精华内容
下载资源
问答
  • 大数据构建用户标签体系
  • 介绍科学构建用户标签体系,本文档版权归神策数据所有,大概内容如下: •为什么要做用户标签画像 • 如何构建完备的用户标签体系 • 标签的生产和创建 • 如何利用用户画像分析赋能业务落地 请合理使用及分享,谢谢...
  • 如何设计一个完善的用户标签体系?怎么打标签?打哪些标签?谁来打?怎么使用用户标签创建商业价值?在大数据时代,数据在呈现出海量化、多样化和价值化变化的同时,也改变了传统IT行业的市场竞争环境、营销策略和...

    如何设计一个完善的用户标签体系?怎么打标签?打哪些标签?谁来打?怎么使用用户标签创建商业价值?

    在大数据时代,数据在呈现出海量化、多样化和价值化变化的同时,也改变了传统IT行业的市场竞争环境、营销策略和服务模式。

    如何在ZB级的海量数据中获取并筛选有价值的信息,是对IT企业的一大挑战。通过构建客户标签,支撑精准营销服务,是应对上述挑战的有效解决方案。

    但是怎么设计一个完善的用户标签体系?怎么打标签?打哪些标签?谁来打?怎么使用用户标签创建商业价值?

    这些都是产品设计层面需要解决的问题。

    掌上医讯一直以来都致力于打造医生的今日头条和智能化的学习平台,通过大数据技术实现医生学习的智能化和个性化,而要构建这样一个学习平台,最基础的就是要建立用户的标签体系。

    经过长时间的学习、思考、借鉴和实践,现在已经有了自己的标签构建思路,并且也已经提取出了符合自身业务的标签。我们十分重视用户行为日志的收集,现在已经有了亿万级别的日志数据,正在搭建数据处理和标签计算平台,以下是我们整理的建设思想。

    标签系统的结构

    标签系统可以分为三个部分:数据加工层、数据服务层和数据应用层。

    每个层面向的用户对象不一样,处理事务有所不同。层级越往下,与业务的耦合度就越小。层级越往上,业务关联性就越强。

    数据加工层

    数据加工层收集、清洗和提取数据。掌上医讯有诸多的学习模块,同时又有网站、APP、小程序等多个产品形式,每个产品模块和产品端都会产生大量的业务数据和行为数据,这些数据极为相似又各不相同,为了搭建完善的用户标签体系,需要尽可能汇总最大范围的数据。收集了所有数据之后,需要经过清洗、去重、去无效、去异常等等。

    数据业务层

    数据加工层为业务层提供最基础的数据能力,提供数据原材料。业务层属于公共资源层,并不归属某个产品或业务线。它主要用来维护整个标签体系,集中在一个地方来进行管理。

    在这一层,运营人员和产品能够参与进来,提出业务要求:将原材料进行切割。

    主要完成以下核心任务:

    定义业务方需要的标签。

    创建标签实例。

    执行业务标签实例,提供相应数据。

    数据应用层

    应用层的任务是赋予产品和运营人员标签的工具能力,聚合业务数据,构建具体的数据应用场景。

    (1)标签的类型

    从数据提取维度来看,标签可分为:事实标签、模型标签和预测标签。

    (2)事实标签

    从生产系统获取数据,定性或定量描述用户的自然属性、产品属性、消费属性、资源属性等,以及根据工作人员经验积累的业务规则进行筛选、分析生产的标签,如是否活跃用户、是否是考生等。

    (3)模型标签

    对用户属性及行为等属性的抽象和聚类,通过剖析用户的基础数据为用户贴上相应的总结概括性标签及指数,标签代表用户的兴趣、偏好、需求等,指数代表用户的兴趣程度、需求程度、购买概率等。

    (4)预测标签

    基于用户的属性、行为、信令、位置和特征,挖掘用户潜在需求,针对这些潜在需求配合营销策略、规则进行打标,实现营销适时、适机、适景推送给用户。

    从数据的时效性来看,标签可分为:静态属性标签和动态属性标签。

    (5)静态属性标签

    长期甚至永远都不会发生改变。比如性别,出生日期,这些数据都是既定的事实,几乎不会改变。

    (6)动态属性标签

    存在有效期,需要定期地更新,保证标签的有效性。比如:用户的购买力,用户的活跃情况。

    标签的定义

    给用户打标签,建立用户画像,最终都是为了去应用,所以我们要站在应用场景上去定义用户的标签体系,每个标签都有最终的用途。比如:我们做考试培训服务,我们需要建立“是否考生”的标签。

