/
    /*--正常指令,vtst -> ri = (ai & bi != 0) ? 1...1:0...0;
    bitwise logical ANDs each element in a vector with the corresponding element of a second 
    vector.If the result is not zero, the corresponding element in the destination vector 
    is set to all ones. Otherwise, it is set to all zeros--*/
    uint8x8_t vtst_s8 (int8x8_t __a, int8x8_t __b);
    uint16x4_t vtst_s16 (int16x4_t __a, int16x4_t __b);
    uint32x2_t vtst_s32 (int32x2_t __a, int32x2_t __b);
    uint8x8_t vtst_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vtst_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vtst_u32 (uint32x2_t __a, uint32x2_t __b);
    uint8x8_t vtst_p8 (poly8x8_t __a, poly8x8_t __b);
    uint8x16_t vtstq_s8 (int8x16_t __a, int8x16_t __b);
    uint16x8_t vtstq_s16 (int16x8_t __a, int16x8_t __b);
    uint32x4_t vtstq_s32 (int32x4_t __a, int32x4_t __b);
    uint8x16_t vtstq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vtstq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4_t vtstq_u32 (uint32x4_t __a, uint32x4_t __b);
    uint8x16_t vtstq_p8 (poly8x16_t __a, poly8x16_t __b);
    /**********************************************Absolute difference**********************/
    /*--1、Absolute difference between the arguments(正常指令): vabd -> ri = |ai - bi|;
    returns the absolute values of the results--*/
    int8x8_t vabd_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vabd_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vabd_s32 (int32x2_t __a, int32x2_t __b);
    float32x2_t vabd_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vabd_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vabd_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vabd_u32 (uint32x2_t __a, uint32x2_t __b);
    int8x16_t vabdq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vabdq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vabdq_s32 (int32x4_t __a, int32x4_t __b);
    float32x4_t vabdq_f32 (float32x4_t __a, float32x4_t __b);
    uint8x16_t vabdq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vabdq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4_t vabdq_u32 (uint32x4_t __a, uint32x4_t __b);
    /*--2、Absolute difference - long(长指令): vabdl -> ri = |ai - bi|; 
    The elements in the result vector are wider--*/
    int16x8_t vabdl_s8 (int8x8_t __a, int8x8_t __b);
    int32x4_t vabdl_s16 (int16x4_t __a, int16x4_t __b);
    int64x2_t vabdl_s32 (int32x2_t __a, int32x2_t __b);
    uint16x8_t vabdl_u8 (uint8x8_t __a, uint8x8_t __b);
    uint32x4_t vabdl_u16 (uint16x4_t __a, uint16x4_t __b);
    uint64x2_t vabdl_u32 (uint32x2_t __a, uint32x2_t __b);
    /*--3、Absolute difference and accumulate: vaba -> ri = ai + |bi - ci|;--*/
    int8x8_t vaba_s8 (int8x8_t __a, int8x8_t __b, int8x8_t __c);
    int16x4_t vaba_s16 (int16x4_t __a, int16x4_t __b, int16x4_t __c);
    int32x2_t vaba_s32 (int32x2_t __a, int32x2_t __b, int32x2_t __c);
    uint8x8_t vaba_u8 (uint8x8_t __a, uint8x8_t __b, uint8x8_t __c);
    uint16x4_t vaba_u16 (uint16x4_t __a, uint16x4_t __b, uint16x4_t __c);
    uint32x2_t vaba_u32 (uint32x2_t __a, uint32x2_t __b, uint32x2_t __c);
    int8x16_t vabaq_s8 (int8x16_t __a, int8x16_t __b, int8x16_t __c);
    int16x8_t vabaq_s16 (int16x8_t __a, int16x8_t __b, int16x8_t __c);
    int32x4_t vabaq_s32 (int32x4_t __a, int32x4_t __b, int32x4_t __c);
    uint8x16_t vabaq_u8 (uint8x16_t __a, uint8x16_t __b, uint8x16_t __c);
    uint16x8_t vabaq_u16 (uint16x8_t __a, uint16x8_t __b, uint16x8_t __c);
    uint32x4_t vabaq_u32 (uint32x4_t __a, uint32x4_t __b, uint32x4_t __c);
    /*--4、Absolute difference and accumulate - long: vabal -> ri = ai + |bi - ci|; 
    The elements in the result are wider--*/
    int16x8_t vabal_s8 (int16x8_t __a, int8x8_t __b, int8x8_t __c);
    int32x4_t vabal_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c);
    int64x2_t vabal_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c);
    uint16x8_t vabal_u8 (uint16x8_t __a, uint8x8_t __b, uint8x8_t __c);
    uint32x4_t vabal_u16 (uint32x4_t __a, uint16x4_t __b, uint16x4_t __c);
    uint64x2_t vabal_u32 (uint64x2_t __a, uint32x2_t __b, uint32x2_t __c);
    /***********************************************Max*************************************/
    /*--正常指令, vmax -> ri = ai >= bi ? ai : bi; returns the larger of each pair--*/
    int8x8_t vmax_s8 (int8x8_t __a, int8x8_t __b);//_mm_max_epi8
    int16x4_t vmax_s16 (int16x4_t __a, int16x4_t __b);//_mm_max_epi16
    int32x2_t vmax_s32 (int32x2_t __a, int32x2_t __b);//_mm_max_epi32
    float32x2_t vmax_f32 (float32x2_t __a, float32x2_t __b);//_mm_max_ps
    uint8x8_t vmax_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_max_epu8
    uint16x4_t vmax_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_max_epu16
    uint32x2_t vmax_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_max_epu32
    int8x16_t vmaxq_s8 (int8x16_t __a, int8x16_t __b);//_mm_max_epi8
    int16x8_t vmaxq_s16 (int16x8_t __a, int16x8_t __b);//_mm_max_epi16
    int32x4_t vmaxq_s32 (int32x4_t __a, int32x4_t __b);//_mm_max_epi32
    float32x4_t vmaxq_f32 (float32x4_t __a, float32x4_t __b);//_mm_max_ps
    uint8x16_t vmaxq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_max_epu8
    uint16x8_t vmaxq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_max_epu16
    uint32x4_t vmaxq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_max_epu32
    /****************************************************Min********************************/
    /*--正常指令, vmin -> ri = ai >= bi ? bi : ai; returns the smaller of each pair--*/
    int8x8_t vmin_s8 (int8x8_t __a, int8x8_t __b);//_mm_min_epi8
    int16x4_t vmin_s16 (int16x4_t __a, int16x4_t __b);//_mm_min_epi16
    int32x2_t vmin_s32 (int32x2_t __a, int32x2_t __b);//_mm_min_epi32
    float32x2_t vmin_f32 (float32x2_t __a, float32x2_t __b);//_mm_min_ps
    uint8x8_t vmin_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_min_epu8
    uint16x4_t vmin_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_min_epu16
    uint32x2_t vmin_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_min_epu32
    int8x16_t vminq_s8 (int8x16_t __a, int8x16_t __b);//_mm_min_epi8
    int16x8_t vminq_s16 (int16x8_t __a, int16x8_t __b);//_mm_min_epi16
    int32x4_t vminq_s32 (int32x4_t __a, int32x4_t __b);//_mm_min_epi32
    float32x4_t vminq_f32 (float32x4_t __a, float32x4_t __b);//_mm_min_ps
    uint8x16_t vminq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_min_epu8
    uint16x8_t vminq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_min_epu16
    uint32x4_t vminq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_min_epu32
    /*******************************************Pairwise addition***************************/
    /*--1、Pairwise add(正常指令): 
    vpadd -> r0 = a0 + a1, ..., r3 = a6 + a7, r4 = b0 + b1, ..., r7 = b6 + b7
    adds adjacent pairs of elements of two vectors, 
    and places the results in the destination vector.--*/
    //r0 = a0 + a1, ...,r3 = a6 + a7, r4 = b0 + b1, ...,r7 = b6 + b7
    int8x8_t vpadd_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vpadd_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vpadd_s32 (int32x2_t __a, int32x2_t __b);
    float32x2_t vpadd_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vpadd_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vpadd_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vpadd_u32 (uint32x2_t __a, uint32x2_t __b);
    /*--2、Long pairwise add: vpaddl vpaddl -> r0 = a0 + a1, ..., r3 = a6 + a7;
    adds adjacent pairs of elements of a vector, sign extends or zero extends the results to 
    twice their original width, and places the final results in the destination vector--*/
    int16x4_t vpaddl_s8 (int8x8_t __a);
    int32x2_t vpaddl_s16 (int16x4_t __a);
    int64x1_t vpaddl_s32 (int32x2_t __a);
    uint16x4_t vpaddl_u8 (uint8x8_t __a);
    uint32x2_t vpaddl_u16 (uint16x4_t __a);
    uint64x1_t vpaddl_u32 (uint32x2_t __a);
    int16x8_t vpaddlq_s8 (int8x16_t __a);
    int32x4_t vpaddlq_s16 (int16x8_t __a);
    int64x2_t vpaddlq_s32 (int32x4_t __a);
    uint16x8_t vpaddlq_u8 (uint8x16_t __a);
    uint32x4_t vpaddlq_u16 (uint16x8_t __a);
    uint64x2_t vpaddlq_u32 (uint32x4_t __a);
    /*--3、Long pairwise add and accumulate: 
    vpadal -> r0 = a0 + (b0 + b1), ..., r3 = a3 + (b6 + b7);
    adds adjacent pairs of elements in the second vector, sign extends or zero extends the
    results to twice the original width.  It then accumulates this with the corresponding 
    element in the first vector and places the final results in the destination vector--*/
    int16x4_t vpadal_s8 (int16x4_t __a, int8x8_t __b);
    int32x2_t vpadal_s16 (int32x2_t __a, int16x4_t __b);
    int64x1_t vpadal_s32 (int64x1_t __a, int32x2_t __b);
    uint16x4_t vpadal_u8 (uint16x4_t __a, uint8x8_t __b);
    uint32x2_t vpadal_u16 (uint32x2_t __a, uint16x4_t __b);
    uint64x1_t vpadal_u32 (uint64x1_t __a, uint32x2_t __b);
    int16x8_t vpadalq_s8 (int16x8_t __a, int8x16_t __b);
    int32x4_t vpadalq_s16 (int32x4_t __a, int16x8_t __b);
    int64x2_t vpadalq_s32 (int64x2_t __a, int32x4_t __b);
    uint16x8_t vpadalq_u8 (uint16x8_t __a, uint8x16_t __b);
    uint32x4_t vpadalq_u16 (uint32x4_t __a, uint16x8_t __b);
    uint64x2_t vpadalq_u32 (uint64x2_t __a, uint32x4_t __b);
    /**********************************************Folding maximum**************************/
    /*--饱和指令, vpmax -> vpmax r0 = a0 >= a1 ? a0 : a1, ..., r4 = b0 >= b1 ? b0 : b1, ...;
    compares adjacent pairs of elements, and copies the larger of each pair into the 
    destination vector.The maximums from each pair of the first input vector are stored in 
    the lower half of the destination vector. The maximums from each pair of the second input 
    vector are stored in the higher half of the destination vector--*/
    int8x8_t vpmax_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vpmax_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vpmax_s32 (int32x2_t __a, int32x2_t __b);
    float32x2_t vpmax_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vpmax_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vpmax_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vpmax_u32 (uint32x2_t __a, uint32x2_t __b);
    /***************************************************Folding minimum*********************/
    /*--饱和指令, vpmin -> r0 = a0 >= a1 ? a1 : a0, ..., r4 = b0 >= b1 ? b1 : b0, ...;
    compares adjacent pairs of elements, and copies the smaller of each pair into the 
    destination vector.The minimums from each pair of the first input vector are stored in 
    the lower half of the destination vector. The minimums from each pair of the second 
    input vector are stored in the higher half of the destination vector.--*/
    int8x8_t vpmin_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vpmin_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vpmin_s32 (int32x2_t __a, int32x2_t __b);
    float32x2_t vpmin_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8_t vpmin_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vpmin_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vpmin_u32 (uint32x2_t __a, uint32x2_t __b);
    /***************************************************Reciprocal**************************/
    /*--1、饱和指令, Newton-Raphson iteration(牛顿 - 拉夫逊迭代)
    performs a Newton-Raphson step for finding the reciprocal. It multiplies the elements of
    one vector by the corresponding elements of another vector, subtracts each of the results
    from 2, and places the final results into the elements of the destination vector--*/
    float32x2_t vrecps_f32 (float32x2_t __a, float32x2_t __b);
    float32x4_t vrecpsq_f32 (float32x4_t __a, float32x4_t __b);
    /*--2、饱和指令,performs a Newton-Raphson step for finding the reciprocal square root. 
    It multiplies the elements of one vector by the corresponding elements of another vector, 
    subtracts each of the results from 3, divides these results by two, and places 
    the final results into the elements of the destination vector--*/
    float32x2_t vrsqrts_f32 (float32x2_t __a, float32x2_t __b);
    float32x4_t vrsqrtsq_f32 (float32x4_t __a, float32x4_t __b);
    /************************************************Shifts by signed variable**************/
    /*--1、Vector shift left(饱和指令): vshl -> ri = ai << bi; (negative values shift right)
    left shifts each element in a vector by an amount specified in the corresponding element 
    in the second input vector. The shift amount is the signed integer value of the least 
    significant byte of the element in the second input vector. The bits shifted out of each
    element are lost.If the signed integer value is negative, it results in a right shift--*/
    int8x8_t vshl_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vshl_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vshl_s32 (int32x2_t __a, int32x2_t __b);
    int64x1_t vshl_s64 (int64x1_t __a, int64x1_t __b);
    uint8x8_t vshl_u8 (uint8x8_t __a, int8x8_t __b);
    uint16x4_t vshl_u16 (uint16x4_t __a, int16x4_t __b);
    uint32x2_t vshl_u32 (uint32x2_t __a, int32x2_t __b);
    uint64x1_t vshl_u64 (uint64x1_t __a, int64x1_t __b);
    int8x16_t vshlq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vshlq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vshlq_s32 (int32x4_t __a, int32x4_t __b);
    int64x2_t vshlq_s64 (int64x2_t __a, int64x2_t __b);
    uint8x16_t vshlq_u8 (uint8x16_t __a, int8x16_t __b);
    uint16x8_t vshlq_u16 (uint16x8_t __a, int16x8_t __b);
    uint32x4_t vshlq_u32 (uint32x4_t __a, int32x4_t __b);
    uint64x2_t vshlq_u64 (uint64x2_t __a, int64x2_t __b);
    /*--2、Vector saturating shift left(饱和指令): 
    vqshl -> ri = ai << bi;(negative values shift right)
    If the shift value is positive, the operation is a left shift. Otherwise, it is a 
    truncating right shift. left shifts each element in a vector of integers and places
    the results in the destination vector. It is similar to VSHL. 
    The difference is that the sticky QC flag is set if saturation occurs--*/
    int8x8_t vqshl_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vqshl_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vqshl_s32 (int32x2_t __a, int32x2_t __b);
    int64x1_t vqshl_s64 (int64x1_t __a, int64x1_t __b);
    uint8x8_t vqshl_u8 (uint8x8_t __a, int8x8_t __b);
    uint16x4_t vqshl_u16 (uint16x4_t __a, int16x4_t __b);
    uint32x2_t vqshl_u32 (uint32x2_t __a, int32x2_t __b);
    uint64x1_t vqshl_u64 (uint64x1_t __a, int64x1_t __b);
    int8x16_t vqshlq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vqshlq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vqshlq_s32 (int32x4_t __a, int32x4_t __b);
    int64x2_t vqshlq_s64 (int64x2_t __a, int64x2_t __b);
    uint8x16_t vqshlq_u8 (uint8x16_t __a, int8x16_t __b);
    uint16x8_t vqshlq_u16 (uint16x8_t __a, int16x8_t __b);
    uint32x4_t vqshlq_u32 (uint32x4_t __a, int32x4_t __b);
    uint64x2_t vqshlq_u64 (uint64x2_t __a, int64x2_t __b);
    /*--3、Vector rounding shift left(饱和指令): 
    vrshl -> ri = ai << bi;(negative values shift right)
    If the shift value is positive, the operation is a left shift. Otherwise, it is a
    rounding right shift. left shifts each element in a vector of integers and places
    the results in the destination vector. It is similar to VSHL. 
    The difference is that the shifted value is then rounded.--*/
    int8x8_t vrshl_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vrshl_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vrshl_s32 (int32x2_t __a, int32x2_t __b);
    int64x1_t vrshl_s64 (int64x1_t __a, int64x1_t __b);
    uint8x8_t vrshl_u8 (uint8x8_t __a, int8x8_t __b);
    uint16x4_t vrshl_u16 (uint16x4_t __a, int16x4_t __b);
    uint32x2_t vrshl_u32 (uint32x2_t __a, int32x2_t __b);
    uint64x1_t vrshl_u64 (uint64x1_t __a, int64x1_t __b);
    int8x16_t vrshlq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vrshlq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vrshlq_s32 (int32x4_t __a, int32x4_t __b);
    int64x2_t vrshlq_s64 (int64x2_t __a, int64x2_t __b);
    uint8x16_t vrshlq_u8 (uint8x16_t __a, int8x16_t __b);
    uint16x8_t vrshlq_u16 (uint16x8_t __a, int16x8_t __b);
    uint32x4_t vrshlq_u32 (uint32x4_t __a, int32x4_t __b);
    uint64x2_t vrshlq_u64 (uint64x2_t __a, int64x2_t __b);
    /*--4、Vector saturating rounding shift left(饱和指令):
    vqrshl -> ri = ai << bi;(negative values shift right)
    left shifts each element in a vector of integers and places the results in the 
    destination vector.It is similar to VSHL. The difference is that the shifted value
    is rounded, and the sticky QC flag is set if saturation occurs.--*/
    int8x8_t vqrshl_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vqrshl_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vqrshl_s32 (int32x2_t __a, int32x2_t __b);
    int64x1_t vqrshl_s64 (int64x1_t __a, int64x1_t __b);
    uint8x8_t vqrshl_u8 (uint8x8_t __a, int8x8_t __b);
    uint16x4_t vqrshl_u16 (uint16x4_t __a, int16x4_t __b);
    uint32x2_t vqrshl_u32 (uint32x2_t __a, int32x2_t __b);
    uint64x1_t vqrshl_u64 (uint64x1_t __a, int64x1_t __b);
    int8x16_t vqrshlq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vqrshlq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vqrshlq_s32 (int32x4_t __a, int32x4_t __b);
    int64x2_t vqrshlq_s64 (int64x2_t __a, int64x2_t __b);
    uint8x16_t vqrshlq_u8 (uint8x16_t __a, int8x16_t __b);
    uint16x8_t vqrshlq_u16 (uint16x8_t __a, int16x8_t __b);
    uint32x4_t vqrshlq_u32 (uint32x4_t __a, int32x4_t __b);
    uint64x2_t vqrshlq_u64 (uint64x2_t __a, int64x2_t __b);
    /****************************************Shifts by a constant***************************/
    /*--1、Vector shift right by constant: vshr -> ri = ai >> b;The results are truncated.
    right shifts each element in a vector by an immediate value, 
    and places the results in the destination vector.--*/
    int8x8_t vshr_n_s8 (int8x8_t __a, const int __b);
    int16x4_t vshr_n_s16 (int16x4_t __a, const int __b);
    int32x2_t vshr_n_s32 (int32x2_t __a, const int __b);
    int64x1_t vshr_n_s64 (int64x1_t __a, const int __b);
    uint8x8_t vshr_n_u8 (uint8x8_t __a, const int __b);
    uint16x4_t vshr_n_u16 (uint16x4_t __a, const int __b);
    uint32x2_t vshr_n_u32 (uint32x2_t __a, const int __b);
    uint64x1_t vshr_n_u64 (uint64x1_t __a, const int __b);
    int8x16_t vshrq_n_s8 (int8x16_t __a, const int __b);
    int16x8_t vshrq_n_s16 (int16x8_t __a, const int __b);
    int32x4_t vshrq_n_s32 (int32x4_t __a, const int __b);
