精华内容
下载资源
问答
  • 列出三极管基极下拉电阻的作用
  • 本文介绍了三极管基极下拉电阻的作用以及在接下拉电阻时还要注意的两个问题。
  • 本文主要介绍上拉电阻和下拉电阻的作用及选择,感兴趣的朋友可以看看。
  • 本文介绍了三极管基极下拉电阻的作用以及在接下拉电阻时还要注意的两个问题。
  • 本文主要讲了上拉下拉电阻的作用原理,下面一起来学习一下
  • 本文主要讲了数字电路上拉电阻和下拉电阻的作用以及如何选用,下面一起来学习一下
  • 介绍了上拉电阻和下拉电阻的作用,较为详细,可以对上拉电阻和下拉电阻的作用有一个较为详细的了解和掌握。
  • 1、上、下拉电阻的作用简单来说,电源到器件引脚上的电阻叫上拉电阻,作用是平时使用该引脚为高电平;地到器件引脚的电阻叫下拉电阻,作用是平时使该引脚为低电平。对于非集电极(或漏极)开路输出型电路(如普通门...
    • 上拉是将不确定信号通过一个电阻钳位在高电平,电阻同时限流作用;
    • 下拉是将不确定信号通过一个电阻钳位在低电平。

    即,电路中加上拉电阻或下拉电阻的目的是确定某个状态电路中的高电平或低电平。

    1、上、下拉电阻的作用

    简单来说,电源到器件引脚上的电阻叫上拉电阻,作用是平时使用该引脚为高电平;地到器件引脚的电阻叫下拉电阻,作用是平时使该引脚为低电平。

    对于非集电极(或漏极)开路输出型电路(如普通门电路,其提升电流和电压的能力是有限的,上拉和下拉电阻主要功能是为集电极开路输出型电路提供输出电流通道。上拉是对器件注入电流,下拉是输出电流;强弱只是上拉或下拉电阻的阻值不同)。此外,作用还有:

    bf03bca03e71f0e2a8ecf72eff9ef481.png
    图1 按键检测的简单电路图
    • 提高电路稳定性,避免引起误动作。图1中的按键如果不通过电阻上拉到高电平,那么在上电瞬间可能就发生误动作,因为在上电瞬间电路引脚电平是不确定的,上拉电阻R的存在保证了其引脚处于高电平状态,就不会发生误动作;
    • 提高输出管脚的带载能力。受其他外围电路的影响,电路在输出高电平时能力不足,达不到VCC状态,这会影响整个系统的正常工作,上拉电阻的存在就可以使管脚的驱动能力增强。

    2、基本原理

    如果拉电阻用于输入信号引脚,通常的作用是将信号线强制箝位至某个电平,以防止信号线因悬空而出现不确定的状态,继而导致系统出现不期望的状态,如图2所示:

    9d009c46afbf8da9d1825d43731437ea.png
    图2 上拉、下拉电阻构造

    在实际应用中,

    的电阻是使用数量最多的拉电阻。需要使用上拉电阻还是下拉电阻,主要取决于电路系统本身的需要,比如,对于高有效的使能控制信号(EN),如果希望电路系统在上电后应处于无效状态,则会使用下拉电阻;假设这个使能信号是用来控制电机的,如果悬空的话,此信号线可能在上电后(或者运行中)受到其他噪声干扰而误触发为高电平,从而导致电机出现不期望的转动,这肯定是所不希望的,此时可以增加一个下拉电阻。相应地,对于低有效的复位控制信号(RST#),希望上电后复位后处于无效状态,则应使用上拉电阻。

    根据拉电阻的阻值大小,可分为强拉或弱拉(weak pull-up/down),芯片内部集成的拉电阻通常都是弱拉(电阻比较大),拉电阻越小则表示电平能力越强(强拉),可以抵抗外部噪声的能力也越强(也就是说,不期望出现的干扰噪声如果要更改强拉的信号电平,则需要的能量也必须相应加强),但是拉电阻越小则相应的功耗也越大,因为正常信号要改变信号线的状态也需要更多的能量,在能量消耗这一方面,拉电阻是绝不会有所偏颇的,如图3所示:

    6bb8358eb2a2cce23765445b1f3cdda8.png
    图3 上/下拉电阻

    对于上拉电阻R1而言,控制信号每次拉低L都会产生VCC/R1的电流消耗(没有上拉电阻则电流为0),相应的,对于下拉电阻R2而言,控制信号每次拉高H也会产生VCC/R2R 电流消耗(本文假设高电平即为VCC)。