    另外,不同的行业他们的用户特征也是有显著区别的,比如:医生用户相比普通用户来说,就多了像“科室”、“职称”、“所在医院等级”等特殊含义的标签。

    而标签是有层级关系的,既是为了管理,更好的理解,又是为了控制粗细力度,方便最终的应用。标签深度一般控制在四级比较合适,到了第四级就是具体的标签实例。

    我们根据公司的业务首先划分了人口属性、行为属性、用户分类和商业属性四个大的分类,下面又分了上网习惯、学习惯、人群属性、消费能力、消费习惯等分类,最末级精确到用户的活跃等级、阅读来源、考试偏好等具体的标签。

    标签的维护

    每个标签都不会凭空产生的,也不会一成不变,更不会凭空消失。标签的维护需要生成规则,需要定义权重,需要更新策略。

    生成规则

    如第一部分所说,标签分为事实标签,模型标签和预测标签三大类。对于这三类的标签,生成规则的难度和复杂性也是逐级递增的。事实标签只需要考虑从什么地方提取即可,它即包含明确的标签定义,又包含无法穷举的标签集,比如:关注的病种。

    而模型标签需要进行数据的关联和逻辑关系的设计,通过一定的模型对数据进行计算得来。而预测标签相对就非常的复杂,无法从原始数据提取标签,标签的生成准确度就太依赖我们大数据分析和人工智能技术的应用。

    定义权重

    一个标签会在多个场景下出现,比如:一个疾病标签,它极可能在浏览过程中生成,也有可能在搜索场景下产生,但是对于这两个场景所对应的同一个标签,他们的权重是不同的。浏览相比搜索,权重要小得多,因为搜索的主动需求更大。

    更新策略

    上文我们从数据的时效性上对标签分为静态属性标签和动态属性标签,对于静态属性标签的处理相对比较简单,就不停的累加即可。但是对于动态属性标签,需要对过期标签进行降权甚至删除处理,比如:医生考试前和考试后,会影响“是否考生”这个标签的,这就需要制定更新策略。

    标签建设的技术架构

    标签体系的建设涉及很多环节,数据量也十分巨大,需要有一个健壮且高效的技术架构来支持数据的存储及计算,掌上医讯采用了sql数据库和no-sql数据库来满足结构化数据和非结构化数据的存储。

    使用hadoop的分布式存储技术及hive和hbase组件作为数据仓库,使用MapReduce和spark分布式计算来提高计算速度,使用kylin进行多维分析,通过BI工具和接口对外提供应用,使用sqoop和kettle进行数据的抽取及流程的调用。

    更多的应用场景

    用户标签建立已经基本应用在掌上医讯的内容智能推荐的学习场景中,但随着标签的完善以及智能化处理的提升,这套标签体系将有更广阔的应用场景。

    (1)智能化学习场景的构建

    通过用户学习需求的标签的分析进行用户分群,针对不同的用户群在APP的功能和内容上进行个性化展示,满足不同学习需求的用户个性化的学习服务。

    (2)精准营销推广的建立

    更细粒度的对用户进行筛选,同时能够精准预测可能存在的目标用户进行推广,从而扩大医生覆盖,提升推广的转化率。

    (3)KOL用户画像的描绘

    基于该标签模型,增加对外部数据的采集分析,更加完整的生成医生360度的用户画像,帮助企业寻找潜在的KOL用户,实现用户洞察,辅助市场决策。

    标签的建设是一个看似高大上,其实很繁琐、纠结的过程,需要对业务抽丝剥茧,还要应对运营需求的各种变化,不过对公司发展的影响也是深远的。

    展开全文
  • 但是怎么设计一个完善的用户标签体系?怎么打标签?打哪些标签?谁来打?怎么使用用户标签创建商业价值?这些都是产品设计层面需要解决的问题。掌上医讯一直以来都致力于打造医生的今日头条和智能化的学习平台,通过...

    如何在ZB级的海量数据中获取并筛选有价值的信息,是对IT企业的一大挑战。通过构建客户标签,支撑精准营销服务,是应对上述挑战的有效解决方案。

    但是怎么设计一个完善的用户标签体系?怎么打标签?打哪些标签?谁来打?怎么使用用户标签创建商业价值?