    int64x2_t vshrq_n_s64 (int64x2_t __a, const int __b);
    uint8x16_t vshrq_n_u8 (uint8x16_t __a, const int __b);
    uint16x8_t vshrq_n_u16 (uint16x8_t __a, const int __b);
    uint32x4_t vshrq_n_u32 (uint32x4_t __a, const int __b);
    uint64x2_t vshrq_n_u64 (uint64x2_t __a, const int __b);
    /*--2、Vector shift left by constant: vshl -> ri = ai << b;
    left shifts each element in a vector by an immediate value, and places the results in the 
    destination vector. The bits shifted out of the left of each element are lost--*/
    int8x8_t vshl_n_s8 (int8x8_t __a, const int __b);
    int16x4_t vshl_n_s16 (int16x4_t __a, const int __b);
    int32x2_t vshl_n_s32 (int32x2_t __a, const int __b);
    int64x1_t vshl_n_s64 (int64x1_t __a, const int __b);
    uint8x8_t vshl_n_u8 (uint8x8_t __a, const int __b);
    uint16x4_t vshl_n_u16 (uint16x4_t __a, const int __b);
    uint32x2_t vshl_n_u32 (uint32x2_t __a, const int __b);
    uint64x1_t vshl_n_u64 (uint64x1_t __a, const int __b);
    int8x16_t vshlq_n_s8 (int8x16_t __a, const int __b);
    int16x8_t vshlq_n_s16 (int16x8_t __a, const int __b);
    int32x4_t vshlq_n_s32 (int32x4_t __a, const int __b);
    int64x2_t vshlq_n_s64 (int64x2_t __a, const int __b);
    uint8x16_t vshlq_n_u8 (uint8x16_t __a, const int __b);
    uint16x8_t vshlq_n_u16 (uint16x8_t __a, const int __b);
    uint32x4_t vshlq_n_u32 (uint32x4_t __a, const int __b);
    uint64x2_t vshlq_n_u64 (uint64x2_t __a, const int __b);
    /*--3、Vector rounding shift right by constant: vrshr -> ri = ai >> b;
    right shifts each element in a vector by an immediate value, and places the results
    in the destination vector. The shifted values are rounded.--*/
    int8x8_t vrshr_n_s8 (int8x8_t __a, const int __b);
    int16x4_t vrshr_n_s16 (int16x4_t __a, const int __b);
    int32x2_t vrshr_n_s32 (int32x2_t __a, const int __b);
    int64x1_t vrshr_n_s64 (int64x1_t __a, const int __b);
    uint8x8_t vrshr_n_u8 (uint8x8_t __a, const int __b);
    uint16x4_t vrshr_n_u16 (uint16x4_t __a, const int __b);
    uint32x2_t vrshr_n_u32 (uint32x2_t __a, const int __b);
    uint64x1_t vrshr_n_u64 (uint64x1_t __a, const int __b);
    int8x16_t vrshrq_n_s8 (int8x16_t __a, const int __b);
    int16x8_t vrshrq_n_s16 (int16x8_t __a, const int __b);
    int32x4_t vrshrq_n_s32 (int32x4_t __a, const int __b);
    int64x2_t vrshrq_n_s64 (int64x2_t __a, const int __b);
    uint8x16_t vrshrq_n_u8 (uint8x16_t __a, const int __b);
    uint16x8_t vrshrq_n_u16 (uint16x8_t __a, const int __b);
    uint32x4_t vrshrq_n_u32 (uint32x4_t __a, const int __b);
    uint64x2_t vrshrq_n_u64 (uint64x2_t __a, const int __b);
    /*--4、Vector shift right by constant and accumulate: vsra -> ri = (ai >> c) + (bi >> c); 
    The results are truncated. right shifts each element in a vector by an immediate value, 
    and accumulates the results into the destination vector.--*/
    int8x8_t vsra_n_s8 (int8x8_t __a, int8x8_t __b, const int __c);
    int16x4_t vsra_n_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int32x2_t vsra_n_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    int64x1_t vsra_n_s64 (int64x1_t __a, int64x1_t __b, const int __c);
    uint8x8_t vsra_n_u8 (uint8x8_t __a, uint8x8_t __b, const int __c);
    uint16x4_t vsra_n_u16 (uint16x4_t __a, uint16x4_t __b, const int __c);
    uint32x2_t vsra_n_u32 (uint32x2_t __a, uint32x2_t __b, const int __c);
    uint64x1_t vsra_n_u64 (uint64x1_t __a, uint64x1_t __b, const int __c);
    int8x16_t vsraq_n_s8 (int8x16_t __a, int8x16_t __b, const int __c);
    int16x8_t vsraq_n_s16 (int16x8_t __a, int16x8_t __b, const int __c);
    int32x4_t vsraq_n_s32 (int32x4_t __a, int32x4_t __b, const int __c);
    int64x2_t vsraq_n_s64 (int64x2_t __a, int64x2_t __b, const int __c);
    uint8x16_t vsraq_n_u8 (uint8x16_t __a, uint8x16_t __b, const int __c);
    uint16x8_t vsraq_n_u16 (uint16x8_t __a, uint16x8_t __b, const int __c);
    uint32x4_t vsraq_n_u32 (uint32x4_t __a, uint32x4_t __b, const int __c);
    uint64x2_t vsraq_n_u64 (uint64x2_t __a, uint64x2_t __b, const int __c);
    /*--5、Vector rounding shift right by constant and accumulate: 
    vrsra -> ri = (ai >> c) + (bi >> c);
    The results are rounded.right shifts each element in a vector by an immediate value, 
    and accumulates the rounded results into the destination vector.--*/
    int8x8_t vrsra_n_s8 (int8x8_t __a, int8x8_t __b, const int __c);
    int16x4_t vrsra_n_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int32x2_t vrsra_n_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    int64x1_t vrsra_n_s64 (int64x1_t __a, int64x1_t __b, const int __c);
    uint8x8_t vrsra_n_u8 (uint8x8_t __a, uint8x8_t __b, const int __c);
    uint16x4_t vrsra_n_u16 (uint16x4_t __a, uint16x4_t __b, const int __c);
    uint32x2_t vrsra_n_u32 (uint32x2_t __a, uint32x2_t __b, const int __c);
    uint64x1_t vrsra_n_u64 (uint64x1_t __a, uint64x1_t __b, const int __c);
    int8x16_t vrsraq_n_s8 (int8x16_t __a, int8x16_t __b, const int __c);
    int16x8_t vrsraq_n_s16 (int16x8_t __a, int16x8_t __b, const int __c);
    int32x4_t vrsraq_n_s32 (int32x4_t __a, int32x4_t __b, const int __c);
    int64x2_t vrsraq_n_s64 (int64x2_t __a, int64x2_t __b, const int __c);
    uint8x16_t vrsraq_n_u8 (uint8x16_t __a, uint8x16_t __b, const int __c);
    uint16x8_t vrsraq_n_u16 (uint16x8_t __a, uint16x8_t __b, const int __c);
    uint32x4_t vrsraq_n_u32 (uint32x4_t __a, uint32x4_t __b, const int __c);
    uint64x2_t vrsraq_n_u64 (uint64x2_t __a, uint64x2_t __b, const int __c);
    /*--6、Vector saturating shift left by constant: vqshl -> ri = sat(ai << b); 
    left shifts each element in a vector of integers by an immediate value, and places the 
    results in the destination vector,and the sticky QC flag is set if saturation occurs.--*/
    int8x8_t vqshl_n_s8 (int8x8_t __a, const int __b);
    int16x4_t vqshl_n_s16 (int16x4_t __a, const int __b);
    int32x2_t vqshl_n_s32 (int32x2_t __a, const int __b);
    int64x1_t vqshl_n_s64 (int64x1_t __a, const int __b);
    uint8x8_t vqshl_n_u8 (uint8x8_t __a, const int __b);
    uint16x4_t vqshl_n_u16 (uint16x4_t __a, const int __b);
    uint32x2_t vqshl_n_u32 (uint32x2_t __a, const int __b);
    uint64x1_t vqshl_n_u64 (uint64x1_t __a, const int __b);
    int8x16_t vqshlq_n_s8 (int8x16_t __a, const int __b);
    int16x8_t vqshlq_n_s16 (int16x8_t __a, const int __b);
    int32x4_t vqshlq_n_s32 (int32x4_t __a, const int __b);
    int64x2_t vqshlq_n_s64 (int64x2_t __a, const int __b);
    uint8x16_t vqshlq_n_u8 (uint8x16_t __a, const int __b);
    uint16x8_t vqshlq_n_u16 (uint16x8_t __a, const int __b);
    uint32x4_t vqshlq_n_u32 (uint32x4_t __a, const int __b);
    uint64x2_t vqshlq_n_u64 (uint64x2_t __a, const int __b);
    /*--7、Vector signed->unsigned saturating shift left by constant: vqshlu -> ri = ai << b; 
    left shifts each element in a vector of integers by an immediate value, places the 
    results in the destination vector, the sticky QC flag is set if saturation occurs, 
    and indicates that the results are unsigned even though the operands are signed.--*/
    uint8x8_t vqshlu_n_s8 (int8x8_t __a, const int __b);
    uint16x4_t vqshlu_n_s16 (int16x4_t __a, const int __b);
    uint32x2_t vqshlu_n_s32 (int32x2_t __a, const int __b);
    uint64x1_t vqshlu_n_s64 (int64x1_t __a, const int __b);
    uint8x16_t vqshluq_n_s8 (int8x16_t __a, const int __b);
    uint16x8_t vqshluq_n_s16 (int16x8_t __a, const int __b);
    uint32x4_t vqshluq_n_s32 (int32x4_t __a, const int __b);
    uint64x2_t vqshluq_n_s64 (int64x2_t __a, const int __b);
    /*--8、Vector narrowing shift right by constant: vshrn -> ri = ai >> b;
    The results are truncated.right shifts each element in the input vector by an 
    immediate value. It then narrows the result by storing only the least significant
    half of each element into the destination vector.--*/
    int8x8_t vshrn_n_s16 (int16x8_t __a, const int __b);
    int16x4_t vshrn_n_s32 (int32x4_t __a, const int __b);
    int32x2_t vshrn_n_s64 (int64x2_t __a, const int __b);
    uint8x8_t vshrn_n_u16 (uint16x8_t __a, const int __b);
    uint16x4_t vshrn_n_u32 (uint32x4_t __a, const int __b);
    uint32x2_t vshrn_n_u64 (uint64x2_t __a, const int __b);
    /*--9、Vector signed->unsigned narrowing saturating shift right by constant: 
    vqshrun -> ri = ai >> b; 
    Results are truncated. right shifts each element in a quadword vector of integers by an
    immediate value, and places the results in a doubleword vector. The results are unsigned, 
    although the operands are signed. The sticky QC flag is set if saturation occurs.--*/
    uint8x8_t vqshrun_n_s16 (int16x8_t __a, const int __b);
    uint16x4_t vqshrun_n_s32 (int32x4_t __a, const int __b);
    uint32x2_t vqshrun_n_s64 (int64x2_t __a, const int __b);
    /*--10、Vector signed->unsigned rounding narrowing saturating shift right by constant: 
    vqrshrun -> ri = ai >> b; Results are rounded. right shifts each element in a quadword 
    vector of integers by an immediate value, and places the rounded results in a doubleword 
    vector. The results are unsigned, although the operands are signed.--*/
    uint8x8_t vqrshrun_n_s16 (int16x8_t __a, const int __b);
    uint16x4_t vqrshrun_n_s32 (int32x4_t __a, const int __b);
    uint32x2_t vqrshrun_n_s64 (int64x2_t __a, const int __b);
    /*--11、Vector narrowing saturating shift right by constant: vqshrn -> ri = ai >> b; 
    Results are truncated. right shifts each element in a quadword vector of integers by an 
    immediate value, and places the results in a doubleword vector, 
    and the sticky QC flag is set if saturation occurs.--*/
    int8x8_t vqshrn_n_s16 (int16x8_t __a, const int __b);
    int16x4_t vqshrn_n_s32 (int32x4_t __a, const int __b);
    int32x2_t vqshrn_n_s64 (int64x2_t __a, const int __b);
    uint8x8_t vqshrn_n_u16 (uint16x8_t __a, const int __b);
    uint16x4_t vqshrn_n_u32 (uint32x4_t __a, const int __b);
    uint32x2_t vqshrn_n_u64 (uint64x2_t __a, const int __b);
    /*--12、Vector rounding narrowing shift right by constant: vrshrn -> ri = ai >> b; 
    The results are rounded. right shifts each element in a vector by an immediate value,
    and places the rounded,narrowed results in the destination vector.--*/
    int8x8_t vrshrn_n_s16 (int16x8_t __a, const int __b);
    int16x4_t vrshrn_n_s32 (int32x4_t __a, const int __b);
    int32x2_t vrshrn_n_s64 (int64x2_t __a, const int __b);
    uint8x8_t vrshrn_n_u16 (uint16x8_t __a, const int __b);
    uint16x4_t vrshrn_n_u32 (uint32x4_t __a, const int __b);
    uint32x2_t vrshrn_n_u64 (uint64x2_t __a, const int __b);
    /*--13、Vector rounding narrowing saturating shift right by constant:
    vqrshrn -> ri = ai >> b;
    Results are rounded. right shifts each element in a quadword vector of integers by an 
    immediate value,and places the rounded,narrowed results in a doubleword vector. 
    The sticky QC flag is set if saturation occurs.--*/
    int8x8_t vqrshrn_n_s16 (int16x8_t __a, const int __b);
    int16x4_t vqrshrn_n_s32 (int32x4_t __a, const int __b);
    int32x2_t vqrshrn_n_s64 (int64x2_t __a, const int __b);
    uint8x8_t vqrshrn_n_u16 (uint16x8_t __a, const int __b);
    uint16x4_t vqrshrn_n_u32 (uint32x4_t __a, const int __b);
    uint32x2_t vqrshrn_n_u64 (uint64x2_t __a, const int __b);
    /*--14、Vector widening shift left by constant: vshll -> ri = ai << b; 
    left shifts each element in a vector of integers by an immediate value, 
    and place the results in the destination vector. Bits shifted out of the left of each
    element are lost and values are sign extended or zero extended.--*/
    int16x8_t vshll_n_s8 (int8x8_t __a, const int __b);
    int32x4_t vshll_n_s16 (int16x4_t __a, const int __b);
    int64x2_t vshll_n_s32 (int32x2_t __a, const int __b);
    uint16x8_t vshll_n_u8 (uint8x8_t __a, const int __b);
    uint32x4_t vshll_n_u16 (uint16x4_t __a, const int __b);
    uint64x2_t vshll_n_u32 (uint32x2_t __a, const int __b);
    /********************************************Shifts with insert*************************/
    /*--1、Vector shift right and insert: vsri -> ; The two most significant bits in the 
    destination vector are unchanged. right shifts each element in the second input vector 
    by an immediate value, and inserts the results in the destination vector. It does not 
    affect the highest n significant bits of the elements in the destination register.
    Bits shifted out of the right of each element are lost.The first input vector holds
    the elements of the destination vector before the operation is performed.--*/
    int8x8_t vsri_n_s8 (int8x8_t __a, int8x8_t __b, const int __c);
    int16x4_t vsri_n_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int32x2_t vsri_n_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    int64x1_t vsri_n_s64 (int64x1_t __a, int64x1_t __b, const int __c);
    uint8x8_t vsri_n_u8 (uint8x8_t __a, uint8x8_t __b, const int __c);
    uint16x4_t vsri_n_u16 (uint16x4_t __a, uint16x4_t __b, const int __c);
    uint32x2_t vsri_n_u32 (uint32x2_t __a, uint32x2_t __b, const int __c);
    uint64x1_t vsri_n_u64 (uint64x1_t __a, uint64x1_t __b, const int __c);
    poly8x8_t vsri_n_p8 (poly8x8_t __a, poly8x8_t __b, const int __c);
    poly16x4_t vsri_n_p16 (poly16x4_t __a, poly16x4_t __b, const int __c);
    int8x16_t vsriq_n_s8 (int8x16_t __a, int8x16_t __b, const int __c);
    int16x8_t vsriq_n_s16 (int16x8_t __a, int16x8_t __b, const int __c);
    int32x4_t vsriq_n_s32 (int32x4_t __a, int32x4_t __b, const int __c);
    int64x2_t vsriq_n_s64 (int64x2_t __a, int64x2_t __b, const int __c);
    uint8x16_t vsriq_n_u8 (uint8x16_t __a, uint8x16_t __b, const int __c);
    uint16x8_t vsriq_n_u16 (uint16x8_t __a, uint16x8_t __b, const int __c);
    uint32x4_t vsriq_n_u32 (uint32x4_t __a, uint32x4_t __b, const int __c);
    uint64x2_t vsriq_n_u64 (uint64x2_t __a, uint64x2_t __b, const int __c);
    poly8x16_t vsriq_n_p8 (poly8x16_t __a, poly8x16_t __b, const int __c);
    poly16x8_t vsriq_n_p16 (poly16x8_t __a, poly16x8_t __b, const int __c);
    /*--2、Vector shift left and insert: vsli ->; The least significant bit in each element
    in the destination vector is unchanged. left shifts each element in the second input 
    vector by an immediate value, and inserts the results in the destination vector.
    It does not affect the lowest n significant bits of the elements in the destination 
    register. Bits shifted out of the left of each element are lost. The first input vector
    holds the elements of the destination vector before the operation is performed.--*/
    int8x8_t vsli_n_s8 (int8x8_t __a, int8x8_t __b, const int __c);
    int16x4_t vsli_n_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int32x2_t vsli_n_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    int64x1_t vsli_n_s64 (int64x1_t __a, int64x1_t __b, const int __c);
    uint8x8_t vsli_n_u8 (uint8x8_t __a, uint8x8_t __b, const int __c);
    uint16x4_t vsli_n_u16 (uint16x4_t __a, uint16x4_t __b, const int __c);
    uint32x2_t vsli_n_u32 (uint32x2_t __a, uint32x2_t __b, const int __c);
    uint64x1_t vsli_n_u64 (uint64x1_t __a, uint64x1_t __b, const int __c);
    poly8x8_t vsli_n_p8 (poly8x8_t __a, poly8x8_t __b, const int __c);
    poly16x4_t vsli_n_p16 (poly16x4_t __a, poly16x4_t __b, const int __c);
    int8x16_t vsliq_n_s8 (int8x16_t __a, int8x16_t __b, const int __c);
    int16x8_t vsliq_n_s16 (int16x8_t __a, int16x8_t __b, const int __c);
    int32x4_t vsliq_n_s32 (int32x4_t __a, int32x4_t __b, const int __c);
    int64x2_t vsliq_n_s64 (int64x2_t __a, int64x2_t __b, const int __c);
    uint8x16_t vsliq_n_u8 (uint8x16_t __a, uint8x16_t __b, const int __c);
    uint16x8_t vsliq_n_u16 (uint16x8_t __a, uint16x8_t __b, const int __c);
    uint32x4_t vsliq_n_u32 (uint32x4_t __a, uint32x4_t __b, const int __c);
    uint64x2_t vsliq_n_u64 (uint64x2_t __a, uint64x2_t __b, const int __c);
    poly8x16_t vsliq_n_p8 (poly8x16_t __a, poly8x16_t __b, const int __c);
    poly16x8_t vsliq_n_p16 (poly16x8_t __a, poly16x8_t __b, const int __c);
    /*****************************************Absolute value********************************/
    /*--1、Absolute(正常指令): vabs -> ri = |ai|;
    returns the absolute value of each element in a vector.--*/
    int8x8_t vabs_s8 (int8x8_t __a);//_mm_abs_epi8
    int16x4_t vabs_s16 (int16x4_t __a);//_mm_abs_epi16
    int32x2_t vabs_s32 (int32x2_t __a);//_mm_abs_epi32
    float32x2_t vabs_f32 (float32x2_t __a);
    int8x16_t vabsq_s8 (int8x16_t __a);//_mm_abs_epi8
    int16x8_t vabsq_s16 (int16x8_t __a);//_mm_abs_epi16
    int32x4_t vabsq_s32 (int32x4_t __a);//_mm_abs_epi32
    float32x4_t vabsq_f32 (float32x4_t __a);
    /*--2、Saturating absolute(饱和指令): vqabs -> ri = sat(|ai|);
    returns the absolute value of each element in a vector. If any of the results overflow,
    they are saturated and the sticky QC flag is set.--*/
    int8x8_t vqabs_s8 (int8x8_t __a);
    int16x4_t vqabs_s16 (int16x4_t __a);
    int32x2_t vqabs_s32 (int32x2_t __a);
    int8x16_t vqabsq_s8 (int8x16_t __a);
    int16x8_t vqabsq_s16 (int16x8_t __a);
    int32x4_t vqabsq_s32 (int32x4_t __a);
    /***************************************************Negation****************************/
    /*--1、Negate(正常指令): vneg -> ri = -ai; negates each element in a vector.--*/
    int8x8_t vneg_s8 (int8x8_t __a);
    int16x4_t vneg_s16 (int16x4_t __a);
    int32x2_t vneg_s32 (int32x2_t __a);
    float32x2_t vneg_f32 (float32x2_t __a);
    int8x16_t vnegq_s8 (int8x16_t __a);
    int16x8_t vnegq_s16 (int16x8_t __a);
    int32x4_t vnegq_s32 (int32x4_t __a);
    float32x4_t vnegq_f32 (float32x4_t __a);
    /*--2、Saturating Negate: vqneg -> ri = sat(-ai);
    negates each element in a vector. If any of the results overflow, 
    they are saturated and the sticky QC flag is set.--*/
    int8x8_t vqneg_s8 (int8x8_t __a);
    int16x4_t vqneg_s16 (int16x4_t __a);
    int32x2_t vqneg_s32 (int32x2_t __a);
    int8x16_t vqnegq_s8 (int8x16_t __a);
    int16x8_t vqnegq_s16 (int16x8_t __a);
    int32x4_t vqnegq_s32 (int32x4_t __a);
    /********************************************Logical operations*************************/
    /*--1、Bitwise not(正常指令): vmvn -> ri = ~ai; 
    performs a bitwise inversion of each element from the input vector.--*/
    int8x8_t vmvn_s8 (int8x8_t __a);
    int16x4_t vmvn_s16 (int16x4_t __a);
    int32x2_t vmvn_s32 (int32x2_t __a);
    uint8x8_t vmvn_u8 (uint8x8_t __a);