    强拉与弱拉之间没有严格说多少欧姆是强弱的分界,一般我们使用的拉电阻都是弱拉,这样我们仍然可以使用外部控制信号将已经上/下拉的信号线根据需要进行电平的更改。

    强拉电阻的极端就是零欧姆电阻,亦即将信号线直接与电源或地相连接。

    拉电阻作为输出(或输入输出)时牵涉到的知识点会更多一些,但本质的功能也是将电平箝位,最常见的输出上拉电阻出现在开集(Open Collector,OC)或开漏(Open Drain,OD)结构的引脚。

    我们有很多芯片的输出引脚是推挽输出结构(Output Push-Pull),如下图所示(还有一种反相输出的结构,本质也是一样的):

    8ddddf52e28ec0ae5f35b8e35c32ecf8.png
    图4 两种TTL结构

    注:推挽输出结构引脚的特点是:无论引脚输出高电平“H”还是低电平“L”,都有比较强的驱动能力(输入或输出电流能力)!

    当推挽输出结构的控制信号为低电平“L”时,Q1截止Q2导通,电流I1由电源VCC经负载RL与三极管Q2流向公共地,我们称此电流为灌电流(Sink Current),也就是外部电流灌入芯片内部,如图5所示:

    fb674e2bacdb36ef851e8203211312df.png
    图5 灌电流

    相应的,当推挽输出结构的控制信号为高电平“H”时,Q1导通Q2截止,电流I1由电源VCC经三极管Q1与负载RL流向公共地,我们称此电流为拉电流(Source Current),也就是芯片内部可以向外提供的电流(所以称之为“源电源”),从另一个角度讲,也就是外电路可以从芯片中拉走多少电流,如图6所示:

    d1db81d10f148bc54a740ffad469029b.png
    图6 拉电流

    灌电流能力与拉电流能力也称为芯片引脚的驱动能力。

    假定芯片的供电电压为3.3V(忽略晶体管饱和压降),则输出最大电流25mA时,负载RL的值约为132欧姆(3.3V/25mA),如果负载值小于132欧姆,则相应输出电流会更大(超过25mA),但是芯片引脚只能提供最大25mA的电流,因此,输出电平将会下降(老板你只给我2500月薪,我就只能干2500的活,你要我干更多的活得开更多的工资,一个道理)

    一般情况下,这种驱动重负载(小电阻)的电路连接是不会烧毁内部晶体管的,因为内部也是有限流电阻的,换句话讲,就算输出引脚对地短路,输出电流也不会超过最大的驱动能力(除非是不正规的芯片),当然,在实际应用过程中尽量不要超出引脚的驱动能力。

    而OC(OD)的引脚输出结构有所不同(OC结构存在于三极管,而OD结构存在于场效管,下面以OC输出结构为例,OD输出结构的原理是一致的)。

    展开全文
  • 导读: 上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。同理,下拉电阻是把不确定的信号钳位在低电平。上拉电阻是指器件的输入电流,而下拉指的是输出电流。
  • 上拉、下拉以及对应上拉电阻和下拉电阻的作用原理 一、什么是上拉和下拉电路 上拉(Pull Up )或下拉(Pull Down)电阻两者统称为拉电阻 上拉就是单片机的IO口串联一个电阻到VDD; 下拉就是单片机的IO口串联一个...

    上拉、下拉以及对应上拉电阻和下拉电阻的作用原理

    一、什么是上拉和下拉电路

    上拉(Pull Up )或下拉(Pull Down)电阻两者统称为拉电阻

    • 上拉就是单片机的IO口串联一个电阻到VDD;
    • 下拉就是单片机的IO口串联一个电阻到GND;

    如图所示:
    在这里插入图片描述
    单片机往往可以内部挂载一个电阻,通常io口呈现出高阻态,若不上拉或者下拉io口不能识别当前的状态是高电平还是低电平。

    二、为什么需要上拉与下拉电路

    上拉与下拉电路最基本的作用是:将状态不确定的IO口信号线通过一个电阻将其钳制为一个确定的高电平(上拉)或低电平(下拉),无论它的具体用法如何,这个基本的作用都是相同的,只是在不同应用场合中会对电路中上/下拉电阻的阻值要求有所不同。

    对于三态门电路而言,通常我们认为:

    • 输入管脚和VCC相接,那肯定是高电平;
    • 输入管脚和GND相接,那肯定是低电平;
    • 输入管脚悬空,那肯定是高阻态;(可能是高/低电平输入引脚开关处于断开状态,也可能本来就是规划为于悬空状态的引脚)

    实际情况中当高/低电平输入引脚的开关断开,引脚处于悬空状态下时,由于电路中的电磁感应现象,悬空的管脚上可能会随机地感应出时高时低的电平,而单片机是要求其高/低管脚输入需要有明确的输入信号的,也就是要么高电平1,或者是低电平0。这时候就需要通过上拉或者下拉电路通过一个电阻将输入的IO信号钳制在一个固定的高电平或者低电平上。
    上拉电路讲解:

    • 原理图A:当轻触开关SW1按下时,端口A输入的是低电平,但由于A中没有接上/下拉电路,当轻触开关SW1没有按下时,端口A的输入电平未知。
    • 原理图B:当轻触开关SW5按下时,输入端口B的是低电平,但由于B接了上拉电路,当轻触开关SW5没有按下时,上拉电阻R1决定了输入端口B是高电平,不会存在未知的电平。
      在这里插入图片描述

    下拉电路讲解:

    • 原理图C:当轻触开关SW1按下时,端口C输入的是高电平,但由于C中没有接上/下拉电路,当轻触开关SW1没有按下时,端口C的输入电平未知。
    • 原理图D:当轻触开关SW5按下时,输入端口D的是高电平,但由于D接了下拉电路,当轻触开关SW5没有按下时,上拉电阻R1决定了输入端口D是低电平,不会存在未知的电平。

    在这里插入图片描述

    三、上拉与下拉电路的实际作用讲解

    1、提高电压准位:

    • 当 TTL 电路驱动 COMS 电路时,如果 TTL 电路输出的高电平低于 COMS 电路的最低高电平(一般为 3.5V),这时就需要在TTL 的输出端接上拉电阻,以提高输出高电平的值。
    • OC 门电路必须加上拉电阻,以提高电平的输出值。

    2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

    3、N/A pin 防静电、防干扰:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路,而管脚悬空就比较容易接受外界的电磁干扰。

    4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

    5、预设空间状态/缺省电位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。在I2C总线等总线上,空闲时的状态是由上下拉电阻获得。

    6、提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免受到随机电平而影响电路工作。同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。从而提高芯片输入信号的噪声容限增强抗干扰能力。

    一般来说上拉或下拉电阻的作用是增大电流,加强电路的驱动能力 ,比如说51单片机中的p1口 ,p0口必须接上拉电阻才可以作为IO口使用 ,上拉和下拉的区别是一个为拉电流,一个为灌电流 一般来说灌电流比拉电流要大 ,也就是灌电流驱动能力强一些

    四、为什么需要加上一个电阻,而不直接连接VDD或者GND?

    参考第二节中提供的电路图:

    • A中上拉电路不接电阻:那么当SW1闭合时,VCC到GND这段电路中没有任何负载电阻,那么此时电路短路,电路电流无限大。很容易烧板子!!!!
    • 同理,D中下拉电路不接电阻:那么无论SW5开关是否闭合,尤其是闭合状态下时,VCC会输入一个高电平,而VCC到GND这段电路中没有任何负载电阻,那么此时电路短路,电路电流无限大。很容易烧板子!!!!

    上/下拉电阻阻值的选择原则:

    • 从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
    • 从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
    • 对于高速电路,过大的上拉电阻可能边沿变平缓。
    • 综合考虑以上三点,通常在1k到10k之间选取。

    上/下拉电阻阻值的选择说明:

    1、上拉电阻实际上是集电极输出的负载电阻。不管是在开关应用和模拟放大,此电阻的选则都不是拍脑袋的。工作在线性范围就不多说了,在这里是讨论的是晶体管是开关应用,所以只谈开关方式。找个TTL器件的资料单独看末级就可以了,内部都有负载电阻根据不同驱动能力和速度要求这个电阻值不同,低功耗的电阻值大,速度快的电阻值小。
    2、芯片制造商很难满足应用的需要不可能同种功能芯片做许多种,因此干脆不做这个负载电阻,改由使用者自己自由选择外接,所以就出现OC、OD输出的芯片。由于数字应用时晶体管工作在饱和和截止区,对负载电阻要求不高,电阻值小到只要不小到损坏末级晶体管就可以,大到输出上升时间满足设计要求就可,随便选一个都可以正常工作。
    3、一个电路设计是否优秀这些细节也是要考虑的,集电极输出的开关电路不管是开还是关对地始终是通的,晶体管导通时电流从负载电阻经导通的晶体管到地,截止时电流从负载电阻经负载的输入电阻到地,如果负载电阻选择小点功耗就会大,这在电池供电和要求功耗小的系统设计中是要尽量避免的,如果电阻选择大又会带来信号上升沿的延时,因为负载的输入电容在上升沿是通过无源的上拉电阻充电,电阻越大上升时间越长,下降沿是通过有源晶体管放电,时间取决于器件本身。因此设计者在选择上拉电阻值时,要根据系统实际情况在功耗和速度上兼顾。

    五、从IC(MOS工艺)的角度,深入讲解输入/输出引脚上/下拉的作用机制

    1、 对芯片输入管脚:

    • 若在系统板上悬空(未与任何输出脚或驱动相接)是比较危险的.因为此时很有可能输入管脚内部电容电荷累积使之达到中间电平(比如1.5V),而使得输入缓冲器的PMOS管和NMOS管同时导通, 这样一来就在电源和地之间形成直接通路, 产生较大的漏电流, 时间一长就可能损坏芯片。并且因为处于中间电平会导致内部电路对其逻辑(0或1)判断混乱. 接上上拉或下拉电阻后, 内部点容相应被充(放)电至高(低)电平, 内部缓冲器也只有NMOS(PMOS)管导通, 不会形成电源到地的直流通路. (至于防止静电造成损坏, 因芯片管脚设计中一般会加保护电路,反而无此必要).

    2、对于输出管脚:

    • 对于正常的输出管脚(push-pull型), 一般没有必要接上拉或下拉电阻。
    • 对于OD或OC(漏极开路或集电极开路)型管脚。通常需要外接上拉电阻完成功能实现,此时多个输出可直接相连.
      典型应用是: 系统板上多个芯片的INT(中断信号)输出直接相连, 再接上一上拉电阻, 然后输入MCU的INT引脚, 实现中断报警功能。

    工作原理讲解:

    在正常工作情况下, OD型管脚内部的NMOS管关闭, 对外部而言其处于高阻状态, 外接上拉电阻使输出位于高电平(无效中断状态,当有中断需求时, OD型管脚内部的NMOS管接通, 因其导通电阻远远小于上拉电阻,使输出位于低电平(有效中断状态)。针对MOS电路上下拉电阻阻值以几十至几百K为宜。
    (注: 此回答未涉及TTL工艺的芯片, 也未曾考虑高频PCB设计时需考虑的阻抗匹配, 电磁干扰等效应)
    1、芯片引脚上注明的上拉或下拉电阻, 是指设计在芯片引脚内部的一个电阻或等效电阻. 设计这个电阻的目的, 是为了当用户不需要用这个引脚的功能时, 不用外加元件, 就可以置这个引脚到缺省的状态. 而不会使 CMOS 输入端悬空. 使用时要注意如果这个缺省值不是你所要的, 你应该把这个输入端直接连到你需要的状态。

    2、这个引脚如果是上拉的话, 可以用于 “线或” 逻辑. 外接漏极开路或集电极开路输出的其他芯片. 组成负逻辑或输入. 如果是下拉的话, 可以组成正逻辑 “线或”, 但外接只能是 CMOS 的高电平漏极开路的芯片输出, 这是因为 CMOS 输出的高, 低电平分别由 PMOS 和 NMOS 的漏极给出电流, 可以作成 P 漏开路或 N 漏开路. 而 TTL 的高电平由源极跟随器输出电流, 不适合 “线或”。

    3、TTL 到 CMOS 的驱动或反之, 原则上不建议用上下拉电阻来改变电平, 最好加电平转换电路。 如果两边的电源都是 5 伏, 可以直接连但影响性能和稳定, 尤其是 CMOS 驱动 TTL 时. 两边逻辑电平不同时, 一定要用电平转换. 电源电压 3 伏或以下时, 建议不要用直连更不能用电阻拉电平。

    4、芯片外加电阻由应用情况决定, 但是在逻辑电路中用电阻拉电平或改善驱动能力都是不可行的. 需要改善驱动应加驱动电路. 改变电平应加电平转换电路. 包括长线接收都有专门的芯片。

    注意事项:本文内容为参考书籍或者其它博主的文章所作的个人总结,不作为任何商业用途,如有冲突请私下联系。
    主要参考链接:
    https://mp.weixin.qq.com/s/OuOwLWp_s2b3ADeybT_7Dw
    http://www.360doc.com/content/19/0725/20/42387867_851002315.shtml
    http://www.elecfans.com/d/587459.html

    展开全文
  • 上拉电阻和下拉电阻的作用及使用方法 及电阻的选用
  • 下拉电阻的作用原理

    2020-07-14 14:23:08
    当TTL电路驱动COMS电路时,如果TTL电路输出高电平低于COMS电路最低高电平(一般为3.5V), 这时就需要在TTL输出端接上拉电阻,以提高输出高电平值。
  • [转]上拉电阻与下拉电阻的作用总结 一、定义: 上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!下拉同理! 上拉是对器件注入电流,下拉是输出电流;弱强只是...
    [转]上拉电阻与下拉电阻的作用总结



    一、定义:



    上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!下拉同理!

    上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输

    出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。



    二、上下拉电阻作用:



    1、提高电压准位:

    a.  当 TTL 电路驱动 COMS 电路时,如果 TTL 电路输出的高电平低于 COMS 电路的最低高电平(一般为 3.5V), 这时就需要在

    TTL 的输出端接上拉电阻,以提高输出高电平的值。

    b.  OC 门电路必须加上拉电阻,以提高输出的高电平值。



    2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。



    3、N/A pin 防静电、防干扰:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路。同時管脚悬空就比较容易接受外界的电磁干扰。



    4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干

    扰。



    5、预设空间状态/缺省电位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端

    下拉接 0 或上拉接 1。在I2C总线等总线上,空闲时的状态是由上下拉电阻获得



    6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到

    随机电平而影响电路工作。同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。从而提高

    芯片输入信号的噪声容限增强抗干扰能力。



    {电源到元件间的叫上拉电阻,作用是平时使该脚为高电平地到元件间的叫下拉电阻,作用是平时使该脚为低电平上拉电阻和下拉电

    阻的范围由器件来定(我们一般用10K) 

    +Vcc 
    +------+=上拉电阻 
    |+-----+ 
    |元件| 
    |+-----+ 
    +------+=下拉电阻 
    -Gnd 



    一般来说上拉或下拉电阻的作用是增大电流,加强电路的驱动能力 

    比如说51的p1口 

    还有,p0口必须接上拉电阻才可以作为io口使用 

    上拉和下拉的区别是一个为拉电流,一个为灌电流 

    一般来说灌电流比拉电流要大 

    也就是灌电流驱动能力强一些}



    三、上拉电阻阻值的选择原则包括:



    1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

    2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

    3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑

    以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理



    四、原理:



    上拉电阻实际上是集电极输出的负载电阻。不管是在开关应用和模拟放大,此电阻的选则都不是拍脑袋的。工作在线性范围就不

    多说了,在这里是讨论的是晶体管是开关应用,所以只谈开关方式。找个TTL器件的资料单独看末级就可以了,内部都有负载电

    阻根据不同驱动能力和速度要求这个电阻值不同,低功耗的电阻值大,速度快的电阻值小。但芯片制造商很难满足应用的需要不

    可能同种功能芯片做许多种,因此干脆不做这个负载电阻,改由使用者自己自由选择外接,所以就出现OC、OD输出的芯片。由

    于数字应用时晶体管工作在饱和和截止区,对负载电阻要求不高,电阻值小到只要不小到损坏末级晶体管就可以,大到输出上升

    时间满足设计要求就可,随便选一个都可以正常工作。但是一个电路设计是否优秀这些细节也是要考虑的。集电极输出的开关电

    路不管是开还是关对地始终是通的,晶体管导通时电流从负载电阻经导通的晶体管到地,截止时电流从负载电阻经负载的输入电

    阻到地,如果负载电阻选择小点功耗就会大,这在电池供电和要求功耗小的系统设计中是要尽量避免的,如果电阻选择大又会带

    来信号上升沿的延时,因为负载的输入电容在上升沿是通过无源的上拉电阻充电,电阻越大上升时间越长,下降沿是通过有源晶

    体管放电,时间取决于器件本身。因此设计者在选择上拉电阻值时,要根据系统实际情况在功耗和速度上兼顾。



    3.从IC(MOS工艺)的角度,分别就输入/输出引脚做一解释:



    1. 对芯片输入管脚, 若在系统板上悬空(未与任何输出脚或驱动相接)是比较危险的.因为此时很有可能输入管脚内部电容电荷累积

    使之达到中间电平(比如1.5V), 而使得输入缓冲器的PMOS管和NMOS管同时导通, 这样一来就在电源和地之间形成直接通路, 产生

    较大的漏电流, 时间一长就可能损坏芯片. 并且因为处于中间电平会导致内部电路对其逻辑(0或1)判断混乱. 接上上拉或下拉电阻

    后, 内部点容相应被充(放)电至高(低)电平, 内部缓冲器也只有NMOS(PMOS)管导通, 不会形成电源到地的直流通路. (至于防止静电

    造成损坏, 因芯片管脚设计中一般会加保护电路, 反而无此必要).



    2. 对于输出管脚:

    1)正常的输出管脚(push-pull型), 一般没有必要接上拉或下拉电阻.

    2)OD或OC(漏极开路或集电极开路)型管脚,

    这种类型的管脚需要外接上拉电阻实现线与功能(此时多个输出可直接相连. 典型应用是: 系统板上多个芯片的INT(中断信号)输出

    直接相连, 再接上一上拉电阻, 然后输入MCU的INT引脚, 实现中断报警功能).



    其工作原理是: 



    在正常工作情况下, OD型管脚内部的NMOS管关闭, 对外部而言其处于高阻状态, 外接上拉电阻使输出位于高电平(无效中断状态); 

    当有中断需求时, OD型管脚内部的NMOS管接通, 因其导通电阻远远小于上拉电阻, 使输出位于低电平(有效中断状态). 针对MOS

     电路上下拉电阻阻值以几十至几百K为宜.

    (注: 此回答未涉及TTL工艺的芯片, 也未曾考虑高频PCB设计时需考虑的阻抗匹配, 电磁干扰等效应.)

    1, 芯片引脚上注明的上拉或下拉电阻, 是指设计在芯片引脚内部的一个电阻或等效电阻. 设计这个电阻的目的, 是为了当用户不需

    要用这个引脚的功能时, 不用外加元件, 就可以置这个引脚到缺省的状态. 而不会使 CMOS 输入端悬空. 使用时要注意如果这个缺

    省值不是你所要的, 你应该把这个输入端直接连到你需要的状态.

    2, 这个引脚如果是上拉的话, 可以用于 "线或" 逻辑. 外接漏极开路或集电极开路输出的其他芯片. 组成负逻辑或输入. 如果是下拉

    的话, 可以组成正逻辑 "线或", 但外接只能是 CMOS 的高电平漏极开路的芯片输出, 这是因为 CMOS 输出的高, 低电平分别由

     PMOS 和 NMOS 的漏极给出电流, 可以作成 P 漏开路或 N 漏开路. 而 TTL 的高电平由源极跟随器输出电流, 不适合 "线或".

    3, TTL 到 CMOS 的驱动或反之, 原则上不建议用上下拉电阻来改变电平, 最好加电平转换电路. 如果两边的电源都是 5 伏, 可以直

    接连但影响性能和稳定, 尤其是 CMOS 驱动 TTL 时. 两边逻辑电平不同时, 一定要用电平转换. 电源电压 3 伏或以下时, 建议不要

    用直连更不能用电阻拉电平.

    4, 芯片外加电阻由应用情况决定, 但是在逻辑电路中用电阻拉电平或改善驱动能力都是不可行的. 需要改善驱动应加驱动电路. 改

    变电平应加电平转换电路. 包括长线接收都有专门的芯片.
    展开全文
  • 上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。同理,下拉电阻是把不确定的信号钳位在低电平。
  • 上拉下拉电阻定义、作用、阻值选择原则与原理。
  • 上、下拉电阻的作用

    2011-12-07 15:29:51
    上、下拉电阻的作用 上、下拉电阻的作用 上下拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平...
    上、下拉电阻的作用

    上、下拉电阻的作用

    上下拉电阻:

    1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

    2、OC门电路必须加上拉电阻,以提高输出的高电平值。

    3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

    4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

    5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

    6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。

    7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

    上拉电阻阻值的选择原则包括:

    1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

    2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

    3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑

    以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理

    电阻的具体取值怎么计算的?