    uint16x4_t vmvn_u16 (uint16x4_t __a);
    uint32x2_t vmvn_u32 (uint32x2_t __a);
    poly8x8_t vmvn_p8 (poly8x8_t __a);
    int8x16_t vmvnq_s8 (int8x16_t __a);
    int16x8_t vmvnq_s16 (int16x8_t __a);
    int32x4_t vmvnq_s32 (int32x4_t __a);
    uint8x16_t vmvnq_u8 (uint8x16_t __a);
    uint16x8_t vmvnq_u16 (uint16x8_t __a);
    uint32x4_t vmvnq_u32 (uint32x4_t __a);
    poly8x16_t vmvnq_p8 (poly8x16_t __a);
    /*--2、Bitwise and(正常指令): vand -> ri = ai & bi; performs a bitwise AND between 
    corresponding elements of the input vectors.--*/
    int8x8_t vand_s8 (int8x8_t __a, int8x8_t __b);//_mm_and_si128
    int16x4_t vand_s16 (int16x4_t __a, int16x4_t __b);//_mm_and_si128
    int32x2_t vand_s32 (int32x2_t __a, int32x2_t __b);//_mm_and_si128
    uint8x8_t vand_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_and_si128
    uint16x4_t vand_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_and_si128
    uint32x2_t vand_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_and_si128
    int64x1_t vand_s64 (int64x1_t __a, int64x1_t __b);//_mm_and_si128
    uint64x1_t vand_u64 (uint64x1_t __a, uint64x1_t __b);//_mm_and_si128
    int8x16_t vandq_s8 (int8x16_t __a, int8x16_t __b);//_mm_and_si128
    int16x8_t vandq_s16 (int16x8_t __a, int16x8_t __b);//_mm_and_si128
    int32x4_t vandq_s32 (int32x4_t __a, int32x4_t __b);//_mm_and_si128
    int64x2_t vandq_s64 (int64x2_t __a, int64x2_t __b);//_mm_and_si128
    uint8x16_t vandq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_and_si128
    uint16x8_t vandq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_and_si128
    uint32x4_t vandq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_and_si128
    uint64x2_t vandq_u64 (uint64x2_t __a, uint64x2_t __b);//_mm_and_si128
    /*--3、Bitwise or(正常指令): vorr -> ri = ai | bi; performs a bitwise OR between
    corresponding elements of the input vectors.--*/
    int8x8_t vorr_s8 (int8x8_t __a, int8x8_t __b);//_mm_or_si128
    int16x4_t vorr_s16 (int16x4_t __a, int16x4_t __b);//_mm_or_si128
    int32x2_t vorr_s32 (int32x2_t __a, int32x2_t __b);//_mm_or_si128
    uint8x8_t vorr_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_or_si128
    uint16x4_t vorr_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_or_si128
    uint32x2_t vorr_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_or_si128
    int64x1_t vorr_s64 (int64x1_t __a, int64x1_t __b);//_mm_or_si128
    uint64x1_t vorr_u64 (uint64x1_t __a, uint64x1_t __b);//_mm_or_si128
    int8x16_t vorrq_s8 (int8x16_t __a, int8x16_t __b);//_mm_or_si128
    int16x8_t vorrq_s16 (int16x8_t __a, int16x8_t __b);//_mm_or_si128
    int32x4_t vorrq_s32 (int32x4_t __a, int32x4_t __b);//_mm_or_si128
    int64x2_t vorrq_s64 (int64x2_t __a, int64x2_t __b);//_mm_or_si128
    uint8x16_t vorrq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_or_si128
    uint16x8_t vorrq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_or_si128
    uint32x4_t vorrq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_or_si128
    uint64x2_t vorrq_u64 (uint64x2_t __a, uint64x2_t __b);//_mm_or_si128
    /*--4、Bitwise exclusive or (EOR or XOR)(正常指令): veor -> ri = ai ^ bi; 
    performs a bitwise exclusive-OR between corresponding elements of the input vectors.--*/
    int8x8_t veor_s8 (int8x8_t __a, int8x8_t __b);//_mm_xor_si128
    int16x4_t veor_s16 (int16x4_t __a, int16x4_t __b);//_mm_xor_si128
    int32x2_t veor_s32 (int32x2_t __a, int32x2_t __b);//_mm_xor_si128
    uint8x8_t veor_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_xor_si128
    uint16x4_t veor_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_xor_si128
    uint32x2_t veor_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_xor_si128
    int64x1_t veor_s64 (int64x1_t __a, int64x1_t __b);//_mm_xor_si128
    uint64x1_t veor_u64 (uint64x1_t __a, uint64x1_t __b);//_mm_xor_si128
    int8x16_t veorq_s8 (int8x16_t __a, int8x16_t __b);//_mm_xor_si128
    int16x8_t veorq_s16 (int16x8_t __a, int16x8_t __b);//_mm_xor_si128
    int32x4_t veorq_s32 (int32x4_t __a, int32x4_t __b);//_mm_xor_si128
    int64x2_t veorq_s64 (int64x2_t __a, int64x2_t __b);//_mm_xor_si128
    uint8x16_t veorq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_xor_si128
    uint16x8_t veorq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_xor_si128
    uint32x4_t veorq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_xor_si128
    uint64x2_t veorq_u64 (uint64x2_t __a, uint64x2_t __b);//_mm_xor_si128
    /*--5、Bit Clear(正常指令): vbic -> ri = ~ai & bi;
    VBIC (Vector Bitwise Clear) performs a bitwise logical AND complement operation between
    values in two registers, and places the results in the destination register.--*/
    int8x8_t vbic_s8 (int8x8_t __a, int8x8_t __b);//_mm_andnot_si128
    int16x4_t vbic_s16 (int16x4_t __a, int16x4_t __b);//_mm_andnot_si128
    int32x2_t vbic_s32 (int32x2_t __a, int32x2_t __b);//_mm_andnot_si128
    uint8x8_t vbic_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_andnot_si128
    uint16x4_t vbic_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_andnot_si128
    uint32x2_t vbic_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_andnot_si128
    int64x1_t vbic_s64 (int64x1_t __a, int64x1_t __b);//_mm_andnot_si128
    uint64x1_t vbic_u64 (uint64x1_t __a, uint64x1_t __b);//_mm_andnot_si128
    int8x16_t vbicq_s8 (int8x16_t __a, int8x16_t __b);//_mm_andnot_si128
    int16x8_t vbicq_s16 (int16x8_t __a, int16x8_t __b);//_mm_andnot_si128
    int32x4_t vbicq_s32 (int32x4_t __a, int32x4_t __b);//_mm_andnot_si128
    int64x2_t vbicq_s64 (int64x2_t __a, int64x2_t __b);//_mm_andnot_si128
    uint8x16_t vbicq_u8 (uint8x16_t __a, uint8x16_t __b);//_mm_andnot_si128
    uint16x8_t vbicq_u16 (uint16x8_t __a, uint16x8_t __b);//_mm_andnot_si128
    uint32x4_t vbicq_u32 (uint32x4_t __a, uint32x4_t __b);//_mm_andnot_si128
    uint64x2_t vbicq_u64 (uint64x2_t __a, uint64x2_t __b);//_mm_andnot_si128
    /*--6、Bitwise OR complement(正常指令): vorn -> ri = ai | (~bi); 
    performs a bitwise logical OR NOT operation 
    between values in two registers, and places the results in the destination register.--*/
    int8x8_t vorn_s8 (int8x8_t __a, int8x8_t __b);
    int16x4_t vorn_s16 (int16x4_t __a, int16x4_t __b);
    int32x2_t vorn_s32 (int32x2_t __a, int32x2_t __b);
    uint8x8_t vorn_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4_t vorn_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2_t vorn_u32 (uint32x2_t __a, uint32x2_t __b);
    int64x1_t vorn_s64 (int64x1_t __a, int64x1_t __b);
    uint64x1_t vorn_u64 (uint64x1_t __a, uint64x1_t __b);
    int8x16_t vornq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8_t vornq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4_t vornq_s32 (int32x4_t __a, int32x4_t __b);
    int64x2_t vornq_s64 (int64x2_t __a, int64x2_t __b);
    uint8x16_t vornq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8_t vornq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4_t vornq_u32 (uint32x4_t __a, uint32x4_t __b);
    uint64x2_t vornq_u64 (uint64x2_t __a, uint64x2_t __b);
    /****************************************Count leading sign bits************************/
    /*--正常指令, vcls -> ; counts the number of consecutive bits, starting from the most 
    significant bit,that are the same as the most significant bit, in each element in a 
    vector, and places the count in the result vector.--*/
    int8x8_t vcls_s8 (int8x8_t __a);
    int16x4_t vcls_s16 (int16x4_t __a);
    int32x2_t vcls_s32 (int32x2_t __a);
    int8x16_t vclsq_s8 (int8x16_t __a);
    int16x8_t vclsq_s16 (int16x8_t __a);
    int32x4_t vclsq_s32 (int32x4_t __a);
    /*******************************************Count leading zeros*************************/
    /*--正常指令, vclz -> ; counts the number of consecutive zeros, starting from the most
    significant bit, in each element in a vector, and places the count in result vector.--*/
    int8x8_t vclz_s8 (int8x8_t __a);
    int16x4_t vclz_s16 (int16x4_t __a);
    int32x2_t vclz_s32 (int32x2_t __a);
    uint8x8_t vclz_u8 (uint8x8_t __a);
    uint16x4_t vclz_u16 (uint16x4_t __a);
    uint32x2_t vclz_u32 (uint32x2_t __a);
    int8x16_t vclzq_s8 (int8x16_t __a);
    int16x8_t vclzq_s16 (int16x8_t __a);
    int32x4_t vclzq_s32 (int32x4_t __a);
    uint8x16_t vclzq_u8 (uint8x16_t __a);
    uint16x8_t vclzq_u16 (uint16x8_t __a);
    uint32x4_t vclzq_u32 (uint32x4_t __a);
    /*******************************************Count number of set bits********************/
    /*--正常指令, vcnt -> counts the number of bits that are one in each element in a vector, 
    and places the count in the result vector.--*/
    int8x8_t vcnt_s8 (int8x8_t __a);
    uint8x8_t vcnt_u8 (uint8x8_t __a);
    poly8x8_t vcnt_p8 (poly8x8_t __a);
    int8x16_t vcntq_s8 (int8x16_t __a);
    uint8x16_t vcntq_u8 (uint8x16_t __a);
    poly8x16_t vcntq_p8 (poly8x16_t __a);
    /*****************************************Reciprocal estimate***************************/
    /*--正常指令, vrecpe -> ; finds an approximate reciprocal of each element in a vector, 
    and places it in the result vector.--*/
    float32x2_t vrecpe_f32 (float32x2_t __a);
    uint32x2_t vrecpe_u32 (uint32x2_t __a);
    float32x4_t vrecpeq_f32 (float32x4_t __a);
    uint32x4_t vrecpeq_u32 (uint32x4_t __a);
    /****************************************Reciprocal square-root estimate****************/
    /*--正常指令, vrsqrte -> ; finds an approximate reciprocal square root of each element
    in a vector, and places it in the return vector.--*/
    float32x2_t vrsqrte_f32 (float32x2_t __a);
    uint32x2_t vrsqrte_u32 (uint32x2_t __a);
    float32x4_t vrsqrteq_f32 (float32x4_t __a);
    uint32x4_t vrsqrteq_u32 (uint32x4_t __a);
    /*******************************************Get lanes from a vector*********************/
    /*--vmov -> r = a[b]; returns the value from the specified lane of a vector.
    Extract lanes from a vector and put into a register. 
    These intrinsics extract a single lane (element) from a vector.--*/
    int8_t vget_lane_s8 (int8x8_t __a, const int __b);//_mm_extract_epi8
    int16_t vget_lane_s16 (int16x4_t __a, const int __b);//_mm_extract_epi16
    int32_t vget_lane_s32 (int32x2_t __a, const int __b);//_mm_extract_epi32
    float32_t vget_lane_f32 (float32x2_t __a, const int __b);
    uint8_t vget_lane_u8 (uint8x8_t __a, const int __b);//_mm_extract_epi8
    uint16_t vget_lane_u16 (uint16x4_t __a, const int __b);//_mm_extract_epi16
    uint32_t vget_lane_u32 (uint32x2_t __a, const int __b);//_mm_extract_epi32
    poly8_t vget_lane_p8 (poly8x8_t __a, const int __b);//_mm_extract_epi8
    poly16_t vget_lane_p16 (poly16x4_t __a, const int __b);//_mm_extract_epi16
    int64_t vget_lane_s64 (int64x1_t __a, const int __b);//_mm_extract_epi64
    uint64_t vget_lane_u64 (uint64x1_t __a, const int __b);//_mm_extract_epi64
    int8_t vgetq_lane_s8 (int8x16_t __a, const int __b);//_mm_extract_epi8
    int16_t vgetq_lane_s16 (int16x8_t __a, const int __b);//_mm_extract_epi16
    int32_t vgetq_lane_s32 (int32x4_t __a, const int __b);//_mm_extract_epi32
    float32_t vgetq_lane_f32 (float32x4_t __a, const int __b);
    uint8_t vgetq_lane_u8 (uint8x16_t __a, const int __b);//_mm_extract_epi8
    uint16_t vgetq_lane_u16 (uint16x8_t __a, const int __b);//_mm_extract_epi16
    uint32_t vgetq_lane_u32 (uint32x4_t __a, const int __b);//_mm_extract_epi32
    poly8_t vgetq_lane_p8 (poly8x16_t __a, const int __b);//_mm_extract_epi8
    poly16_t vgetq_lane_p16 (poly16x8_t __a, const int __b);//_mm_extract_epi16
    int64_t vgetq_lane_s64 (int64x2_t __a, const int __b);//_mm_extract_epi64
    uint64_t vgetq_lane_u64 (uint64x2_t __a, const int __b);//_mm_extract_epi64
    /*********************************************Set lanes in a vector********************/
    /*--vmov -> ; sets the value of the specified lane of a vector. It returns the vector 
    with the new value.Load a single lane of a vector from a literal. These intrinsics set 
    a single lane (element) within a vector.--*/
    int8x8_t vset_lane_s8 (int8_t __a, int8x8_t __b, const int __c);
    int16x4_t vset_lane_s16 (int16_t __a, int16x4_t __b, const int __c);
    int32x2_t vset_lane_s32 (int32_t __a, int32x2_t __b, const int __c);
    float32x2_t vset_lane_f32 (float32_t __a, float32x2_t __b, const int __c);
    uint8x8_t vset_lane_u8 (uint8_t __a, uint8x8_t __b, const int __c);
    uint16x4_t vset_lane_u16 (uint16_t __a, uint16x4_t __b, const int __c);
    uint32x2_t vset_lane_u32 (uint32_t __a, uint32x2_t __b, const int __c);
    poly8x8_t vset_lane_p8 (poly8_t __a, poly8x8_t __b, const int __c);
    poly16x4_t vset_lane_p16 (poly16_t __a, poly16x4_t __b, const int __c);
    int64x1_t vset_lane_s64 (int64_t __a, int64x1_t __b, const int __c);
    uint64x1_t vset_lane_u64 (uint64_t __a, uint64x1_t __b, const int __c);
    int8x16_t vsetq_lane_s8 (int8_t __a, int8x16_t __b, const int __c);
    int16x8_t vsetq_lane_s16 (int16_t __a, int16x8_t __b, const int __c);
    int32x4_t vsetq_lane_s32 (int32_t __a, int32x4_t __b, const int __c);
    float32x4_t vsetq_lane_f32 (float32_t __a, float32x4_t __b, const int __c);
    uint8x16_t vsetq_lane_u8 (uint8_t __a, uint8x16_t __b, const int __c);
    uint16x8_t vsetq_lane_u16 (uint16_t __a, uint16x8_t __b, const int __c);
    uint32x4_t vsetq_lane_u32 (uint32_t __a, uint32x4_t __b, const int __c);
    poly8x16_t vsetq_lane_p8 (poly8_t __a, poly8x16_t __b, const int __c);
    poly16x8_t vsetq_lane_p16 (poly16_t __a, poly16x8_t __b, const int __c);
    int64x2_t vsetq_lane_s64 (int64_t __a, int64x2_t __b, const int __c);
    uint64x2_t vsetq_lane_u64 (uint64_t __a, uint64x2_t __b, const int __c);
    /****************************************Create vector from literal bit pattern*********/
    /*--vmov -> ; creates a vector from a 64-bit pattern. 
    Initialize a vector from a literal bit pattern.--*/
    int8x8_t vcreate_s8 (uint64_t __a);//_mm_loadl_epi64
    int16x4_t vcreate_s16 (uint64_t __a);//_mm_loadl_epi64
    int32x2_t vcreate_s32 (uint64_t __a);//_mm_loadl_epi64
    int64x1_t vcreate_s64 (uint64_t __a);//_mm_loadl_epi64
    float32x2_t vcreate_f32 (uint64_t __a);
    uint8x8_t vcreate_u8 (uint64_t __a);//_mm_loadl_epi64
    uint16x4_t vcreate_u16 (uint64_t __a);//_mm_loadl_epi64
    uint32x2_t vcreate_u32 (uint64_t __a);//_mm_loadl_epi64
    uint64x1_t vcreate_u64 (uint64_t __a);//_mm_loadl_epi64
    poly8x8_t vcreate_p8 (uint64_t __a);//_mm_loadl_epi64
    poly16x4_t vcreate_p16 (uint64_t __a);//_mm_loadl_epi64
    /*****************************************Set all lanes to the same value***************/
    /*--1、Load all lanes of vector to the same literal value: vdup/vmov -> ri = a; 
    duplicates a scalar into every element of the destination vector. 
    Load all lanes of vector to the same literal value--*/
    int8x8_t vdup_n_s8 (int8_t __a);//_mm_set1_epi8
    int16x4_t vdup_n_s16 (int16_t __a);//_mm_set1_epi16
    int32x2_t vdup_n_s32 (int32_t __a);//_mm_set1_epi32
    float32x2_t vdup_n_f32 (float32_t __a);//_mm_set1_ps
    uint8x8_t vdup_n_u8 (uint8_t __a);//_mm_set1_epi8
    uint16x4_t vdup_n_u16 (uint16_t __a);//_mm_set1_epi16
    uint32x2_t vdup_n_u32 (uint32_t __a);//_mm_set1_epi32
    poly8x8_t vdup_n_p8 (poly8_t __a);//_mm_set1_epi8
    poly16x4_t vdup_n_p16 (poly16_t __a);//_mm_set1_epi16
    int64x1_t vdup_n_s64 (int64_t __a);
    uint64x1_t vdup_n_u64 (uint64_t __a);
    int8x16_t vdupq_n_s8 (int8_t __a);//_mm_set1_epi8
    int16x8_t vdupq_n_s16 (int16_t __a);//_mm_set1_epi16
    int32x4_t vdupq_n_s32 (int32_t __a);//_mm_set1_epi32
    float32x4_t vdupq_n_f32 (float32_t __a);//_mm_set1_ps
    uint8x16_t vdupq_n_u8 (uint8_t __a);//_mm_set1_epi8
    uint16x8_t vdupq_n_u16 (uint16_t __a);//_mm_set1_epi16
    uint32x4_t vdupq_n_u32 (uint32_t __a);//_mm_set1_epi32
    poly8x16_t vdupq_n_p8 (poly8_t __a);//_mm_set1_epi8
    poly16x8_t vdupq_n_p16 (poly16_t __a);//_mm_set1_epi16
    int64x2_t vdupq_n_s64 (int64_t __a);
    uint64x2_t vdupq_n_u64 (uint64_t __a);
    int8x8_t vmov_n_s8 (int8_t __a);//_mm_set1_epi8
    int16x4_t vmov_n_s16 (int16_t __a);//_mm_set1_epi16
    int32x2_t vmov_n_s32 (int32_t __a);//_mm_set1_epi32
    float32x2_t vmov_n_f32 (float32_t __a);//_mm_set1_ps
    uint8x8_t vmov_n_u8 (uint8_t __a);//_mm_set1_epi8
    uint16x4_t vmov_n_u16 (uint16_t __a);//_mm_set1_epi16
    uint32x2_t vmov_n_u32 (uint32_t __a);//_mm_set1_epi32
    poly8x8_t vmov_n_p8 (poly8_t __a);//_mm_set1_epi8
    poly16x4_t vmov_n_p16 (poly16_t __a);//_mm_set1_epi16
    int64x1_t vmov_n_s64 (int64_t __a);
    uint64x1_t vmov_n_u64 (uint64_t __a);
    int8x16_t vmovq_n_s8 (int8_t __a);//_mm_set1_epi8
    int16x8_t vmovq_n_s16 (int16_t __a);//_mm_set1_epi16
    int32x4_t vmovq_n_s32 (int32_t __a);//_mm_set1_epi32
    float32x4_t vmovq_n_f32 (float32_t __a);//_mm_set1_ps
    uint8x16_t vmovq_n_u8 (uint8_t __a);//_mm_set1_epi8
    uint16x8_t vmovq_n_u16 (uint16_t __a);//_mm_set1_epi16
    uint32x4_t vmovq_n_u32 (uint32_t __a);//_mm_set1_epi32
    poly8x16_t vmovq_n_p8 (poly8_t __a);//_mm_set1_epi8
    poly16x8_t vmovq_n_p16 (poly16_t __a);//_mm_set1_epi16
    int64x2_t vmovq_n_s64 (int64_t __a);
    uint64x2_t vmovq_n_u64 (uint64_t __a);
    /*--2、Load all lanes of the vector to the value of a lane of a vector: 
    vdup/vmov -> ri = a[b];
    duplicates a scalar into every element of the destination vector.--*/
    int8x8_t vdup_lane_s8 (int8x8_t __a, const int __b);
    int16x4_t vdup_lane_s16 (int16x4_t __a, const int __b);
    int32x2_t vdup_lane_s32 (int32x2_t __a, const int __b);
    float32x2_t vdup_lane_f32 (float32x2_t __a, const int __b);
    uint8x8_t vdup_lane_u8 (uint8x8_t __a, const int __b);
    uint16x4_t vdup_lane_u16 (uint16x4_t __a, const int __b);
    uint32x2_t vdup_lane_u32 (uint32x2_t __a, const int __b);
    poly8x8_t vdup_lane_p8 (poly8x8_t __a, const int __b);
    poly16x4_t vdup_lane_p16 (poly16x4_t __a, const int __b);
    int64x1_t vdup_lane_s64 (int64x1_t __a, const int __b);
    uint64x1_t vdup_lane_u64 (uint64x1_t __a, const int __b);
    int8x16_t vdupq_lane_s8 (int8x8_t __a, const int __b);
    int16x8_t vdupq_lane_s16 (int16x4_t __a, const int __b);
    int32x4_t vdupq_lane_s32 (int32x2_t __a, const int __b);
    float32x4_t vdupq_lane_f32 (float32x2_t __a, const int __b);
    uint8x16_t vdupq_lane_u8 (uint8x8_t __a, const int __b);
    uint16x8_t vdupq_lane_u16 (uint16x4_t __a, const int __b);
    uint32x4_t vdupq_lane_u32 (uint32x2_t __a, const int __b);
    poly8x16_t vdupq_lane_p8 (poly8x8_t __a, const int __b);