    上拉电阻是不是应该是接Vcc再接电阻,然后接到管脚上的?

    一般上下拉的电阻取值都有个特定的范围,不能太大,也不能太小.都在几K到几十K之间吧,具体的还要看电路要求.

    至于接法,上拉电阻简单来说就是把电平拉高,通常用4.7-10K的电阻接到Vcc电源,下拉电阻则是把电平拉低,电阻接到GND地线上。所以是接电源或者接地,再接到需要拉高或者拉地电平的节点上的.

    一般说来,不光是重要的信号线,只要信号在一段时间内可能出于无驱动状态,就需要处理。

    比如说,一个CMOS门的输入端阻抗很高,没有处理,在悬空状况下很容易捡拾到干扰,如果能量足够甚至会导致击穿或者闩锁,导致器件失效。祈祷输入的保护二极管安全工作吧。如果电平一直处于中间态,那输出就可能是不确定的情况,也可能是上下MOS都导通,对器件寿命造成影响。

    总线上当所有的器件都处于高阻态时也容易有干扰出现。因为这时读写控制线处于无效状态,所以不一定会引起问题。你如果觉得自己能够接受的话也就将就了。但是这时你就要注意到,控制线不能悬空,不然……

    TTL电路的输入端是一个发射极开路引出的结构,拉高或者不接都是高电平,但是强烈建议不要悬空不接。

    上拉还是下拉?要看需要。一方面器件可能又要求,另一方面,比如总线上两个器件,使能控制都是高有效,那么最好下拉,否则当控制信号没有建立的时候就会出现两个冲突,可能烧片。如果计算机总线上面挂了一个D/A,上电复位信号要对它清零或者预置,那么总线可以上下拉到你需要的数字。

    至于上下拉电阻的大小,这个情况就比较多了。CMOS输入的阻抗很高,上下拉电阻阻值可以大一些,一般低功耗电路的阻值取得都比较大,但是抗干扰能力相应比较弱一些。

    很多场合下拉电阻取值比上拉电阻要小,这个是历史遗留问题。如上面所说,TTL电路上拉时输入3集管基射反偏,没有什么电流,但是下拉时要能够使得输入晶体管工作,这个在TTL的手册中可以查到。

    也是为了这个历史遗留问题,有些CMOS器件内部采用了上拉,这时它会告诉你可以不处理这些管脚,但是这时你就要注意了,因为下拉再用10K可能不好使,因为也许内置的20K电阻和外置的10K把电平固定在了1V左右。

    有时候你会看到150欧姆或者50欧姆左右的上下拉电阻,尤其是在高速电路中会看到。

    150欧姆电阻下拉一般在PECL逻辑中出现。PECL逻辑输出级是设计开路的电压跟随器,需要你用电阻来建立电压。

    50欧姆的电阻在TTL电路中用的不多,因为静态功耗实在是比较大。在CML电路和PECL电路中兼起到了端接和偏置的作用。CML电路输出级是一对集电极开路的三极管,需要一个上拉电阻来建立电平。这个电阻可以放在发送端,那么接受端还需要端接处理,也可以放到接受端,这时候端接电阻和偏置电阻就是一个。PECL电路结构上就好像CML后面跟了一个射极跟随器。

    OC 门也使用上拉电阻,这个和CML有一点相像,但是还不太一样。CML和PECL电路中三极管工作在线形区,而普通门电路和OC/OD门工作在饱和区。 OC/OD门电路常用作电平转换或者驱动,但是其工作速度不会太快。为什么?在OC/OD门中,上拉电阻不能太小,否则功耗会很大。而一般门的负载呈现出一个电容,负载越多,电容越大。当由高到低跳变时,电容的放电通过输出端下拉的MOS或者Bipolar管驱动,速度一般还是比较快的,但是由低到高跳变的时候,就需要通过上拉电阻来完成,R大了几十甚至上百倍,假设C不变,时间常数相应增加同样的倍数。这个在示波器上也可以明显的看出:上升时间比下降时间慢了很多。其实一般门电路上拉比下拉的驱动能力都会差一些,这个现象都存在,只不过不太明显罢了?