    poly16x8_t vdupq_lane_p16 (poly16x4_t __a, const int __b);
    int64x2_t vdupq_lane_s64 (int64x1_t __a, const int __b);//_mm_unpacklo_epi64
    uint64x2_t vdupq_lane_u64 (uint64x1_t __a, const int __b);//_mm_unpacklo_epi64
    /********************************************Combining vectors**************************/
    /*--长指令, -> r0 = a0, ..., r7 = a7, r8 = b0, ..., r15 = b7;
    joins two 64-bit vectors into a single 128-bit vector. 
    The output vector contains twice the number of elements as each input vector. 
    The lower half of the output vector contains the elements of the first input vector.--*/
    int8x16_t vcombine_s8 (int8x8_t __a, int8x8_t __b);//_mm_unpacklo_epi64
    int16x8_t vcombine_s16 (int16x4_t __a, int16x4_t __b);//_mm_unpacklo_epi64
    int32x4_t vcombine_s32 (int32x2_t __a, int32x2_t __b);//_mm_unpacklo_epi64
    int64x2_t vcombine_s64 (int64x1_t __a, int64x1_t __b);//_mm_unpacklo_epi64
    float32x4_t vcombine_f32 (float32x2_t __a, float32x2_t __b);
    uint8x16_t vcombine_u8 (uint8x8_t __a, uint8x8_t __b);//_mm_unpacklo_epi64
    uint16x8_t vcombine_u16 (uint16x4_t __a, uint16x4_t __b);//_mm_unpacklo_epi64
    uint32x4_t vcombine_u32 (uint32x2_t __a, uint32x2_t __b);//_mm_unpacklo_epi64
    uint64x2_t vcombine_u64 (uint64x1_t __a, uint64x1_t __b);//_mm_unpacklo_epi64
    poly8x16_t vcombine_p8 (poly8x8_t __a, poly8x8_t __b);//_mm_unpacklo_epi64
    poly16x8_t vcombine_p16 (poly16x4_t __a, poly16x4_t __b);//_mm_unpacklo_epi64
    /***************************************Splitting vectors*******************************/
    /*--1、窄指令, -> ri = a(i+4); returns the higher half of the 128-bit input vector. The
    output is a 64-bit vector that has half the number of elements as the input vector.--*/
    int8x8_t vget_high_s8 (int8x16_t __a);//_mm_unpackhi_epi64
    int16x4_t vget_high_s16 (int16x8_t __a);//_mm_unpackhi_epi64
    int32x2_t vget_high_s32 (int32x4_t __a);//_mm_unpackhi_epi64
    int64x1_t vget_high_s64 (int64x2_t __a);//_mm_unpackhi_epi64
    float32x2_t vget_high_f32 (float32x4_t __a);
    uint8x8_t vget_high_u8 (uint8x16_t __a);//_mm_unpackhi_epi64
    uint16x4_t vget_high_u16 (uint16x8_t __a);//_mm_unpackhi_epi64
    uint32x2_t vget_high_u32 (uint32x4_t __a);//_mm_unpackhi_epi64
    uint64x1_t vget_high_u64 (uint64x2_t __a);//_mm_unpackhi_epi64
    poly8x8_t vget_high_p8 (poly8x16_t __a);//_mm_unpackhi_epi64
    poly16x4_t vget_high_p16 (poly16x8_t __a);//_mm_unpackhi_epi64
    /*--2、窄指令, -> ri = ai; returns the lower half of the 128-bit input vector. The
    output is a 64-bit vector that has half the number of elements as the input vector.--*/
    int8x8_t vget_low_s8 (int8x16_t __a);
    int16x4_t vget_low_s16 (int16x8_t __a);
    int32x2_t vget_low_s32 (int32x4_t __a);
    float32x2_t vget_low_f32 (float32x4_t __a);
    uint8x8_t vget_low_u8 (uint8x16_t __a);
    uint16x4_t vget_low_u16 (uint16x8_t __a);
    uint32x2_t vget_low_u32 (uint32x4_t __a);
    poly8x8_t vget_low_p8 (poly8x16_t __a);
    poly16x4_t vget_low_p16 (poly16x8_t __a);
    int64x1_t vget_low_s64 (int64x2_t __a);
    uint64x1_t vget_low_u64 (uint64x2_t __a);
    /****************************************************Conversions************************/
    /*--1、Convert from float: vcvt ->, convert from floating-point to integer.--*/
    int32x2_t vcvt_s32_f32 (float32x2_t __a);
    uint32x2_t vcvt_u32_f32 (float32x2_t __a);
    int32x4_t vcvtq_s32_f32 (float32x4_t __a);
    uint32x4_t vcvtq_u32_f32 (float32x4_t __a);
    int32x2_t vcvt_n_s32_f32 (float32x2_t __a, const int __b);
    uint32x2_t vcvt_n_u32_f32 (float32x2_t __a, const int __b);
    int32x4_t vcvtq_n_s32_f32 (float32x4_t __a, const int __b);
    uint32x4_t vcvtq_n_u32_f32 (float32x4_t __a, const int __b);
    /*--2、Convert to float: vcvt ->, convert from integer to floating-point.--*/
    float32x2_t vcvt_f32_s32 (int32x2_t __a);
    float32x2_t vcvt_f32_u32 (uint32x2_t __a);
    float32x4_t vcvtq_f32_s32 (int32x4_t __a);
    float32x4_t vcvtq_f32_u32 (uint32x4_t __a);
    float32x2_t vcvt_n_f32_s32 (int32x2_t __a, const int __b);
    float32x2_t vcvt_n_f32_u32 (uint32x2_t __a, const int __b);
    float32x4_t vcvtq_n_f32_s32 (int32x4_t __a, const int __b);
    float32x4_t vcvtq_n_f32_u32 (uint32x4_t __a, const int __b);
    /*--3、between single-precision and double-precision numbers: vcvt ->--*/
    float16x4_t vcvt_f16_f32(float32x4_t a);
    float32x4_t vcvt_f32_f16(float16x4_t a);
    /*************************************************Move**********************************/
    /*--1、Vector narrow integer(窄指令): vmovn -> ri = ai[0...8]; copies the least 
    significant half of each element of a quadword vector into 
    the corresponding elements of a doubleword vector.--*/
    int8x8_t vmovn_s16 (int16x8_t __a);
    int16x4_t vmovn_s32 (int32x4_t __a);
    int32x2_t vmovn_s64 (int64x2_t __a);
    uint8x8_t vmovn_u16 (uint16x8_t __a);
    uint16x4_t vmovn_u32 (uint32x4_t __a);
    uint32x2_t vmovn_u64 (uint64x2_t __a);
    /*--2、Vector long move(长指令): vmovl -> sign extends or zero extends each element
    in a doubleword vector to twice its original length,
    and places the results in a quadword vector.--*/
    int16x8_t vmovl_s8 (int8x8_t __a);//_mm_cvtepi8_epi16
    int32x4_t vmovl_s16 (int16x4_t __a);//_mm_cvtepi16_epi32
    int64x2_t vmovl_s32 (int32x2_t __a);//_mm_cvtepi32_epi64
    uint16x8_t vmovl_u8 (uint8x8_t __a);//_mm_cvtepu8_epi16
    uint32x4_t vmovl_u16 (uint16x4_t __a);//_mm_cvtepu16_epi32
    uint64x2_t vmovl_u32 (uint32x2_t __a);_mm_cvtepu32_epi64
    /*--3、Vector saturating narrow integer(窄指令): vqmovn -> copies each element of the
    operand vector to the corresponding element of the destination vector. 
    The result element is half the width of 
    the operand element, and values are saturated to the result width.
    The results are the same type as the operands.--*/
    int8x8_t vqmovn_s16 (int16x8_t __a);//_mm_packs_epi16
    int16x4_t vqmovn_s32 (int32x4_t __a);//_mm_packs_epi32
    int32x2_t vqmovn_s64 (int64x2_t __a);
    uint8x8_t vqmovn_u16 (uint16x8_t __a);
    uint16x4_t vqmovn_u32 (uint32x4_t __a);
    uint32x2_t vqmovn_u64 (uint64x2_t __a);
    /*--4、Vector saturating narrow integer signed->unsigned(窄指令): copies each element of
    the operand vector to the corresponding element of the destination vector.
    The result element is half the width of the operand element,
    and values are saturated to the result width.
    The elements in the operand are signed and the elements in the result are unsigned.--*/
    uint8x8_t vqmovun_s16 (int16x8_t __a);//_mm_packus_epi16
    uint16x4_t vqmovun_s32 (int32x4_t __a);//_mm_packus_epi32
    uint32x2_t vqmovun_s64 (int64x2_t __a);
    /******************************************************Table lookup*********************/
    /*--1、Table lookup: vtbl -> uses byte indexes in a control vector to look up byte 
    values in a table and generate a new vector. Indexes out of range return 0. 
    The table is in Vector1 and uses one(or two or three or four)D registers.--*/
    int8x8_t vtbl1_s8 (int8x8_t __a, int8x8_t __b);
    uint8x8_t vtbl1_u8 (uint8x8_t __a, uint8x8_t __b);
    poly8x8_t vtbl1_p8 (poly8x8_t __a, uint8x8_t __b);
    int8x8_t vtbl2_s8 (int8x8x2_t __a, int8x8_t __b);
    uint8x8_t vtbl2_u8 (uint8x8x2_t __a, uint8x8_t __b);
    poly8x8_t vtbl2_p8 (poly8x8x2_t __a, uint8x8_t __b);
    int8x8_t vtbl3_s8 (int8x8x3_t __a, int8x8_t __b);
    uint8x8_t vtbl3_u8 (uint8x8x3_t __a, uint8x8_t __b);
    poly8x8_t vtbl3_p8 (poly8x8x3_t __a, uint8x8_t __b);
    int8x8_t vtbl4_s8 (int8x8x4_t __a, int8x8_t __b);
    uint8x8_t vtbl4_u8 (uint8x8x4_t __a, uint8x8_t __b);
    poly8x8_t vtbl4_p8 (poly8x8x4_t __a, uint8x8_t __b);
    /*--2、Extended table lookup: vtbx -> uses byte indexes in a control vector to look up
    byte values in a table and generate a new vector. Indexes out of range leave the 
    destination element unchanged.The table is in Vector2 and uses one(or two or three or
    four) D register. Vector1 contains the elements of the destination vector.--*/
    int8x8_t vtbx1_s8 (int8x8_t __a, int8x8_t __b, int8x8_t __c);
    uint8x8_t vtbx1_u8 (uint8x8_t __a, uint8x8_t __b, uint8x8_t __c);
    poly8x8_t vtbx1_p8 (poly8x8_t __a, poly8x8_t __b, uint8x8_t __c);
    int8x8_t vtbx2_s8 (int8x8_t __a, int8x8x2_t __b, int8x8_t __c);
    uint8x8_t vtbx2_u8 (uint8x8_t __a, uint8x8x2_t __b, uint8x8_t __c);
    poly8x8_t vtbx2_p8 (poly8x8_t __a, poly8x8x2_t __b, uint8x8_t __c);
    int8x8_t vtbx3_s8 (int8x8_t __a, int8x8x3_t __b, int8x8_t __c);
    uint8x8_t vtbx3_u8 (uint8x8_t __a, uint8x8x3_t __b, uint8x8_t __c);
    poly8x8_t vtbx3_p8 (poly8x8_t __a, poly8x8x3_t __b, uint8x8_t __c);
    int8x8_t vtbx4_s8 (int8x8_t __a, int8x8x4_t __b, int8x8_t __c);
    uint8x8_t vtbx4_u8 (uint8x8_t __a, uint8x8x4_t __b, uint8x8_t __c);
    poly8x8_t vtbx4_p8 (poly8x8_t __a, poly8x8x4_t __b, uint8x8_t __c);
    /***************************************Multiply, scalar, lane**************************/
    /*--1、Vector multiply by scalar: vmul -> ri = ai * b; 
    multiplies each element in a vector by a scalar, 
    and places the results in the destination vector.--*/
    int16x4_t vmul_n_s16 (int16x4_t __a, int16_t __b);
    int32x2_t vmul_n_s32 (int32x2_t __a, int32_t __b);
    float32x2_t vmul_n_f32 (float32x2_t __a, float32_t __b);
    uint16x4_t vmul_n_u16 (uint16x4_t __a, uint16_t __b);
    uint32x2_t vmul_n_u32 (uint32x2_t __a, uint32_t __b);
    int16x8_t vmulq_n_s16 (int16x8_t __a, int16_t __b);
    int32x4_t vmulq_n_s32 (int32x4_t __a, int32_t __b);
    float32x4_t vmulq_n_f32 (float32x4_t __a, float32_t __b);
    uint16x8_t vmulq_n_u16 (uint16x8_t __a, uint16_t __b);
    uint32x4_t vmulq_n_u32 (uint32x4_t __a, uint32_t __b);
    /*--2、Vector multiply by scalar: -> ri = ai * b[c]; 
    multiplies the first vector by a scalar. 
    The scalar is the element in the second vector with index c.--*/
    int16x4_t vmul_lane_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int32x2_t vmul_lane_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    float32x2_t vmul_lane_f32 (float32x2_t __a, float32x2_t __b, const int __c);
    uint16x4_t vmul_lane_u16 (uint16x4_t __a, uint16x4_t __b, const int __c);
    uint32x2_t vmul_lane_u32 (uint32x2_t __a, uint32x2_t __b, const int __c);
    int16x8_t vmulq_lane_s16 (int16x8_t __a, int16x4_t __b, const int __c);
    int32x4_t vmulq_lane_s32 (int32x4_t __a, int32x2_t __b, const int __c);
    float32x4_t vmulq_lane_f32 (float32x4_t __a, float32x2_t __b, const int __c);
    uint16x8_t vmulq_lane_u16 (uint16x8_t __a, uint16x4_t __b, const int __c);
    uint32x4_t vmulq_lane_u32 (uint32x4_t __a, uint32x2_t __b, const int __c);
    /*--3、Vector long multiply with scalar: vmull ->  ri = ai * b;
    multiplies a vector by a scalar. 
    Elements in the result are wider than elements in input vector.--*/
    int32x4_t vmull_n_s16 (int16x4_t __a, int16_t __b);
    int64x2_t vmull_n_s32 (int32x2_t __a, int32_t __b);
    uint32x4_t vmull_n_u16 (uint16x4_t __a, uint16_t __b);
    uint64x2_t vmull_n_u32 (uint32x2_t __a, uint32_t __b);
    /*--4、Vector long multiply by scalar: vmull -> ri = ai * b[c];
    multiplies the first vector by a scalar. 
    The scalar is the element in the second vector with index c. 
    The elements in the result are wider than the elements in input vector.--*/
    int32x4_t vmull_lane_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int64x2_t vmull_lane_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    uint32x4_t vmull_lane_u16 (uint16x4_t __a, uint16x4_t __b, const int __c);
    uint64x2_t vmull_lane_u32 (uint32x2_t __a, uint32x2_t __b, const int __c);
    /*--5、Vector saturating doubling long multiply with scalar: vqdmull -> ri = sat(ai * b);
    multiplies the elements in the vector by a scalar, and doubles the results. 
    If any of the results overflow, they are saturated and the sticky QC flag is set.--*/
    int32x4_t vqdmull_n_s16 (int16x4_t __a, int16_t __b);
    int64x2_t vqdmull_n_s32 (int32x2_t __a, int32_t __b);
    /*--6、Vector saturating doubling long multiply by scalar: vqdmull -> ri = sat(ai * b[c]);
    multiplies the elements in the first vector by a scalar, and doubles the results. 
    The scalar has index c in the second vector. If any of the results overflow, 
    they are saturated and the sticky QC flagis set.--*/
    int32x4_t vqdmull_lane_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int64x2_t vqdmull_lane_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    /*--7、Vector saturating doubling multiply high with scalar: vqdmulh -> ri = sat(ai * b)
    multiplies the elements of the vector by a scalar, and doubles the results.
    It then returns only the high half of the results.
    If any of the results overflow, they are saturated and the sticky QC flag is set.--*/
    int16x4_t vqdmulh_n_s16 (int16x4_t __a, int16_t __b);
    int32x2_t vqdmulh_n_s32 (int32x2_t __a, int32_t __b);
    int16x8_t vqdmulhq_n_s16 (int16x8_t __a, int16_t __b);
    int32x4_t vqdmulhq_n_s32 (int32x4_t __a, int32_t __b);
    /*--8、Vector saturating doubling multiply high by scalar: 
    vqdmulh -> ri = sat(ai * b[c]);
    multiplies the elements of the first vector by a scalar, and doubles the results. It then
    returns only the high half of the results. The scalar has index n in the second vector.
    If any of the results overflow, they are saturated and the sticky QC flag is set.--*/
    int16x4_t vqdmulh_lane_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int32x2_t vqdmulh_lane_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    int16x8_t vqdmulhq_lane_s16 (int16x8_t __a, int16x4_t __b, const int __c);
    int32x4_t vqdmulhq_lane_s32 (int32x4_t __a, int32x2_t __b, const int __c);
    /*--9、Vector saturating rounding doubling multiply high with scalar: 
    vqqrdmulh -> ri = sat(ai * b);
    multiplies the elements of the vector by a scalar and doubles the results. 
    It then returns only the high half of the rounded results. 
    If any of the results overflow, they are saturated and the sticky QC flag is set.--*/
    int16x4_t vqrdmulh_n_s16 (int16x4_t __a, int16_t __b);
    int32x2_t vqrdmulh_n_s32 (int32x2_t __a, int32_t __b);
    int16x8_t vqrdmulhq_n_s16 (int16x8_t __a, int16_t __b);
    int32x4_t vqrdmulhq_n_s32 (int32x4_t __a, int32_t __b);
    /*--10、Vector rounding saturating doubling multiply high by scalar: 
    vqrdmulh -> ri = sat(ai * b[c]);
    multiplies the elements of the first vector by a scalar and doubles the results.
    It then returns only the high half of the rounded results.
    The scalar has index n in the second vector. If any of the results overflow, 
    they are saturated and the sticky QC flag is set.--*/
    int16x4_t vqrdmulh_lane_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int32x2_t vqrdmulh_lane_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    int16x8_t vqrdmulhq_lane_s16 (int16x8_t __a, int16x4_t __b, const int __c);
    int32x4_t vqrdmulhq_lane_s32 (int32x4_t __a, int32x2_t __b, const int __c);
    /*--11、Vector multiply accumulate with scalar: vmla -> ri = ai + bi * c;
    multiplies each element in the second vector by a scalar, 
    and adds the results to the corresponding elements of the first vector.--*/
    int16x4_t vmla_n_s16 (int16x4_t __a, int16x4_t __b, int16_t __c);
    int32x2_t vmla_n_s32 (int32x2_t __a, int32x2_t __b, int32_t __c);
    float32x2_t vmla_n_f32 (float32x2_t __a, float32x2_t __b, float32_t __c);
    uint16x4_t vmla_n_u16 (uint16x4_t __a, uint16x4_t __b, uint16_t __c);
    uint32x2_t vmla_n_u32 (uint32x2_t __a, uint32x2_t __b, uint32_t __c);
    int16x8_t vmlaq_n_s16 (int16x8_t __a, int16x8_t __b, int16_t __c);
    int32x4_t vmlaq_n_s32 (int32x4_t __a, int32x4_t __b, int32_t __c);
    float32x4_t vmlaq_n_f32 (float32x4_t __a, float32x4_t __b, float32_t __c);
    uint16x8_t vmlaq_n_u16 (uint16x8_t __a, uint16x8_t __b, uint16_t __c);
    uint32x4_t vmlaq_n_u32 (uint32x4_t __a, uint32x4_t __b, uint32_t __c);
    /*--12、Vector multiply accumulate by scalar: vmla -> ri = ai + bi * c[d];
    multiplies each element in the second vector by a scalar, 
    and adds the results to the corresponding elements of the first vector. 
    The scalar has index d in the third vector.--*/
    int16x4_t vmla_lane_s16 (int16x4_t __a, int16x4_t __b, int16x4_t __c, const int __d);
    int32x2_t vmla_lane_s32 (int32x2_t __a, int32x2_t __b, int32x2_t __c, const int __d);
    float32x2_t vmla_lane_f32 (float32x2_t __a, float32x2_t __b, float32x2_t __c,
        const int __d);
    uint16x4_t vmla_lane_u16 (uint16x4_t __a, uint16x4_t __b, uint16x4_t __c, const int __d);
    uint32x2_t vmla_lane_u32 (uint32x2_t __a, uint32x2_t __b, uint32x2_t __c, const int __d);
    int16x8_t vmlaq_lane_s16 (int16x8_t __a, int16x8_t __b, int16x4_t __c, const int __d);
    int32x4_t vmlaq_lane_s32 (int32x4_t __a, int32x4_t __b, int32x2_t __c, const int __d);
    float32x4_t vmlaq_lane_f32 (float32x4_t __a, float32x4_t __b, float32x2_t __c,
        const int __d);
    uint16x8_t vmlaq_lane_u16 (uint16x8_t __a, uint16x8_t __b, uint16x4_t __c, const int __d);
    uint32x4_t vmlaq_lane_u32 (uint32x4_t __a, uint32x4_t __b, uint32x2_t __c, const int __d);
    /*--13、Vector widening multiply accumulate with scalar: vmlal -> ri = ai + bi * c;
    multiplies each element in the second vector by a scalar, and adds the results into the 
    corresponding elements of the first vector. 
    The scalar has index n in the third vector. The elements in the result are wider.--*/
    int32x4_t vmlal_n_s16 (int32x4_t __a, int16x4_t __b, int16_t __c);
    int64x2_t vmlal_n_s32 (int64x2_t __a, int32x2_t __b, int32_t __c);
    uint32x4_t vmlal_n_u16 (uint32x4_t __a, uint16x4_t __b, uint16_t __c);
    uint64x2_t vmlal_n_u32 (uint64x2_t __a, uint32x2_t __b, uint32_t __c);
    /*--14、Vector widening multiply accumulate by scalar: vmlal -> ri = ai + bi * c[d];
    multiplies each element in the second vector by a scalar, and adds the results to the 
    corresponding elements of the first vector. The scalar has index d in the third vector.
    The elements in the result are wider.--*/
    int32x4_t vmlal_lane_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c, const int __d);
    int64x2_t vmlal_lane_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c, const int __d);
    uint32x4_t vmlal_lane_u16 (uint32x4_t __a, uint16x4_t __b, uint16x4_t __c, const int __d);
    uint64x2_t vmlal_lane_u32 (uint64x2_t __a, uint32x2_t __b, uint32x2_t __c, const int __d);
    /*--15、Vector widening saturating doubling multiply accumulate with scalar: 
    vqdmlal -> ri = sat(ai + bi * c);
    multiplies the elements in the second vector by a scalar, and doubles the results. 
    It then adds the results to the elements in the first vector.
    If any of the results overflow, they are saturated and the sticky QC flag is set.--*/
    int32x4_t vqdmlal_n_s16 (int32x4_t __a, int16x4_t __b, int16_t __c);
    int64x2_t vqdmlal_n_s32 (int64x2_t __a, int32x2_t __b, int32_t __c);
    /*--16、Vector widening saturating doubling multiply accumulate by scalar: 
    vqdmlal -> ri = sat(ai + bi * c[d])
    multiplies each element in the second vector by a scalar, doubles the results and adds 
    them to the corresponding elements of the first vector. The scalar has index d in the 
    third vector. If any of the results overflow,
    they are saturated and the sticky QC flag is set.--*/
    int32x4_t vqdmlal_lane_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c, const int __d);
    int64x2_t vqdmlal_lane_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c, const int __d);
    /*--17、Vector multiply subtract with scalar: vmls -> ri = ai - bi * c;
    multiplies each element in a vector by a scalar, subtracts the results from the 
    corresponding elements of the destination vector, 
    and places the final results in the destination vector.--*/
    int16x4_t vmls_n_s16 (int16x4_t __a, int16x4_t __b, int16_t __c);
    int32x2_t vmls_n_s32 (int32x2_t __a, int32x2_t __b, int32_t __c);
    float32x2_t vmls_n_f32 (float32x2_t __a, float32x2_t __b, float32_t __c);
    uint16x4_t vmls_n_u16 (uint16x4_t __a, uint16x4_t __b, uint16_t __c);
    uint32x2_t vmls_n_u32 (uint32x2_t __a, uint32x2_t __b, uint32_t __c);
    int16x8_t vmlsq_n_s16 (int16x8_t __a, int16x8_t __b, int16_t __c);
    int32x4_t vmlsq_n_s32 (int32x4_t __a, int32x4_t __b, int32_t __c);
    float32x4_t vmlsq_n_f32 (float32x4_t __a, float32x4_t __b, float32_t __c);
    uint16x8_t vmlsq_n_u16 (uint16x8_t __a, uint16x8_t __b, uint16_t __c);
    uint32x4_t vmlsq_n_u32 (uint32x4_t __a, uint32x4_t __b, uint32_t __c);
    /*--18、Vector multiply subtract by scalar: vmls -> ri = ai - bi * c[d];
    multiplies each element in the second vector by a scalar, and subtracts them from the
    corresponding elements of the first vector.
    The scalar has index d in the third vector.--*/
    int16x4_t vmls_lane_s16 (int16x4_t __a, int16x4_t __b, int16x4_t __c, const int __d);
    int32x2_t vmls_lane_s32 (int32x2_t __a, int32x2_t __b, int32x2_t __c, const int __d);
    float32x2_t vmls_lane_f32 (float32x2_t __a, float32x2_t __b, float32x2_t __c,
        const int __d);
    uint16x4_t vmls_lane_u16 (uint16x4_t __a, uint16x4_t __b, uint16x4_t __c, const int __d);
    uint32x2_t vmls_lane_u32 (uint32x2_t __a, uint32x2_t __b, uint32x2_t __c, const int __d);
    int16x8_t vmlsq_lane_s16 (int16x8_t __a, int16x8_t __b, int16x4_t __c, const int __d);
    int32x4_t vmlsq_lane_s32 (int32x4_t __a, int32x4_t __b, int32x2_t __c, const int __d);
    float32x4_t vmlsq_lane_f32 (float32x4_t __a, float32x4_t __b, float32x2_t __c,
        const int __d);
    uint16x8_t vmlsq_lane_u16 (uint16x8_t __a, uint16x8_t __b, uint16x4_t __c, const int __d);
    uint32x4_t vmlsq_lane_u32 (uint32x4_t __a, uint32x4_t __b, uint32x2_t __c, const int __d);
    /*--19、Vector widening multiply subtract with scalar: vmlsl -> ri = ai - bi * c;
    multiplies the elements in the second vector by a scalar, then subtracts the results from
    the elements in the first vector. The elements of the result are wider.--*/
    int32x4_t vmlsl_n_s16 (int32x4_t __a, int16x4_t __b, int16_t __c);
    int64x2_t vmlsl_n_s32 (int64x2_t __a, int32x2_t __b, int32_t __c);
    uint32x4_t vmlsl_n_u16 (uint32x4_t __a, uint16x4_t __b, uint16_t __c);
    uint64x2_t vmlsl_n_u32 (uint64x2_t __a, uint32x2_t __b, uint32_t __c);
    /*--20、Vector widening multiply subtract by scalar: vmlsl -> ri = ai - bi * c[d];
    multiplies each element in the second vector by a scalar, 
    and subtracts them from the corresponding elements of the first vector. 
    The scalar has index d in the third vector. The elements in the result are wider.--*/
    int32x4_t vmlsl_lane_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c, const int __d);
    int64x2_t vmlsl_lane_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c, const int __d);
    uint32x4_t vmlsl_lane_u16 (uint32x4_t __a, uint16x4_t __b, uint16x4_t __c, const int __d)
    uint64x2_t vmlsl_lane_u32 (uint64x2_t __a, uint32x2_t __b, uint32x2_t __c, const int __d);
    /*--21、Vector widening saturating doubling multiply subtract with scalar: 
    vqdmlsl -> ri = sat(ai - bi * c);
    multiplies the elements of the second vector with a scalar and doubles the results. 
    It then subtracts the results from the elements in the first vector.
    If any of the results overflow, they are saturated and the sticky QC flag is set.--*/
    int32x4_t vqdmlsl_n_s16 (int32x4_t __a, int16x4_t __b, int16_t __c);
    int64x2_t vqdmlsl_n_s32 (int64x2_t __a, int32x2_t __b, int32_t __c);
    /*--22、Vector widening saturating doubling multiply subtract by scalar:
    vqdmlsl -> ri = sat(ai - bi * c[[d]);
    multiplies each element in the second vector by a scalar, doubles the results and subtracts
    them from the corresponding elements of the first vector. The scalar has index n in the 
    third vector.If any of the results overflow, 
    they are saturated and the sticky QC flag is set.--*/
    int32x4_t vqdmlsl_lane_s16 (int32x4_t __a, int16x4_t __b, int16x4_t __c, const int __d);
    int64x2_t vqdmlsl_lane_s32 (int64x2_t __a, int32x2_t __b, int32x2_t __c, const int __d);
    /*****************************************************Vector extract********************/
    /*--Vector extract: vext -> extracts n elements from the lower end of the second operand
    vector and the remaining elements from the higher end of the first, and combines them to
    form the result vector. The elements from the second operand are placed in the most 
    significant part of the result vector.The elements from the first operand are placed in
    the least significant part of the result vector.This intrinsic cycles the elements
    through the lanes if the two input vectors are the same.--*/
    int8x8_t vext_s8 (int8x8_t __a, int8x8_t __b, const int __c);
    int16x4_t vext_s16 (int16x4_t __a, int16x4_t __b, const int __c);
    int32x2_t vext_s32 (int32x2_t __a, int32x2_t __b, const int __c);
    int64x1_t vext_s64 (int64x1_t __a, int64x1_t __b, const int __c);
    float32x2_t vext_f32 (float32x2_t __a, float32x2_t __b, const int __c);
    uint8x8_t vext_u8 (uint8x8_t __a, uint8x8_t __b, const int __c);
    uint16x4_t vext_u16 (uint16x4_t __a, uint16x4_t __b, const int __c);
    uint32x2_t vext_u32 (uint32x2_t __a, uint32x2_t __b, const int __c);
    uint64x1_t vext_u64 (uint64x1_t __a, uint64x1_t __b, const int __c);
    poly8x8_t vext_p8 (poly8x8_t __a, poly8x8_t __b, const int __c);
    poly16x4_t vext_p16 (poly16x4_t __a, poly16x4_t __b, const int __c);
    int8x16_t vextq_s8 (int8x16_t __a, int8x16_t __b, const int __c);//_mm_alignr_epi8 
    int16x8_t vextq_s16 (int16x8_t __a, int16x8_t __b, const int __c);//_mm_alignr_epi8 
    int32x4_t vextq_s32 (int32x4_t __a, int32x4_t __b, const int __c);//_mm_alignr_epi8
    int64x2_t vextq_s64 (int64x2_t __a, int64x2_t __b, const int __c);//_mm_alignr_epi8
    float32x4_t vextq_f32 (float32x4_t __a, float32x4_t __b, const int __c);//_mm_alignr_epi8
    uint8x16_t vextq_u8 (uint8x16_t __a, uint8x16_t __b, const int __c);//_mm_alignr_epi8
    uint16x8_t vextq_u16 (uint16x8_t __a, uint16x8_t __b, const int __c);//_mm_alignr_epi8
    uint32x4_t vextq_u32 (uint32x4_t __a, uint32x4_t __b, const int __c);//_mm_alignr_epi8
    uint64x2_t vextq_u64 (uint64x2_t __a, uint64x2_t __b, const int __c);//_mm_alignr_epi8
    poly8x16_t vextq_p8 (poly8x16_t __a, poly8x16_t __b, const int __c);//_mm_alignr_epi8
    poly16x8_t vextq_p16 (poly16x8_t __a, poly16x8_t __b, const int __c);//_mm_alignr_epi8
    /****************************************************Reverse elements*******************/
    /*--1、Reverse vector elements (swap endianness): vrev64 -> reverses the order of 8-bit, 
    16-bit, or 32-bit elements within each doubleword of the vector, 
    and places the result in the corresponding destination vector.--*/
    int8x8_t vrev64_s8 (int8x8_t __a);
    int16x4_t vrev64_s16 (int16x4_t __a);
    int32x2_t vrev64_s32 (int32x2_t __a);
    float32x2_t vrev64_f32 (float32x2_t __a);//_mm_shuffle_ps
    uint8x8_t vrev64_u8 (uint8x8_t __a);
    uint16x4_t vrev64_u16 (uint16x4_t __a);
    uint32x2_t vrev64_u32 (uint32x2_t __a);
    poly8x8_t vrev64_p8 (poly8x8_t __a);
    poly16x4_t vrev64_p16 (poly16x4_t __a);
    int8x16_t vrev64q_s8 (int8x16_t __a);
    int16x8_t vrev64q_s16 (int16x8_t __a);
    int32x4_t vrev64q_s32 (int32x4_t __a);
    float32x4_t vrev64q_f32 (float32x4_t __a);//_mm_shuffle_ps
    uint8x16_t vrev64q_u8 (uint8x16_t __a);
    uint16x8_t vrev64q_u16 (uint16x8_t __a);
    uint32x4_t vrev64q_u32 (uint32x4_t __a);
    poly8x16_t vrev64q_p8 (poly8x16_t __a);
    poly16x8_t vrev64q_p16 (poly16x8_t __a);
    /*--2、Reverse vector elements (swap endianness): vrev32 -> reverses the order of 8-bit 
    or 16-bit elements within each word of the vector, 
    and places the result in the corresponding destination vector.--*/
    int8x8_t vrev32_s8 (int8x8_t __a);
    int16x4_t vrev32_s16 (int16x4_t __a);
    uint8x8_t vrev32_u8 (uint8x8_t __a);
    uint16x4_t vrev32_u16 (uint16x4_t __a);
    poly8x8_t vrev32_p8 (poly8x8_t __a);
    poly16x4_t vrev32_p16 (poly16x4_t __a);
    int8x16_t vrev32q_s8 (int8x16_t __a);
    int16x8_t vrev32q_s16 (int16x8_t __a);
    uint8x16_t vrev32q_u8 (uint8x16_t __a);
    uint16x8_t vrev32q_u16 (uint16x8_t __a);
    poly8x16_t vrev32q_p8 (poly8x16_t __a);
    poly16x8_t vrev32q_p16 (poly16x8_t __a);
    /*--3、Reverse vector elements (swap endianness): vrev16 -> reverses the order 
    of 8-bit elements within each halfword of the vector, 
    and places the result in the corresponding destination vector.--*/
    int8x8_t vrev16_s8 (int8x8_t __a);
    uint8x8_t vrev16_u8 (uint8x8_t __a);
    poly8x8_t vrev16_p8 (poly8x8_t __a);
    int8x16_t vrev16q_s8 (int8x16_t __a);
    uint8x16_t vrev16q_u8 (uint8x16_t __a);
    poly8x16_t vrev16q_p8 (poly8x16_t __a);
    /**********************************************************Bitwise Select***************/
    /*--Bitwise Select: vbsl -> selects each bit for the destination from the first operand 
    if the corresponding bit of the destination is 1, 
    or from the second operand if the corresponding bit of the destination is 0.--*/
    int8x8_t vbsl_s8 (uint8x8_t __a, int8x8_t __b, int8x8_t __c);
    int16x4_t vbsl_s16 (uint16x4_t __a, int16x4_t __b, int16x4_t __c);
    int32x2_t vbsl_s32 (uint32x2_t __a, int32x2_t __b, int32x2_t __c);
    int64x1_t vbsl_s64 (uint64x1_t __a, int64x1_t __b, int64x1_t __c);
    float32x2_t vbsl_f32 (uint32x2_t __a, float32x2_t __b, float32x2_t __c);
    uint8x8_t vbsl_u8 (uint8x8_t __a, uint8x8_t __b, uint8x8_t __c);
    uint16x4_t vbsl_u16 (uint16x4_t __a, uint16x4_t __b, uint16x4_t __c);
    uint32x2_t vbsl_u32 (uint32x2_t __a, uint32x2_t __b, uint32x2_t __c);
    uint64x1_t vbsl_u64 (uint64x1_t __a, uint64x1_t __b, uint64x1_t __c);
    poly8x8_t vbsl_p8 (uint8x8_t __a, poly8x8_t __b, poly8x8_t __c);
    poly16x4_t vbsl_p16 (uint16x4_t __a, poly16x4_t __b, poly16x4_t __c);
    int8x16_t vbslq_s8 (uint8x16_t __a, int8x16_t __b, int8x16_t __c);
    int16x8_t vbslq_s16 (uint16x8_t __a, int16x8_t __b, int16x8_t __c);
    int32x4_t vbslq_s32 (uint32x4_t __a, int32x4_t __b, int32x4_t __c);
    int64x2_t vbslq_s64 (uint64x2_t __a, int64x2_t __b, int64x2_t __c);
    float32x4_t vbslq_f32 (uint32x4_t __a, float32x4_t __b, float32x4_t __c);
    uint8x16_t vbslq_u8 (uint8x16_t __a, uint8x16_t __b, uint8x16_t __c);
    uint16x8_t vbslq_u16 (uint16x8_t __a, uint16x8_t __b, uint16x8_t __c);
    uint32x4_t vbslq_u32 (uint32x4_t __a, uint32x4_t __b, uint32x4_t __c);
    uint64x2_t vbslq_u64 (uint64x2_t __a, uint64x2_t __b, uint64x2_t __c);
    poly8x16_t vbslq_p8 (uint8x16_t __a, poly8x16_t __b, poly8x16_t __c);
    poly16x8_t vbslq_p16 (uint16x8_t __a, poly16x8_t __b, poly16x8_t __c);
    /************************************Transposition operations***************************/
    /*--1、Transpose elements: vtrn -> treats the elements of its input vectors as elements
    of 2 x 2 matrices, and transposes the matrices. Essentially, it exchanges the elements 
    with odd indices from Vector1 with the elements with even indices from Vector2.--*/
    int8x8x2_t vtrn_s8 (int8x8_t __a, int8x8_t __b);
    int16x4x2_t vtrn_s16 (int16x4_t __a, int16x4_t __b);
    uint8x8x2_t vtrn_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4x2_t vtrn_u16 (uint16x4_t __a, uint16x4_t __b);
    poly8x8x2_t vtrn_p8 (poly8x8_t __a, poly8x8_t __b);
    poly16x4x2_t vtrn_p16 (poly16x4_t __a, poly16x4_t __b);
    int32x2x2_t vtrn_s32 (int32x2_t __a, int32x2_t __b)
    float32x2x2_t vtrn_f32 (float32x2_t __a, float32x2_t __b)
    uint32x2x2_t vtrn_u32 (uint32x2_t __a, uint32x2_t __b)
    int8x16x2_t vtrnq_s8 (int8x16_t __a, int8x16_t __b)
    int16x8x2_t vtrnq_s16 (int16x8_t __a, int16x8_t __b)
    int32x4x2_t vtrnq_s32 (int32x4_t __a, int32x4_t __b)
    float32x4x2_t vtrnq_f32 (float32x4_t __a, float32x4_t __b)
    uint8x16x2_t vtrnq_u8 (uint8x16_t __a, uint8x16_t __b)
    uint16x8x2_t vtrnq_u16 (uint16x8_t __a, uint16x8_t __b)
    uint32x4x2_t vtrnq_u32 (uint32x4_t __a, uint32x4_t __b);
    poly8x16x2_t vtrnq_p8 (poly8x16_t __a, poly8x16_t __b);
    poly16x8x2_t vtrnq_p16 (poly16x8_t __a, poly16x8_t __b);
    /*--2、Interleave elements(Zip elements): 
    vzip ->  (Vector Zip) interleaves the elements of two vectors.--*/
    int8x8x2_t vzip_s8 (int8x8_t __a, int8x8_t __b);
    int16x4x2_t vzip_s16 (int16x4_t __a, int16x4_t __b);
    uint8x8x2_t vzip_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4x2_t vzip_u16 (uint16x4_t __a, uint16x4_t __b);
    poly8x8x2_t vzip_p8 (poly8x8_t __a, poly8x8_t __b);
    poly16x4x2_t vzip_p16 (poly16x4_t __a, poly16x4_t __b);
    int32x2x2_t vzip_s32 (int32x2_t __a, int32x2_t __b);
    float32x2x2_t vzip_f32 (float32x2_t __a, float32x2_t __b);
    uint32x2x2_t vzip_u32 (uint32x2_t __a, uint32x2_t __b);
    int8x16x2_t vzipq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8x2_t vzipq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4x2_t vzipq_s32 (int32x4_t __a, int32x4_t __b);
    float32x4x2_t vzipq_f32 (float32x4_t __a, float32x4_t __b);
    uint8x16x2_t vzipq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8x2_t vzipq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4x2_t vzipq_u32 (uint32x4_t __a, uint32x4_t __b);
    poly8x16x2_t vzipq_p8 (poly8x16_t __a, poly8x16_t __b);
    poly16x8x2_t vzipq_p16 (poly16x8_t __a, poly16x8_t __b);
    /*--3、De-Interleave elements(Unzip elements): 
    vuzp -> (Vector Unzip) de-interleaves the elements of two vectors.
    De-interleaving is the inverse process of interleaving.--*/
    int8x8x2_t vuzp_s8 (int8x8_t __a, int8x8_t __b);
    int16x4x2_t vuzp_s16 (int16x4_t __a, int16x4_t __b);
    int32x2x2_t vuzp_s32 (int32x2_t __a, int32x2_t __b);
    float32x2x2_t vuzp_f32 (float32x2_t __a, float32x2_t __b);
    uint8x8x2_t vuzp_u8 (uint8x8_t __a, uint8x8_t __b);
    uint16x4x2_t vuzp_u16 (uint16x4_t __a, uint16x4_t __b);
    uint32x2x2_t vuzp_u32 (uint32x2_t __a, uint32x2_t __b);
    poly8x8x2_t vuzp_p8 (poly8x8_t __a, poly8x8_t __b);
    poly16x4x2_t vuzp_p16 (poly16x4_t __a, poly16x4_t __b);
    int8x16x2_t vuzpq_s8 (int8x16_t __a, int8x16_t __b);
    int16x8x2_t vuzpq_s16 (int16x8_t __a, int16x8_t __b);
    int32x4x2_t vuzpq_s32 (int32x4_t __a, int32x4_t __b);
    float32x4x2_t vuzpq_f32 (float32x4_t __a, float32x4_t __b);
    uint8x16x2_t vuzpq_u8 (uint8x16_t __a, uint8x16_t __b);
    uint16x8x2_t vuzpq_u16 (uint16x8_t __a, uint16x8_t __b);
    uint32x4x2_t vuzpq_u32 (uint32x4_t __a, uint32x4_t __b);
    poly8x16x2_t vuzpq_p8 (poly8x16_t __a, poly8x16_t __b);
    poly16x8x2_t vuzpq_p16 (poly16x8_t __a, poly16x8_t __b);
    /*********************************************************Load**************************/
    /*--1、Load a single vector from memory: vld1 -> loads a vector from memory.--*/
    int8x8_t vld1_s8 (const int8_t * __a);
    int16x4_t vld1_s16 (const int16_t * __a);
    int32x2_t vld1_s32 (const int32_t * __a);
    int64x1_t vld1_s64 (const int64_t * __a);
    float32x2_t vld1_f32 (const float32_t * __a);
    uint8x8_t vld1_u8 (const uint8_t * __a);//_mm_loadl_epi64
    uint16x4_t vld1_u16 (const uint16_t * __a);//_mm_loadl_epi64
    uint32x2_t vld1_u32 (const uint32_t * __a);//_mm_loadl_epi64
    uint64x1_t vld1_u64 (const uint64_t * __a);//_mm_loadl_epi64
    poly8x8_t vld1_p8 (const poly8_t * __a);
    poly16x4_t vld1_p16 (const poly16_t * __a);
    int8x16_t vld1q_s8 (const int8_t * __a);
    int16x8_t vld1q_s16 (const int16_t * __a);
    int32x4_t vld1q_s32 (const int32_t * __a);
    int64x2_t vld1q_s64 (const int64_t * __a);
    float32x4_t vld1q_f32 (const float32_t * __a);
    uint8x16_t vld1q_u8 (const uint8_t * __a);
    uint16x8_t vld1q_u16 (const uint16_t * __a);
    uint32x4_t vld1q_u32 (const uint32_t * __a);
    uint64x2_t vld1q_u64 (const uint64_t * __a);
    poly8x16_t vld1q_p8 (const poly8_t * __a);
    poly16x8_t vld1q_p16 (const poly16_t * __a);
    /*--2、Load a single lane from memory: vld1 -> loads one element of the input vector 
    from memory and returns this in the result vector. Elements of the vector that are not
    loaded are returned in the result vector unaltered. 
    c is the index of the element to load.--*/
    int8x8_t vld1_lane_s8 (const int8_t * __a, int8x8_t __b, const int __c);//_mm_insert_epi8
    int16x4_t vld1_lane_s16 (const int16_t * __a, int16x4_t __b,
        const int __c);//_mm_insert_epi16
    int32x2_t vld1_lane_s32 (const int32_t * __a, int32x2_t __b, 
        const int __c);//_mm_insert_epi32
    float32x2_t vld1_lane_f32 (const float32_t * __a, float32x2_t __b, const int __c);
    uint8x8_t vld1_lane_u8 (const uint8_t * __a, uint8x8_t __b, 
        const int __c);//_mm_insert_epi8
    uint16x4_t vld1_lane_u16 (const uint16_t * __a, uint16x4_t __b, 
        const int __c);//_mm_insert_epi16