    在总线的上下拉电阻设计中,就要考虑同样的问题了:总线上往往负载很重,如果你要电阻来提供一些值,你就必须保证电容能通过电阻在一定时间内放电到可接受的范围。如果电阻太大,那么就可能出错。

    PLD可编程上下拉,还有总线保持也相当于上下拉,可以省去外接电阻。但是有一些麻烦。

    一般输入端才需要上下拉,假设器件10K是一个可行的值,那么10个元件并联会等效有多大的输入上拉电阻?1K。

    也就是说,如果你想给信号线预置一个低电平,可能需要200欧姆的外置下拉电阻。这种情况下,如果还有一个3门驱动这个信号,高电平的时候需要扇出15mA左右的静态电流,有点太大了。这就是附加的负载效应。

    如果两个器件一个上拉一个下拉,当一个3态门驱动,输出3态时会怎么样?电平1.5V左右,两个门处于不高不低的状态,预置电平的目的没有达到,而且可能诱发震荡,对器件寿命造成影响。

    内置上下拉电阻使得设计可靠的电路复杂性增加了,一个不留神就可能留下隐患,而且很难分析,使用中要非常非常小心。如果能够外接电阻,尽量还是少采用内置上下拉或者总线保持的门电路吧。

    电阻的上拉与下拉

    在网上看到一些对电阻的上拉和下拉不太明白的,输入端的上拉及下拉非常简单但也非常重要。
    上拉:通过一个电阻对电源相连。下拉:通过一个电阻到地。

    上下拉一般有两个用处:提高输出信号的驱动能力、确定输入信号的电平(防止干扰)。

    用过8051的都知道CPU的I/O上通常接有排阻(上拉到5V),这里主要是为了提高输出驱动能力的。因为8051的CPU不是标准的I/O口,输出为低电平时可以吸收均20mA的电流,但输出为高的时候是通过内部一个很大的电阻上拉的,输出高电平时驱动能力很差,所以就通过外部上拉来提高电平输出驱动能力。

    一般一个三极管的基极都有两个电阻,一个限流一个上拉或下拉,此处的上下拉主要为了确定输入信号的电平。其实目标是为了防止干扰,因为器件的输入接口一般内阻都很大,很容易受干扰。接一个上下拉电阻其实也就是降低了输入阻抗,提高了抗干扰能力。

    一般元器件不用的输入口通要求接上拉或下拉电阻。注意,不用的输出接口就不要接东西了。

    拉电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流,区别在于吸收电流是主动的,从芯片输入端流入的叫拉电流,灌入电流是被动的,从输出端流入的叫灌入电流。

    上拉和下拉的区别是一个为拉电流,一个为灌电流

    一般来说灌电流比拉电流要大

    也就是灌电流驱动能力强一些

    当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4~0.5V。

          当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。拉电流越大,输出端的高电平就越低。这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。拉电流越大,高电平越低。逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。

          由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。

    所以,往往低电平的灌电流不超标就不会有问题,用扇出系数来说明逻辑门来同类门的能力。扇出系数No是低电平最大输出电流和低电平最大输入电流的比值.对于标准TTL门,NO≥10;对于低功耗肖特基系列的TTL 门,NO≥20


    展开全文
  • 上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。同理,下拉电阻是把不确定的信号钳位在低电平。上拉电阻是指器件的输入电流,而下拉指的是输出电流。 那么在什么时候使用上、下拉...
  • 芯片内上拉和下拉电阻的作用

    千次阅读 2016-09-23 09:50:18
    1.芯片内上拉和下拉电阻的作用 上拉电阻可以判断引脚输入功能的状态 如果芯片内没有上拉电阻就不知道当开关断开时该引脚的状态
  • 浅谈上、下拉电阻的作用

    万次阅读 2016-08-17 22:04:02
    浅谈上、下拉电阻的作用 上下拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC...
  • 1.上拉电阻的作用功能:将不确定的信号,固定在高电平原理:电阻一端接VCC,一端接引脚(逻辑电平),如图,我的理解是在电路中电阻会分压,电流经过上拉电阻时会产生一个压降,上拉电阻接到的电源电压减去这个压降...
  • 上拉电阻和下拉电阻二者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。 一、上拉电阻如图所示: 1、概念:将一个不确定的信号,...3、当一个接有下拉电阻的IO端口设置为输入状态时,它的常态为低电平。 .
  • 用单片机输出高电平,但由于后续电路影响,输出高电平不高,就是达不到VCC,影响电路工作,...下拉电阻情况相反,让单片机引脚输出低电平,结果由于后续电路影响输出低电平达不到GND,所以接个下拉电阻。 ...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 435
精华内容 174
关键字:

下拉电阻的作用