    uint32x2_t vld1_lane_u32 (const uint32_t * __a, uint32x2_t __b, 
        const int __c);//_mm_insert_epi32
    poly8x8_t vld1_lane_p8 (const poly8_t * __a, poly8x8_t __b, 
        const int __c);//_mm_insert_epi8
    poly16x4_t vld1_lane_p16 (const poly16_t * __a, poly16x4_t __b, 
        const int __c);//_mm_insert_epi16
    int64x1_t vld1_lane_s64 (const int64_t * __a, int64x1_t __b, const int __c);
    uint64x1_t vld1_lane_u64 (const uint64_t * __a, uint64x1_t __b, const int __c);
    int8x16_t vld1q_lane_s8 (const int8_t * __a, int8x16_t __b, 
        const int __c);//_mm_insert_epi8
    int16x8_t vld1q_lane_s16 (const int16_t * __a, int16x8_t __b, 
        const int __c);//_mm_insert_epi16
    int32x4_t vld1q_lane_s32 (const int32_t * __a, int32x4_t __b, 
        const int __c);//_mm_insert_epi32
    float32x4_t vld1q_lane_f32 (const float32_t * __a, float32x4_t __b, const int __c);
    uint8x16_t vld1q_lane_u8 (const uint8_t * __a, uint8x16_t __b, 
        const int __c);//_mm_insert_epi8
    uint16x8_t vld1q_lane_u16 (const uint16_t * __a, uint16x8_t __b, 
        const int __c);//_mm_insert_epi16
    uint32x4_t vld1q_lane_u32 (const uint32_t * __a, uint32x4_t __b, 
        const int __c);//_mm_insert_epi32
    poly8x16_t vld1q_lane_p8 (const poly8_t * __a, poly8x16_t __b, 
        const int __c);//_mm_insert_epi8
    poly16x8_t vld1q_lane_p16 (const poly16_t * __a, poly16x8_t __b, 
        const int __c);//_mm_insert_epi16
    int64x2_t vld1q_lane_s64 (const int64_t * __a, int64x2_t __b, 
        const int __c);//_mm_insert_epi64
    uint64x2_t vld1q_lane_u64 (const uint64_t * __a, uint64x2_t __b, 
        const int __c);//_mm_insert_epi64
    /*--3、Load all lanes of vector with same value from memory: vld1 -> 
    loads one element in a vector from memory. 
    The loaded element is copied to all other lanes of the vector.--*/
    int8x8_t vld1_dup_s8 (const int8_t * __a);//_mm_set1_epi8
    int16x4_t vld1_dup_s16 (const int16_t * __a);//_mm_set1_epi16
    int32x2_t vld1_dup_s32 (const int32_t * __a);//_mm_set1_epi32
    float32x2_t vld1_dup_f32 (const float32_t * __a);//_mm_set1_ps
    uint8x8_t vld1_dup_u8 (const uint8_t * __a);//_mm_set1_epi8
    uint16x4_t vld1_dup_u16 (const uint16_t * __a);//_mm_set1_epi16
    uint32x2_t vld1_dup_u32 (const uint32_t * __a);//_mm_set1_epi32
    poly8x8_t vld1_dup_p8 (const poly8_t * __a);//_mm_set1_epi8
    poly16x4_t vld1_dup_p16 (const poly16_t * __a);//_mm_set1_epi16
    int64x1_t vld1_dup_s64 (const int64_t * __a);
    uint64x1_t vld1_dup_u64 (const uint64_t * __a);
    int8x16_t vld1q_dup_s8 (const int8_t * __a);//_mm_set1_epi8
    int16x8_t vld1q_dup_s16 (const int16_t * __a);//_mm_set1_epi16
    int32x4_t vld1q_dup_s32 (const int32_t * __a);//_mm_set1_epi32
    float32x4_t vld1q_dup_f32 (const float32_t * __a);//_mm_set1_ps
    uint8x16_t vld1q_dup_u8 (const uint8_t * __a);//_mm_set1_epi8
    uint16x8_t vld1q_dup_u16 (const uint16_t * __a);//_mm_set1_epi16
    uint32x4_t vld1q_dup_u32 (const uint32_t * __a);//_mm_set1_epi32
    poly8x16_t vld1q_dup_p8 (const poly8_t * __a);//_mm_set1_epi8
    poly16x8_t vld1q_dup_p16 (const poly16_t * __a);//_mm_set1_epi16
    int64x2_t vld1q_dup_s64 (const int64_t * __a);
    uint64x2_t vld1q_dup_u64 (const uint64_t * __a);
    /*--4、Load 2-element structure from memory: vld2 -> loads 2 vectors from memory. 
    It performs a 2-way de-interleave from memory to the vectors.--*/
    int8x8x2_t vld2_s8 (const int8_t * __a);
    int16x4x2_t vld2_s16 (const int16_t * __a);
    int32x2x2_t vld2_s32 (const int32_t * __a);
    float32x2x2_t vld2_f32 (const float32_t * __a);
    uint8x8x2_t vld2_u8 (const uint8_t * __a);
    uint16x4x2_t vld2_u16 (const uint16_t * __a);
    uint32x2x2_t vld2_u32 (const uint32_t * __a);
    poly8x8x2_t vld2_p8 (const poly8_t * __a);
    poly16x4x2_t vld2_p16 (const poly16_t * __a);
    int64x1x2_t vld2_s64 (const int64_t * __a);
    uint64x1x2_t vld2_u64 (const uint64_t * __a);
    int8x16x2_t vld2q_s8 (const int8_t * __a);
    int16x8x2_t vld2q_s16 (const int16_t * __a);
    int32x4x2_t vld2q_s32 (const int32_t * __a);
    float32x4x2_t vld2q_f32 (const float32_t * __a);
    uint8x16x2_t vld2q_u8 (const uint8_t * __a);
    uint16x8x2_t vld2q_u16 (const uint16_t * __a);
    uint32x4x2_t vld2q_u32 (const uint32_t * __a);
    poly8x16x2_t vld2q_p8 (const poly8_t * __a);
    poly16x8x2_t vld2q_p16 (const poly16_t * __a);
    /*--5、Load a single lane of 2-element structure from memory: vld2 -> 
    loads two elements in a double-vector structure from memory and returns this in 
    the result. The loaded values are from consecutive memory addresses. 
    Elements in the structure that are not loaded are returned in the result unaltered. 
    c is the index of the elements to load.--*/
    int8x8x2_t vld2_lane_s8 (const int8_t * __a, int8x8x2_t __b, const int __c);
    int16x4x2_t vld2_lane_s16 (const int16_t * __a, int16x4x2_t __b, const int __c);
    int32x2x2_t vld2_lane_s32 (const int32_t * __a, int32x2x2_t __b, const int __c);
    float32x2x2_t vld2_lane_f32 (const float32_t * __a, float32x2x2_t __b, const int __c);
    uint8x8x2_t vld2_lane_u8 (const uint8_t * __a, uint8x8x2_t __b, const int __c);
    uint16x4x2_t vld2_lane_u16 (const uint16_t * __a, uint16x4x2_t __b, const int __c);
    uint32x2x2_t vld2_lane_u32 (const uint32_t * __a, uint32x2x2_t __b, const int __c);
    poly8x8x2_t vld2_lane_p8 (const poly8_t * __a, poly8x8x2_t __b, const int __c);
    poly16x4x2_t vld2_lane_p16 (const poly16_t * __a, poly16x4x2_t __b, const int __c);
    int16x8x2_t vld2q_lane_s16 (const int16_t * __a, int16x8x2_t __b, const int __c);
    int32x4x2_t vld2q_lane_s32 (const int32_t * __a, int32x4x2_t __b, const int __c);
    float32x4x2_t vld2q_lane_f32 (const float32_t * __a, float32x4x2_t __b, const int __c);
    uint16x8x2_t vld2q_lane_u16 (const uint16_t * __a, uint16x8x2_t __b, const int __c);
    uint32x4x2_t vld2q_lane_u32 (const uint32_t * __a, uint32x4x2_t __b, const int __c);
    poly16x8x2_t vld2q_lane_p16 (const poly16_t * __a, poly16x8x2_t __b, const int __c);
    /*--6、Load all lanes of 2-element structure with same value from memory: vld2 -> 
    loads 2 elements from memory and returns a double-vector structure. 
    The first element is copied to all lanes of the first vector. 
    The second element is copied to all lanes of the second vector.--*/
    int8x8x2_t vld2_dup_s8 (const int8_t * __a);
    int16x4x2_t vld2_dup_s16 (const int16_t * __a);
    int32x2x2_t vld2_dup_s32 (const int32_t * __a);
    float32x2x2_t vld2_dup_f32 (const float32_t * __a);
    uint8x8x2_t vld2_dup_u8 (const uint8_t * __a);
    uint16x4x2_t vld2_dup_u16 (const uint16_t * __a);
    uint32x2x2_t vld2_dup_u32 (const uint32_t * __a);
    poly8x8x2_t vld2_dup_p8 (const poly8_t * __a);
    poly16x4x2_t vld2_dup_p16 (const poly16_t * __a);
    int64x1x2_t vld2_dup_s64 (const int64_t * __a);
    uint64x1x2_t vld2_dup_u64 (const uint64_t * __a);
    /*--7、Load 3-element structure from memory: vld3 -> 
    loads 3 vectors from memory. 
    It performs a 3-way de-interleave from memory to the vectors.--*/
    int8x8x3_t vld3_s8 (const int8_t * __a);
    int16x4x3_t vld3_s16 (const int16_t * __a);
    int32x2x3_t vld3_s32 (const int32_t * __a);
    float32x2x3_t vld3_f32 (const float32_t * __a);
    uint8x8x3_t vld3_u8 (const uint8_t * __a);
    uint16x4x3_t vld3_u16 (const uint16_t * __a);
    uint32x2x3_t vld3_u32 (const uint32_t * __a);
    poly8x8x3_t vld3_p8 (const poly8_t * __a);
    poly16x4x3_t vld3_p16 (const poly16_t * __a);
    int64x1x3_t vld3_s64 (const int64_t * __a);
    uint64x1x3_t vld3_u64 (const uint64_t * __a);
    int8x16x3_t vld3q_s8 (const int8_t * __a);
    int16x8x3_t vld3q_s16 (const int16_t * __a);
    int32x4x3_t vld3q_s32 (const int32_t * __a);
    float32x4x3_t vld3q_f32 (const float32_t * __a);
    uint8x16x3_t vld3q_u8 (const uint8_t * __a);
    uint16x8x3_t vld3q_u16 (const uint16_t * __a);
    uint32x4x3_t vld3q_u32 (const uint32_t * __a);
    poly8x16x3_t vld3q_p8 (const poly8_t * __a);
    poly16x8x3_t vld3q_p16 (const poly16_t * __a);
    /*--8、Load a single lane of 3-element structure from memory: vld3 -> 
    loads three elements in a triple-vector structure from memory and returns this in the
    result. The loaded values are from consecutive memory addresses. 
    Elements in the structure that are not loaded are returned in the result unaltered.
    c is the index of the element to load.--*/
    int8x8x3_t vld3_lane_s8 (const int8_t * __a, int8x8x3_t __b, const int __c);
    int16x4x3_t vld3_lane_s16 (const int16_t * __a, int16x4x3_t __b, const int __c);
    int32x2x3_t vld3_lane_s32 (const int32_t * __a, int32x2x3_t __b, const int __c);
    float32x2x3_t vld3_lane_f32 (const float32_t * __a, float32x2x3_t __b, const int __c);
    uint8x8x3_t vld3_lane_u8 (const uint8_t * __a, uint8x8x3_t __b, const int __c);
    uint16x4x3_t vld3_lane_u16 (const uint16_t * __a, uint16x4x3_t __b, const int __c);
    uint32x2x3_t vld3_lane_u32 (const uint32_t * __a, uint32x2x3_t __b, const int __c);
    poly8x8x3_t vld3_lane_p8 (const poly8_t * __a, poly8x8x3_t __b, const int __c);
    poly16x4x3_t vld3_lane_p16 (const poly16_t * __a, poly16x4x3_t __b, const int __c);
    int16x8x3_t vld3q_lane_s16 (const int16_t * __a, int16x8x3_t __b, const int __c);
    int32x4x3_t vld3q_lane_s32 (const int32_t * __a, int32x4x3_t __b, const int __c);
    float32x4x3_t vld3q_lane_f32 (const float32_t * __a, float32x4x3_t __b, const int __c);
    uint16x8x3_t vld3q_lane_u16 (const uint16_t * __a, uint16x8x3_t __b, const int __c);
    uint32x4x3_t vld3q_lane_u32 (const uint32_t * __a, uint32x4x3_t __b, const int __c);
    poly16x8x3_t vld3q_lane_p16 (const poly16_t * __a, poly16x8x3_t __b, const int __c);
    /*--9、Load all lanes of 3-element structure with same value from memory: vld3 ->
    loads 3 elements from memory and returns a triple-vector structure. The first element
    is copied to all lanes of the first vector. And similarly the second and third elements 
    are copied to the second and third vectors respectively.--*/
    int8x8x3_t vld3_dup_s8 (const int8_t * __a);
    int16x4x3_t vld3_dup_s16 (const int16_t * __a);
    int32x2x3_t vld3_dup_s32 (const int32_t * __a);
    float32x2x3_t vld3_dup_f32 (const float32_t * __a);
    uint8x8x3_t vld3_dup_u8 (const uint8_t * __a);
    uint16x4x3_t vld3_dup_u16 (const uint16_t * __a);
    uint32x2x3_t vld3_dup_u32 (const uint32_t * __a);
    poly8x8x3_t vld3_dup_p8 (const poly8_t * __a);
    poly16x4x3_t vld3_dup_p16 (const poly16_t * __a);
    int64x1x3_t vld3_dup_s64 (const int64_t * __a);
    uint64x1x3_t vld3_dup_u64 (const uint64_t * __a);
    /*--10、Load 4-element structure from memory: vld4 -> 
    loads 4 vectors from memory. 
    It performs a 4-way de-interleave from memory to the vectors.--*/
    int8x8x4_t vld4_s8 (const int8_t * __a);
    int16x4x4_t vld4_s16 (const int16_t * __a);
    int32x2x4_t vld4_s32 (const int32_t * __a);
    float32x2x4_t vld4_f32 (const float32_t * __a);
    uint8x8x4_t  vld4_u8 (const uint8_t * __a);
    uint16x4x4_t vld4_u16 (const uint16_t * __a);
    uint32x2x4_t vld4_u32 (const uint32_t * __a);
    poly8x8x4_t vld4_p8 (const poly8_t * __a);
    poly16x4x4_t vld4_p16 (const poly16_t * __a);
    int64x1x4_t vld4_s64 (const int64_t * __a);
    uint64x1x4_t vld4_u64 (const uint64_t * __a);
    int8x16x4_t vld4q_s8 (const int8_t * __a);
    int16x8x4_t vld4q_s16 (const int16_t * __a);
    int32x4x4_t vld4q_s32 (const int32_t * __a);
    float32x4x4_t vld4q_f32 (const float32_t * __a);
    uint8x16x4_t vld4q_u8 (const uint8_t * __a);
    uint16x8x4_t vld4q_u16 (const uint16_t * __a);
    uint32x4x4_t vld4q_u32 (const uint32_t * __a);
    poly8x16x4_t vld4q_p8 (const poly8_t * __a);
    poly16x8x4_t vld4q_p16 (const poly16_t * __a);
    /*--11、Load a single lane of 4-element structure from memory: vld4 -> 
    loads four elements in a quad-vector structure from memory and returns this in the result. 
    The loaded values are from consecutive memory addresses.
    Elements in the structure that are not loaded are returned in the result unaltered. 
    c is the index of the element to load.--*/
    int8x8x4_t vld4_lane_s8 (const int8_t * __a, int8x8x4_t __b, const int __c);
    int16x4x4_t vld4_lane_s16 (const int16_t * __a, int16x4x4_t __b, const int __c);
    int32x2x4_t vld4_lane_s32 (const int32_t * __a, int32x2x4_t __b, const int __c);
    float32x2x4_t vld4_lane_f32 (const float32_t * __a, float32x2x4_t __b, const int __c);
    uint8x8x4_t vld4_lane_u8 (const uint8_t * __a, uint8x8x4_t __b, const int __c);
    uint16x4x4_t vld4_lane_u16 (const uint16_t * __a, uint16x4x4_t __b, const int __c);
    uint32x2x4_t vld4_lane_u32 (const uint32_t * __a, uint32x2x4_t __b, const int __c);
    poly8x8x4_t vld4_lane_p8 (const poly8_t * __a, poly8x8x4_t __b, const int __c);
    poly16x4x4_t vld4_lane_p16 (const poly16_t * __a, poly16x4x4_t __b, const int __c);
    int16x8x4_t vld4q_lane_s16 (const int16_t * __a, int16x8x4_t __b, const int __c);
    int32x4x4_t vld4q_lane_s32 (const int32_t * __a, int32x4x4_t __b, const int __c);
    float32x4x4_t vld4q_lane_f32 (const float32_t * __a, float32x4x4_t __b, const int __c);
    uint16x8x4_t vld4q_lane_u16 (const uint16_t * __a, uint16x8x4_t __b, const int __c);
    uint32x4x4_t vld4q_lane_u32 (const uint32_t * __a, uint32x4x4_t __b, const int __c);
    poly16x8x4_t vld4q_lane_p16 (const poly16_t * __a, poly16x8x4_t __b, const int __c);
    /*--12、Load all lanes of 4-element structure with same value from memory: vld4 ->
    loads 4 elements from memory and returns a quad-vector structure. The first element is 
    copied to all lanes of the first vector. And similarly the second, third, and fourth 
    elements are copied to the second, third, and fourth vectors respectively.--*/
    int8x8x4_t vld4_dup_s8 (const int8_t * __a);
    int16x4x4_t vld4_dup_s16 (const int16_t * __a);
    int32x2x4_t vld4_dup_s32 (const int32_t * __a);
    float32x2x4_t vld4_dup_f32 (const float32_t * __a);
    uint8x8x4_t vld4_dup_u8 (const uint8_t * __a);
    uint16x4x4_t vld4_dup_u16 (const uint16_t * __a);
    uint32x2x4_t vld4_dup_u32 (const uint32_t * __a);
    poly8x8x4_t vld4_dup_p8 (const poly8_t * __a);
    poly16x4x4_t vld4_dup_p16 (const poly16_t * __a);
    int64x1x4_t vld4_dup_s64 (const int64_t * __a);
    uint64x1x4_t vld4_dup_u64 (const uint64_t * __a);
    /*****************************************************Store*****************************/
    /*--1、Store a single vector into memory: vst1 -> stores a vector into memory.--*/
    void vst1_s8 (int8_t * __a, int8x8_t __b);
    void vst1_s16 (int16_t * __a, int16x4_t __b);
    void vst1_s32 (int32_t * __a, int32x2_t __b);
    void vst1_s64 (int64_t * __a, int64x1_t __b);
    void vst1_f32 (float32_t * __a, float32x2_t __b);
    void vst1_u8 (uint8_t * __a, uint8x8_t __b);
    void vst1_u16 (uint16_t * __a, uint16x4_t __b);
    void vst1_u32 (uint32_t * __a, uint32x2_t __b);
    void vst1_u64 (uint64_t * __a, uint64x1_t __b);
    void vst1_p8 (poly8_t * __a, poly8x8_t __b);
    void vst1_p16 (poly16_t * __a, poly16x4_t __b);
    void vst1q_s8 (int8_t * __a, int8x16_t __b);
    void vst1q_s16 (int16_t * __a, int16x8_t __b);
    void vst1q_s32 (int32_t * __a, int32x4_t __b);
    void vst1q_s64 (int64_t * __a, int64x2_t __b);
    void vst1q_f32 (float32_t * __a, float32x4_t __b);
    void vst1q_u8 (uint8_t * __a, uint8x16_t __b);
    void vst1q_u16 (uint16_t * __a, uint16x8_t __b);
    void vst1q_u32 (uint32_t * __a, uint32x4_t __b);
    void vst1q_u64 (uint64_t * __a, uint64x2_t __b);
    void vst1q_p8 (poly8_t * __a, poly8x16_t __b);
    void vst1q_p16 (poly16_t * __a, poly16x8_t __b);
    /*--2、Store a single lane into memory: vst1 -> 
    stores one element of the vector into memory. 
    c is the index in the vector to be stored.--*/
    void vst1_lane_s8 (int8_t * __a, int8x8_t __b, const int __c);
    void vst1_lane_s16 (int16_t * __a, int16x4_t __b, const int __c);
    void vst1_lane_s32 (int32_t * __a, int32x2_t __b, const int __c);
    void vst1_lane_f32 (float32_t * __a, float32x2_t __b, const int __c);
    void vst1_lane_u8 (uint8_t * __a, uint8x8_t __b, const int __c);
    void vst1_lane_u16 (uint16_t * __a, uint16x4_t __b, const int __c);
    void vst1_lane_u32 (uint32_t * __a, uint32x2_t __b, const int __c);
    void vst1_lane_p8 (poly8_t * __a, poly8x8_t __b, const int __c);
    void vst1_lane_p16 (poly16_t * __a, poly16x4_t __b, const int __c);
    void vst1_lane_s64 (int64_t * __a, int64x1_t __b, const int __c);
    void vst1_lane_u64 (uint64_t * __a, uint64x1_t __b, const int __c);
    void vst1q_lane_s8 (int8_t * __a, int8x16_t __b, const int __c);
    void vst1q_lane_s16 (int16_t * __a, int16x8_t __b, const int __c);
    void vst1q_lane_s32 (int32_t * __a, int32x4_t __b, const int __c);
    void vst1q_lane_f32 (float32_t * __a, float32x4_t __b, const int __c);
    void vst1q_lane_u8 (uint8_t * __a, uint8x16_t __b, const int __c);
    void vst1q_lane_u16 (uint16_t * __a, uint16x8_t __b, const int __c);
    void vst1q_lane_u32 (uint32_t * __a, uint32x4_t __b, const int __c);
    void vst1q_lane_p8 (poly8_t * __a, poly8x16_t __b, const int __c);
    void vst1q_lane_p16 (poly16_t * __a, poly16x8_t __b, const int __c);
    void vst1q_lane_s64 (int64_t * __a, int64x2_t __b, const int __c);
    void vst1q_lane_u64 (uint64_t * __a, uint64x2_t __b, const int __c);
    /*--3、Store 2 vectors into memory: vst2 -> 
    stores 2 vectors into memory. It interleaves the 2 vectors into memory.--*/
    void vst2_s8 (int8_t * __a, int8x8x2_t __b);
    void vst2_s16 (int16_t * __a, int16x4x2_t __b);
    void vst2_s32 (int32_t * __a, int32x2x2_t __b);
    void vst2_f32 (float32_t * __a, float32x2x2_t __b);
    void vst2_u8 (uint8_t * __a, uint8x8x2_t __b);
    void vst2_u16 (uint16_t * __a, uint16x4x2_t __b);
    void vst2_u32 (uint32_t * __a, uint32x2x2_t __b);
    void vst2_p8 (poly8_t * __a, poly8x8x2_t __b);
    void vst2_p16 (poly16_t * __a, poly16x4x2_t __b);
    void vst2_s64 (int64_t * __a, int64x1x2_t __b);
    void vst2_u64 (uint64_t * __a, uint64x1x2_t __b);
    void vst2q_s8 (int8_t * __a, int8x16x2_t __b);
    void vst2q_s16 (int16_t * __a, int16x8x2_t __b);
    void vst2q_s32 (int32_t * __a, int32x4x2_t __b);
    void vst2q_f32 (float32_t * __a, float32x4x2_t __b);
    void vst2q_u8 (uint8_t * __a, uint8x16x2_t __b);
    void vst2q_u16 (uint16_t * __a, uint16x8x2_t __b);
    void vst2q_u32 (uint32_t * __a, uint32x4x2_t __b);
    void vst2q_p8 (poly8_t * __a, poly8x16x2_t __b);
    void vst2q_p16 (poly16_t * __a, poly16x8x2_t __b);
    /*--4、Store a lane of two elements into memory: vst2 ->
    stores a lane of two elements from a double-vector structure into memory.
    The elements to be stored are from the same lane in the vectors and their index is c.--*/
    void vst2_lane_s8 (int8_t * __a, int8x8x2_t __b, const int __c);
    void vst2_lane_s16 (int16_t * __a, int16x4x2_t __b, const int __c);
    void vst2_lane_s32 (int32_t * __a, int32x2x2_t __b, const int __c);
    void vst2_lane_f32 (float32_t * __a, float32x2x2_t __b, const int __c);
    void vst2_lane_u8 (uint8_t * __a, uint8x8x2_t __b, const int __c);
    void vst2_lane_u16 (uint16_t * __a, uint16x4x2_t __b, const int __c);
    void vst2_lane_u32 (uint32_t * __a, uint32x2x2_t __b, const int __c);
    void vst2_lane_p8 (poly8_t * __a, poly8x8x2_t __b, const int __c);
    void vst2_lane_p16 (poly16_t * __a, poly16x4x2_t __b, const int __c);
    void vst2q_lane_s16 (int16_t * __a, int16x8x2_t __b, const int __c);
    void vst2q_lane_s32 (int32_t * __a, int32x4x2_t __b, const int __c);
    void vst2q_lane_f32 (float32_t * __a, float32x4x2_t __b, const int __c);
    void vst2q_lane_u16 (uint16_t * __a, uint16x8x2_t __b, const int __c);
    void vst2q_lane_u32 (uint32_t * __a, uint32x4x2_t __b, const int __c);
    void vst2q_lane_p16 (poly16_t * __a, poly16x8x2_t __b, const int __c);
    /*--5、Store 3 vectors into memory: vst3 -> 
    stores 3 vectors into memory. It interleaves the 3 vectors into memory.--*/
    void vst3_s8 (int8_t * __a, int8x8x3_t __b);
    void vst3_s16 (int16_t * __a, int16x4x3_t __b);
    void vst3_s32 (int32_t * __a, int32x2x3_t __b);
    void vst3_f32 (float32_t * __a, float32x2x3_t __b);
    void  vst3_u8 (uint8_t * __a, uint8x8x3_t __b);
    void vst3_u16 (uint16_t * __a, uint16x4x3_t __b);
    void vst3_u32 (uint32_t * __a, uint32x2x3_t __b);
    void vst3_p8 (poly8_t * __a, poly8x8x3_t __b);
    void vst3_p16 (poly16_t * __a, poly16x4x3_t __b);
    void vst3_s64 (int64_t * __a, int64x1x3_t __b);
    void vst3_u64 (uint64_t * __a, uint64x1x3_t __b);
    void vst3q_s8 (int8_t * __a, int8x16x3_t __b);
    void vst3q_s16 (int16_t * __a, int16x8x3_t __b);
    void vst3q_s32 (int32_t * __a, int32x4x3_t __b);
    void vst3q_f32 (float32_t * __a, float32x4x3_t __b);
    void vst3q_u8 (uint8_t * __a, uint8x16x3_t __b);
    void vst3q_u16 (uint16_t * __a, uint16x8x3_t __b);
    void vst3q_u32 (uint32_t * __a, uint32x4x3_t __b);
    void vst3q_p8 (poly8_t * __a, poly8x16x3_t __b);
    void vst3q_p16 (poly16_t * __a, poly16x8x3_t __b);
    /*--6、Store a lane of three elements into memory: vst3 ->
    stores a lane of three elements from a triple-vector structure into memory. 
    The elements to be stored are from the same lane in the vectors and their index is c.--*/
    void vst3_lane_s8 (int8_t * __a, int8x8x3_t __b, const int __c);
    void vst3_lane_s16 (int16_t * __a, int16x4x3_t __b, const int __c);
    void vst3_lane_s32 (int32_t * __a, int32x2x3_t __b, const int __c);
    void vst3_lane_f32 (float32_t * __a, float32x2x3_t __b, const int __c);
    void vst3_lane_u8 (uint8_t * __a, uint8x8x3_t __b, const int __c);
    void vst3_lane_u16 (uint16_t * __a, uint16x4x3_t __b, const int __c);
    void vst3_lane_u32 (uint32_t * __a, uint32x2x3_t __b, const int __c);
    void vst3_lane_p8 (poly8_t * __a, poly8x8x3_t __b, const int __c);
    void vst3_lane_p16 (poly16_t * __a, poly16x4x3_t __b, const int __c);
    void vst3q_lane_s16 (int16_t * __a, int16x8x3_t __b, const int __c);
    void vst3q_lane_s32 (int32_t * __a, int32x4x3_t __b, const int __c);
    void vst3q_lane_f32 (float32_t * __a, float32x4x3_t __b, const int __c);
    void vst3q_lane_u16 (uint16_t * __a, uint16x8x3_t __b, const int __c);
    void vst3q_lane_u32 (uint32_t * __a, uint32x4x3_t __b, const int __c);
    void vst3q_lane_p16 (poly16_t * __a, poly16x8x3_t __b, const int __c);
    /*--7、Store 4 vectors into memory: vst4 -> 
    stores 4 vectors into memory. It interleaves the 4 vectors into memory.--*/
    void vst4_s8 (int8_t * __a, int8x8x4_t __b);
    void vst4_s16 (int16_t * __a, int16x4x4_t __b);
    void vst4_s32 (int32_t * __a, int32x2x4_t __b);
    void vst4_f32 (float32_t * __a, float32x2x4_t __b);
    void vst4_u8 (uint8_t * __a, uint8x8x4_t __b);
    void vst4_u16 (uint16_t * __a, uint16x4x4_t __b);
    void vst4_u32 (uint32_t * __a, uint32x2x4_t __b);
    void vst4_p8 (poly8_t * __a, poly8x8x4_t __b);
    void vst4_p16 (poly16_t * __a, poly16x4x4_t __b);
    void vst4_s64 (int64_t * __a, int64x1x4_t __b);
    void vst4_u64 (uint64_t * __a, uint64x1x4_t __b);
    void vst4q_s8 (int8_t * __a, int8x16x4_t __b);
    void vst4q_s16 (int16_t * __a, int16x8x4_t __b);
    void vst4q_s32 (int32_t * __a, int32x4x4_t __b);
    void  vst4q_f32 (float32_t * __a, float32x4x4_t __b);
    void vst4q_u8 (uint8_t * __a, uint8x16x4_t __b);
    void vst4q_u16 (uint16_t * __a, uint16x8x4_t __b);
    void vst4q_u32 (uint32_t * __a, uint32x4x4_t __b);
    void vst4q_p8 (poly8_t * __a, poly8x16x4_t __b);
    void vst4q_p16 (poly16_t * __a, poly16x8x4_t __b);
    /*--8、Store a lane of four elements into memory: vst4 ->
    stores a lane of four elements from a quad-vector structure into memory.
    The elements to be stored are from the same lane in the vectors and their index is c.--*/
    void vst4_lane_s8 (int8_t * __a, int8x8x4_t __b, const int __c);
    void vst4_lane_s16 (int16_t * __a, int16x4x4_t __b, const int __c);
    void vst4_lane_s32 (int32_t * __a, int32x2x4_t __b, const int __c);
    void vst4_lane_f32 (float32_t * __a, float32x2x4_t __b, const int __c);
    void vst4_lane_u8 (uint8_t * __a, uint8x8x4_t __b, const int __c);
    void vst4_lane_u16 (uint16_t * __a, uint16x4x4_t __b, const int __c);
    void vst4_lane_u32 (uint32_t * __a, uint32x2x4_t __b, const int __c);
    void vst4_lane_p8 (poly8_t * __a, poly8x8x4_t __b, const int __c);
    void vst4_lane_p16 (poly16_t * __a, poly16x4x4_t __b, const int __c);
    void vst4q_lane_s16 (int16_t * __a, int16x8x4_t __b, const int __c);
    void vst4q_lane_s32 (int32_t * __a, int32x4x4_t __b, const int __c);
    void vst4q_lane_f32 (float32_t * __a, float32x4x4_t __b, const int __c);
    void vst4q_lane_u16 (uint16_t * __a, uint16x8x4_t __b, const int __c);
    void vst4q_lane_u32 (uint32_t * __a, uint32x4x4_t __b, const int __c);
    void vst4q_lane_p16 (poly16_t * __a, poly16x8x4_t __b, const int __c);
    /*********************************Reinterpret casts(type conversion)********************/
    /*--convert between types: vreinterpret -> treats a vector as having a different 
    datatype, without changing its value.--*/
    poly8x8_t vreinterpret_p8_s8 (int8x8_t __a);
    poly8x8_t vreinterpret_p8_s16 (int16x4_t __a);
    poly8x8_t vreinterpret_p8_s32 (int32x2_t __a);
    poly8x8_t vreinterpret_p8_s64 (int64x1_t __a);
    poly8x8_t vreinterpret_p8_f32 (float32x2_t __a);
    poly8x8_t vreinterpret_p8_u8 (uint8x8_t __a);
    poly8x8_t vreinterpret_p8_u16 (uint16x4_t __a);
    poly8x8_t vreinterpret_p8_u32 (uint32x2_t __a);
    poly8x8_t vreinterpret_p8_u64 (uint64x1_t __a);
    poly8x8_t vreinterpret_p8_p16 (poly16x4_t __a);
    poly8x16_t vreinterpretq_p8_s8 (int8x16_t __a);
    poly8x16_t vreinterpretq_p8_s16 (int16x8_t __a);
    poly8x16_t vreinterpretq_p8_s32 (int32x4_t __a);
    poly8x16_t vreinterpretq_p8_s64 (int64x2_t __a);
    poly8x16_t vreinterpretq_p8_f32 (float32x4_t __a);
    poly8x16_t vreinterpretq_p8_u8 (uint8x16_t __a);
    poly8x16_t vreinterpretq_p8_u16 (uint16x8_t __a);
    poly8x16_t vreinterpretq_p8_u32 (uint32x4_t __a);
    poly8x16_t vreinterpretq_p8_u64 (uint64x2_t __a);
    poly8x16_t vreinterpretq_p8_p16 (poly16x8_t __a);
    poly16x4_t vreinterpret_p16_s8 (int8x8_t __a);
    poly16x4_t vreinterpret_p16_s16 (int16x4_t __a);
    poly16x4_t vreinterpret_p16_s32 (int32x2_t __a);
    poly16x4_t vreinterpret_p16_s64 (int64x1_t __a);
    poly16x4_t vreinterpret_p16_f32 (float32x2_t __a);
    poly16x4_t vreinterpret_p16_u8 (uint8x8_t __a);
    poly16x4_t vreinterpret_p16_u16 (uint16x4_t __a);
    poly16x4_t vreinterpret_p16_u32 (uint32x2_t __a);
    poly16x4_t vreinterpret_p16_u64 (uint64x1_t __a);
    poly16x4_t vreinterpret_p16_p8 (poly8x8_t __a);
    poly16x8_t vreinterpretq_p16_s8 (int8x16_t __a);
    poly16x8_t vreinterpretq_p16_s16 (int16x8_t __a);
    poly16x8_t vreinterpretq_p16_s32 (int32x4_t __a);
    poly16x8_t vreinterpretq_p16_s64 (int64x2_t __a);
    poly16x8_t vreinterpretq_p16_f32 (float32x4_t __a);
    poly16x8_t vreinterpretq_p16_u8 (uint8x16_t __a);
    poly16x8_t vreinterpretq_p16_u16 (uint16x8_t __a);
    poly16x8_t vreinterpretq_p16_u32 (uint32x4_t __a);
    poly16x8_t vreinterpretq_p16_u64 (uint64x2_t __a);
    poly16x8_t vreinterpretq_p16_p8 (poly8x16_t __a);
    float32x2_t vreinterpret_f32_s8 (int8x8_t __a);
    float32x2_t vreinterpret_f32_s16 (int16x4_t __a);
    float32x2_t vreinterpret_f32_s32 (int32x2_t __a);
    float32x2_t vreinterpret_f32_s64 (int64x1_t __a);
    float32x2_t vreinterpret_f32_u8 (uint8x8_t __a);
    float32x2_t vreinterpret_f32_u16 (uint16x4_t __a);
    float32x2_t vreinterpret_f32_u32 (uint32x2_t __a);
    float32x2_t vreinterpret_f32_u64 (uint64x1_t __a);
    float32x2_t vreinterpret_f32_p8 (poly8x8_t __a);
    float32x2_t vreinterpret_f32_p16 (poly16x4_t __a);
    float32x4_t vreinterpretq_f32_s8 (int8x16_t __a);
    float32x4_t vreinterpretq_f32_s16 (int16x8_t __a);
    float32x4_t vreinterpretq_f32_s32 (int32x4_t __a);
    float32x4_t vreinterpretq_f32_s64 (int64x2_t __a);
    float32x4_t vreinterpretq_f32_u8 (uint8x16_t __a);
    float32x4_t vreinterpretq_f32_u16 (uint16x8_t __a);
    float32x4_t vreinterpretq_f32_u32 (uint32x4_t __a);
    float32x4_t vreinterpretq_f32_u64 (uint64x2_t __a);
    float32x4_t vreinterpretq_f32_p8 (poly8x16_t __a);
    float32x4_t vreinterpretq_f32_p16 (poly16x8_t __a);
    int64x1_t vreinterpret_s64_s8 (int8x8_t __a);
    int64x1_t vreinterpret_s64_s16 (int16x4_t __a);
    int64x1_t vreinterpret_s64_s32 (int32x2_t __a);
    int64x1_t vreinterpret_s64_f32 (float32x2_t __a);
    int64x1_t vreinterpret_s64_u8 (uint8x8_t __a);
    int64x1_t vreinterpret_s64_u16 (uint16x4_t __a);
    int64x1_t vreinterpret_s64_u32 (uint32x2_t __a);
    int64x1_t vreinterpret_s64_u64 (uint64x1_t __a);
    int64x1_t vreinterpret_s64_p8 (poly8x8_t __a);
    int64x1_t vreinterpret_s64_p16 (poly16x4_t __a);
    int64x2_t vreinterpretq_s64_s8 (int8x16_t __a);
    int64x2_t vreinterpretq_s64_s16 (int16x8_t __a);
    int64x2_t vreinterpretq_s64_s32 (int32x4_t __a);
    int64x2_t vreinterpretq_s64_f32 (float32x4_t __a);
    int64x2_t vreinterpretq_s64_u8 (uint8x16_t __a);
    int64x2_t vreinterpretq_s64_u16 (uint16x8_t __a);
    int64x2_t vreinterpretq_s64_u32 (uint32x4_t __a);
    int64x2_t vreinterpretq_s64_u64 (uint64x2_t __a);
    int64x2_t vreinterpretq_s64_p8 (poly8x16_t __a);
    int64x2_t vreinterpretq_s64_p16 (poly16x8_t __a);
    uint64x1_t vreinterpret_u64_s8 (int8x8_t __a);
    uint64x1_t vreinterpret_u64_s16 (int16x4_t __a);
    uint64x1_t vreinterpret_u64_s32 (int32x2_t __a);
    uint64x1_t vreinterpret_u64_s64 (int64x1_t __a);
    uint64x1_t vreinterpret_u64_f32 (float32x2_t __a);
    uint64x1_t vreinterpret_u64_u8 (uint8x8_t __a);
    uint64x1_t vreinterpret_u64_u16 (uint16x4_t __a);
    uint64x1_t vreinterpret_u64_u32 (uint32x2_t __a);
    uint64x1_t vreinterpret_u64_p8 (poly8x8_t __a);
    uint64x1_t vreinterpret_u64_p16 (poly16x4_t __a);
    uint64x2_t vreinterpretq_u64_s8 (int8x16_t __a);
    uint64x2_t vreinterpretq_u64_s16 (int16x8_t __a);
    uint64x2_t vreinterpretq_u64_s32 (int32x4_t __a);
    uint64x2_t vreinterpretq_u64_s64 (int64x2_t __a);
    uint64x2_t vreinterpretq_u64_f32 (float32x4_t __a);
    uint64x2_t vreinterpretq_u64_u8 (uint8x16_t __a);
    uint64x2_t vreinterpretq_u64_u16 (uint16x8_t __a);
    uint64x2_t vreinterpretq_u64_u32 (uint32x4_t __a);
    uint64x2_t vreinterpretq_u64_p8 (poly8x16_t __a);
    uint64x2_t vreinterpretq_u64_p16 (poly16x8_t __a);
    int8x8_t vreinterpret_s8_s16 (int16x4_t __a);
    int8x8_t vreinterpret_s8_s32 (int32x2_t __a);
    int8x8_t vreinterpret_s8_s64 (int64x1_t __a);
    int8x8_t vreinterpret_s8_f32 (float32x2_t __a);
    int8x8_t vreinterpret_s8_u8 (uint8x8_t __a);
    int8x8_t vreinterpret_s8_u16 (uint16x4_t __a);
    int8x8_t vreinterpret_s8_u32 (uint32x2_t __a);
    int8x8_t vreinterpret_s8_u64 (uint64x1_t __a);
    int8x8_t vreinterpret_s8_p8 (poly8x8_t __a);
    int8x8_t vreinterpret_s8_p16 (poly16x4_t __a);
    int8x16_t vreinterpretq_s8_s16 (int16x8_t __a);
    int8x16_t vreinterpretq_s8_s32 (int32x4_t __a);
    int8x16_t vreinterpretq_s8_s64 (int64x2_t __a);
    int8x16_t vreinterpretq_s8_f32 (float32x4_t __a);
    int8x16_t vreinterpretq_s8_u8 (uint8x16_t __a);
    int8x16_t vreinterpretq_s8_u16 (uint16x8_t __a);
    int8x16_t vreinterpretq_s8_u32 (uint32x4_t __a);
    int8x16_t vreinterpretq_s8_u64 (uint64x2_t __a);
    int8x16_t vreinterpretq_s8_p8 (poly8x16_t __a);
    int8x16_t vreinterpretq_s8_p16 (poly16x8_t __a);
    int16x4_t vreinterpret_s16_s8 (int8x8_t __a);
    int16x4_t vreinterpret_s16_s32 (int32x2_t __a);
    int16x4_t vreinterpret_s16_s64 (int64x1_t __a);
    int16x4_t vreinterpret_s16_f32 (float32x2_t __a);
    int16x4_t vreinterpret_s16_u8 (uint8x8_t __a);
    int16x4_t vreinterpret_s16_u16 (uint16x4_t __a);
    int16x4_t vreinterpret_s16_u32 (uint32x2_t __a);
    int16x4_t vreinterpret_s16_u64 (uint64x1_t __a);
    int16x4_t vreinterpret_s16_p8 (poly8x8_t __a);
    int16x4_t vreinterpret_s16_p16 (poly16x4_t __a);
    int16x8_t vreinterpretq_s16_s8 (int8x16_t __a);
    int16x8_t vreinterpretq_s16_s32 (int32x4_t __a);
    int16x8_t vreinterpretq_s16_s64 (int64x2_t __a);
    int16x8_t vreinterpretq_s16_f32 (float32x4_t __a);
    int16x8_t vreinterpretq_s16_u8 (uint8x16_t __a);
    int16x8_t vreinterpretq_s16_u16 (uint16x8_t __a);
    int16x8_t vreinterpretq_s16_u32 (uint32x4_t __a);
    int16x8_t vreinterpretq_s16_u64 (uint64x2_t __a);
    int16x8_t vreinterpretq_s16_p8 (poly8x16_t __a);
    int16x8_t vreinterpretq_s16_p16 (poly16x8_t __a);
    int32x2_t vreinterpret_s32_s8 (int8x8_t __a);
    int32x2_t vreinterpret_s32_s16 (int16x4_t __a);
    int32x2_t vreinterpret_s32_s64 (int64x1_t __a);
    int32x2_t vreinterpret_s32_f32 (float32x2_t __a);
    int32x2_t vreinterpret_s32_u8 (uint8x8_t __a);
    int32x2_t vreinterpret_s32_u16 (uint16x4_t __a);
    int32x2_t vreinterpret_s32_u32 (uint32x2_t __a);
    int32x2_t vreinterpret_s32_u64 (uint64x1_t __a);
    int32x2_t vreinterpret_s32_p8 (poly8x8_t __a);
    int32x2_t vreinterpret_s32_p16 (poly16x4_t __a);
    int32x4_t vreinterpretq_s32_s8 (int8x16_t __a);
    int32x4_t vreinterpretq_s32_s16 (int16x8_t __a);
    int32x4_t vreinterpretq_s32_s64 (int64x2_t __a);
    int32x4_t vreinterpretq_s32_f32 (float32x4_t __a);
    int32x4_t vreinterpretq_s32_u8 (uint8x16_t __a);
    int32x4_t vreinterpretq_s32_u16 (uint16x8_t __a);
    int32x4_t vreinterpretq_s32_u32 (uint32x4_t __a);
    int32x4_t vreinterpretq_s32_u64 (uint64x2_t __a);
    int32x4_t vreinterpretq_s32_p8 (poly8x16_t __a);
    int32x4_t vreinterpretq_s32_p16 (poly16x8_t __a);
    uint8x8_t vreinterpret_u8_s8 (int8x8_t __a);
    uint8x8_t vreinterpret_u8_s16 (int16x4_t __a);
    uint8x8_t vreinterpret_u8_s32 (int32x2_t __a);
    uint8x8_t vreinterpret_u8_s64 (int64x1_t __a);
    uint8x8_t vreinterpret_u8_f32 (float32x2_t __a);
    uint8x8_t vreinterpret_u8_u16 (uint16x4_t __a);
    uint8x8_t vreinterpret_u8_u32 (uint32x2_t __a);
    uint8x8_t vreinterpret_u8_u64 (uint64x1_t __a);
    uint8x8_t vreinterpret_u8_p8 (poly8x8_t __a);
    uint8x8_t vreinterpret_u8_p16 (poly16x4_t __a);
    uint8x16_t vreinterpretq_u8_s8 (int8x16_t __a);
    uint8x16_t vreinterpretq_u8_s16 (int16x8_t __a);
    uint8x16_t vreinterpretq_u8_s32 (int32x4_t __a);
    uint8x16_t vreinterpretq_u8_s64 (int64x2_t __a);
    uint8x16_t vreinterpretq_u8_f32 (float32x4_t __a);
    uint8x16_t vreinterpretq_u8_u16 (uint16x8_t __a);
    uint8x16_t vreinterpretq_u8_u32 (uint32x4_t __a);
    uint8x16_t vreinterpretq_u8_u64 (uint64x2_t __a);
    uint8x16_t vreinterpretq_u8_p8 (poly8x16_t __a);
    uint8x16_t vreinterpretq_u8_p16 (poly16x8_t __a);
    uint16x4_t vreinterpret_u16_s8 (int8x8_t __a);
    uint16x4_t vreinterpret_u16_s16 (int16x4_t __a);
    uint16x4_t vreinterpret_u16_s32 (int32x2_t __a);
    uint16x4_t vreinterpret_u16_s64 (int64x1_t __a);
    uint16x4_t vreinterpret_u16_f32 (float32x2_t __a);
    uint16x4_t vreinterpret_u16_u8 (uint8x8_t __a);
    uint16x4_t vreinterpret_u16_u32 (uint32x2_t __a);
    uint16x4_t vreinterpret_u16_u64 (uint64x1_t __a);
    uint16x4_t vreinterpret_u16_p8 (poly8x8_t __a);
    uint16x4_t vreinterpret_u16_p16 (poly16x4_t __a);
    uint16x8_t vreinterpretq_u16_s8 (int8x16_t __a);
    uint16x8_t vreinterpretq_u16_s16 (int16x8_t __a);
    uint16x8_t vreinterpretq_u16_s32 (int32x4_t __a);
    uint16x8_t vreinterpretq_u16_s64 (int64x2_t __a);
    uint16x8_t vreinterpretq_u16_f32 (float32x4_t __a);
    uint16x8_t vreinterpretq_u16_u8 (uint8x16_t __a);
    uint16x8_t vreinterpretq_u16_u32 (uint32x4_t __a);
    uint16x8_t vreinterpretq_u16_u64 (uint64x2_t __a);
    uint16x8_t vreinterpretq_u16_p8 (poly8x16_t __a);
    uint16x8_t vreinterpretq_u16_p16 (poly16x8_t __a);
    uint32x2_t vreinterpret_u32_s8 (int8x8_t __a);
    uint32x2_t vreinterpret_u32_s16 (int16x4_t __a);
    uint32x2_t vreinterpret_u32_s32 (int32x2_t __a);
    uint32x2_t vreinterpret_u32_s64 (int64x1_t __a);
    uint32x2_t vreinterpret_u32_f32 (float32x2_t __a);
    uint32x2_t vreinterpret_u32_u8 (uint8x8_t __a);
    uint32x2_t vreinterpret_u32_u16 (uint16x4_t __a);
    uint32x2_t vreinterpret_u32_u64 (uint64x1_t __a);
    uint32x2_t vreinterpret_u32_p8 (poly8x8_t __a);
    uint32x2_t vreinterpret_u32_p16 (poly16x4_t __a);
    uint32x4_t vreinterpretq_u32_s8 (int8x16_t __a);
    uint32x4_t vreinterpretq_u32_s16 (int16x8_t __a);
    uint32x4_t vreinterpretq_u32_s32 (int32x4_t __a);
    uint32x4_t vreinterpretq_u32_s64 (int64x2_t __a);
    uint32x4_t vreinterpretq_u32_f32 (float32x4_t __a);
    uint32x4_t vreinterpretq_u32_u8 (uint8x16_t __a);
    uint32x4_t vreinterpretq_u32_u16 (uint16x8_t __a);
    uint32x4_t vreinterpretq_u32_u64 (uint64x2_t __a);
    uint32x4_t vreinterpretq_u32_p8 (poly8x16_t __a);
    uint32x4_t vreinterpretq_u32_p16 (poly16x8_t __a);

     

    展开全文
  • arm_neon指令集优化

    2020-11-25 09:56:58
  • arm neon指令集说明

    2017-08-30 11:51:11
    arm neon指令详解
  • neon指令集可优化代码的耗时,目的是在相同指令周期下,完成更多寄存器的数据运算,从而缩小代码耗时,但无法削减CPU占用率,本博文旨在粗浅介绍neon指令集优化的简单知识,帮组从未涉足此领域的童鞋们快速入门

    1、 ARM-NEON简介

    ARM-NEON全称单指令多数据协处理器(Single instruction, multiple data)。其核心是有两类存储数据的寄存器组成

    • D-Register: 32x 64-bit

    • Q-Register: 16x 128-bit
      利用这些存储数据的寄存器可实现简单的逻辑运算与算术运算,如加减乘除、移位、转置等。neon优化实现语言有如下两种,本博客仅介绍第一种方法,不涉及汇编语言。
      1、NEON intrinsics(C语言,类似函数调用)

      • 移植简单、易维护
      • 效率相对较低
      • 不必考虑超出寄存器使用数量

      2、 汇编语言

      • 移植难度大
      • 效率高
      • 寄存器必须人工合理分配

    2、数据类型

    • ARM-NEON数据类型分两种,向量和向量数组,命名规则如下:
       <type><size>x<number_of_lanes>_t
    
    • 示例:
    数据类型 含义
    uint8x8_t 包含8个uint8的向量类型
    uint8x8x2_t 包含2个向量的数组类型,每个向量包含8个uint8
    • neon官方编程指南中罗列了可支持的向量类型:
    64-bit type (D-register) 128-bit type (Q-register)
    int8x8_t int8x16_t
    int16x4_t int16x8_t
    int32x2_t int32x4_t
    int64x1_t int64x2_t
    uint8x8_t uint8x16_t
    uint16x4_t uint16x8_t
    uint32x2_t uint32x4_t
    uint64x1_t uint64x2_t
    float16x4_t float16x8_t
    float32x2_t float32x4_t
    poly8x8_t poly8x16_t
    poly16x4_t poly16x8_t

    3、NEON INTRINSICSS指令函数

    • 函数名定义:
    <opname><flags>_<type>
    
    • 示例
    指令名 含义
    uint8x8_t vadd_u8(uint8x8_t a, uint8x8_t b) 两个向量相乘
    uint8x16_t vaddq_u8(uint8x16_t a, uint8x16_t b) 128位的Q寄存器向量加法
    • C代码编程流程图
      step1: 定义Neon向量
      step2: 读取数据
      step3: 处理数据
      step4: 回写数据

    4、数据加载函数

    • 函数定义
    函数定义 含义
    Result_t vldN_type(Scalar_t* N,…) 利用64位的D寄存器加载数组长度为N的数据
    Result_t vldNq_type(Scalar_t* N, …) 利用128位的Q寄存器加载数组长度为N的数据
    • 适用于vldN_type数据类型
    Result_t type Scalar_t
    int8x8_t s8 int8_t
    int16x4_t s16 int16_t
    int32x2_t s32 int32_t
    int64x1_t s64 int64_t
    uint8x8_t u8 uint8_t
    uint16x4_t u16 uint16_t
    uint32x2_t u32 uint32_t
    uint64x1_t u64 uint64_t
    float16x4_t f16 float16_t
    float32x2_t f32 float32_t
    poly8x8_t p8 poly8_t
    poly16x4_t p16 poly16_t
    • 适用于vldNq_type数据类型
    Result_t type Scalar_t
    int8x16_t s8 int8_t
    int16x8_t s16 int16_t
    int32x4_t s32 int32_t
    int64x2_t s64 int64_t
    uint8x16_t u8 uint8_t
    uint16x8_t u16 uint16_t
    uint32x4_t u32 uint32_t
    uint64x2_t u64 uint64_t
    float16x8_t f16 float16_t
    float32x4_t f32 float32_t
    poly8x16_t p8 poly8_t
    poly16x8_t p16 poly16_t

    5、数据回写函数

    • 函数定义
    函数定义 含义
    void vstN_type(Scalar_t* N, Vector_t M) 以步长为N将D寄存器数据存入M中
    void vstNq_type(Scalar_t* N, Vector_t M) 以步长N将Q寄存器中数据存入M中

    6、代码实战

    • 将RGBA通道转换为BGR通道数据
    void GetBGRImageFromGPUNeon(uint8_t * renderPtr, cv::Mat &img) {
      if(!img.data)
        img.creat(frameBufferHeight, frameBufferWidth, CV_8UC3);
      uint8_t *data = static_cast<uint8_t*>(img.data);
      const int stridePixels = 16;
      const int srcStrideByte = stridePixel * channelNum;
      const int destStrideByte = stridePixels * 3;
      
      int remainderPixels = pixelNum % stridePixels;
      int dividePixels = pixelNum_ - remainderPixels;
      
      uint8x16x4 rgba;
      uint8x16x3 bgr;
      for(int i = 0; i < dividePixels; i += stridePixels) {
        rgba = vld4q_u8(renderPtr);
        bgr.val[0] = rgba.val[2];
        bgr.val[1] = rgba.val[1];
        bgr.val[2] = rgba.val[0];
        vst3q_u8(data, bgr);
        data += destStrideByte;
        renderPtr += srcStrideByte;
      }
      // handling remainder lenght
      for(int i = dividePixels; i < pixelNum_; ++i) {
        *data++ = *(renderPtr + 2);
        *data++ = *(renderPtr + 2);
        *data++ = *(renderPtr + 2);
        render += 4;
      }
    }
    
    展开全文
  • NEON指令集简介和开发

    2020-06-23 16:39:06
    参考文章: Neon 指令集 ARMv7/v8 对比 https://blog.csdn.net/zsc09_leaf/article/details/45825015 Arm官网Download目录 ... Arm文档下载目录 ...Android NDK使
  • ARM NEON指令集优化理论与实践一.简介NEON就是一种基于SIMD思想的ARM技术,相比于ARMv6或之前的架构,NEON结合了64-bit和128-bit的SIMD指令集,提供128-bit宽的向量运算(vector operations)。NEON技术从ARMv7开始被...
  • NEON指令集优化理论与实践 一.简介 NEON就是一种基于SIMD思想的ARM技术,相比于ARMv6或之前的架构,NEON结合了64-bit和128-bit的SIMD指令集,提供128-bit宽的向量运算(vector operations)。NEON技术从ARMv7开始被...
  • ARM NEON指令集优化理论与实践一.简介 NEON就是一种基于SIMD思想的ARM技术,相比于ARMv6或之前的架构,NEON结合了64-bit和128-bit的SIMD指令集,提供128-bit宽的向量运算(vector operations)。NEON技术从ARMv7开始...
  • 作者:郭嘉 邮箱:allenwells@163.com 博客:http://blog.csdn.net/allenwells github:...一 Android平台使用NEON指令集与VFP指令集Android NDK从r3版本开始也添加了对NEON指令集与VFP
  • arm neon 指令集

    千次阅读 2017-08-11 23:52:45
    arm neon 指令分类: 正常指令(q) 正常指令可对上述任意向量类型执行运算,并生成大小相同且类型通常与操作数向量相同的结果向量。 长指令(l) 长指令对双字向量操作数执行运算,并生成四字向量结果。 所生成的元素...
  • 【Neon】arm neon指令集指令解析

    千次阅读 2018-07-17 10:51:39
    在arm neon指令集中,大多数都是单词的缩写加一些特殊的前后缀修饰符。 正常指令q 可以对任一向量类型执行运算,并生成大小相同且类型与操作数向量相同的结果向量。 长指令l 长指令对双字向量操作数执行运算,...
  • ARM NEON指令集总结

    千次阅读 2018-07-11 14:29:28
    ARM的NEON是类似于X86的SSE2的一种优化的指令集,主要就是为了实现SIMD全称Single Instruction Multiple Data,单指令多数据流,能够复制多个操作数,并把它们打包在大型寄存器的一组指令集。简单来说就是处理一些...
  • 支持NEON指令集的android编译设置

    千次阅读 2013-12-01 15:59:39
    支持NEON指令集的选择 从ARMv7开始ARM提供高级单指令多数据 (SIMD) 扩展亦称 NEON 技术,它是一种由 ARM 开发的 64/128 位混合 SIMD 体系结构,可以提升多媒体和信号处理应用程序的性能。 NEON 作为处理器的一部分来...
  • ARM和neon指令集

    千次阅读 2016-07-20 18:05:58
    在移动平台上进行一些复杂算法的开发,一般需要用到指令集来进行加速。目前在移动上使用最多的是ARM芯片。...指令集有:armv5、armv6和neon指令。关于ARM到知识参考:http://baike.baidu.com/view/
  • NEON指令集综述

    千次阅读 2016-09-29 07:59:42
    NEON 是 ARM Cortex A 系列处理器支持的数据并行技术,和 SSE/AVX 类似:一条指令指令级 SIMD 的方式同时对多个数据进行操作,同时,操作的数据个数由向量寄存器的长度和数据类型共同决定。 NEON SIMD 寄存器的...
  • 文章目录Neon是什么?Neon为什么速度快Neon基础概念运算和缓存名词收罗 Neon是什么? Neon是一个商标名称,指的是Arm对Advanced SIMD ...Neon基于SIMD,一条指令操作多个数据,对多个数据项同时执行相同的操作
  • ARMv8 浮点及NEON指令集

    千次阅读 2019-10-23 15:26:51
    通常,每个NEON指令都会导致n个指令并行执行! 向量寄存器 32个128位寄存器 32个64位寄存器 所有的寄存器都可以在任意时间被访问,且访问者不需要显式地在两种表示之间切换,指令会说明是使用64位还是128位寄存器...
  • NEON 指令集【基础备忘】

    千次阅读 2018-12-21 10:58:49
    转自http://blog.sina.com.cn/s/blog_602f87700102wj5w.html 作者:Sam (甄峰) sam_code@hotmail.com 其他优秀链接:... 之前在一些ARM CPU下,曾在编译时指定过Neon。 0. Neo...
  • aarch64 neon指令集拾遗

    千次阅读 2019-07-16 16:40:42
    读写指令 读向量/浮点数 ld1 ld1 {v0.S}[0], [x0], #4从x0出读一个float数,存到v0寄存器的第一个通道,并将x0加4 ld1 {v0.4S, v1.4S...}, [x0] 从x0处连续读入float,依次存到各个寄存器中 ld1 {v0.8B, v1.8B}, [x0...
  • 当在ARM芯片上进行一些例如图像处理等计算的时候,常常会因为计算...Neon指令优化 NEON是一种SIMD(Single Instruction Multiple Data)指令,也就是说,NEON可以把若干源(source)操作数(operand)打包放到一个源寄存器...

空空如也

空空如也

1 2 3 4 5 ... 10
收藏数 194
精华内容 77
关键字:

neon指令集