    这些都是产品设计层面需要解决的问题。

    掌上医讯一直以来都致力于打造医生的今日头条和智能化的学习平台,通过大数据技术实现医生学习的智能化和个性化,而要构建这样一个学习平台,最基础的就是要建立用户的标签体系。

    经过长时间的学习、思考、借鉴和实践,现在已经有了自己的标签构建思路,并且也已经提取出了符合自身业务的标签。我们十分重视用户行为日志的收集,现在已经有了亿万级别的日志数据,正在搭建数据处理和标签计算平台,以下是我们整理的建设思想。

    1.标签系统的结构

    标签系统可以分为三个部分:数据加工层、数据服务层和数据应用层。

    每个层面向的用户对象不一样,处理事务有所不同。层级越往下,与业务的耦合度就越小。层级越往上,业务关联性就越强。

    2.数据加工层

    数据加工层收集、清洗和提取数据。掌上医讯有诸多的学习模块,同时又有网站、APP、小程序等多个产品形式,每个产品模块和产品端都会产生大量的业务数据和行为数据,这些数据极为相似又各不相同,为了搭建完善的用户标签体系,需要尽可能汇总最大范围的数据。收集了所有数据之后,需要经过清洗、去重、去无效、去异常等等。

    3.数据业务层

    数据加工层为业务层提供最基础的数据能力,提供数据原材料。业务层属于公共资源层,并不归属某个产品或业务线。它主要用来维护整个标签体系,集中在一个地方来进行管理。

    在这一层,运营人员和产品能够参与进来,提出业务要求:将原材料进行切割。

    主要完成以下核心任务:

    定义业务方需要的标签。

    创建标签实例。

    执行业务标签实例,提供相应数据。

    4.数据应用层

    应用层的任务是赋予产品和运营人员标签的工具能力,聚合业务数据,构建具体的数据应用场景。

    (1)标签的类型

    从数据提取维度来看,标签可分为:事实标签、模型标签和预测标签。

    (2)事实标签

    从生产系统获取数据,定性或定量描述用户的自然属性、产品属性、消费属性、资源属性等,以及根据工作人员经验积累的业务规则进行筛选、分析生产的标签,如是否活跃用户、是否是考生等。

    (3)模型标签

    对用户属性及行为等属性的抽象和聚类,通过剖析用户的基础数据为用户贴上相应的总结概括性标签及指数,标签代表用户的兴趣、偏好、需求等,指数代表用户的兴趣程度、需求程度、购买概率等。

    (4)预测标签

    基于用户的属性、行为、信令、位置和特征,挖掘用户潜在需求,针对这些潜在需求配合营销策略、规则进行打标,实现营销适时、适机、适景推送给用户。

    从数据的时效性来看,标签可分为:静态属性标签和动态属性标签。

    (5)静态属性标签

    长期甚至永远都不会发生改变。比如性别,出生日期,这些数据都是既定的事实,几乎不会改变。

    (6)动态属性标签

    存在有效期,需要定期地更新,保证标签的有效性。比如:用户的购买力,用户的活跃情况。

    5.标签的定义

    给用户打标签,建立用户画像,最终都是为了去应用,所以我们要站在应用场景上去定义用户的标签体系,每个标签都有最终的用途。比如:我们做考试培训服务,我们需要建立“是否考生”的标签。

    另外,不同的行业他们的用户特征也是有显著区别的,比如:医生用户相比普通用户来说,就多了像“科室”、“职称”、“所在医院等级”等特殊含义的标签。

    而标签是有层级关系的,既是为了管理,更好的理解,又是为了控制粗细力度,方便最终的应用。标签深度一般控制在四级比较合适,到了第四级就是具体的标签实例。

    我们根据公司的业务首先划分了人口属性、行为属性、用户分类和商业属性四个大的分类,下面又分了上网习惯、学习惯、人群属性、消费能力、消费习惯等分类,最末级精确到用户的活跃等级、阅读来源、考试偏好等具体的标签。

    6.标签的维护

    每个标签都不会凭空产生的,也不会一成不变,更不会凭空消失。标签的维护需要生成规则,需要定义权重,需要更新策略。

    7.生成规则

    如第一部分所说,标签分为事实标签,模型标签和预测标签三大类。对于这三类的标签,生成规则的难度和复杂性也是逐级递增的。事实标签只需要考虑从什么地方提取即可,它即包含明确的标签定义,又包含无法穷举的标签集,比如:关注的病种。

    而模型标签需要进行数据的关联和逻辑关系的设计,通过一定的模型对数据进行计算得来。而预测标签相对就非常的复杂,无法从原始数据提取标签,标签的生成准确度就太依赖我们大数据分析和人工智能技术的应用。

    8.定义权重

    一个标签会在多个场景下出现,比如:一个疾病标签,它极可能在浏览过程中生成,也有可能在搜索场景下产生,但是对于这两个场景所对应的同一个标签,他们的权重是不同的。浏览相比搜索,权重要小得多,因为搜索的主动需求更大。

    9.更新策略

    上文我们从数据的时效性上对标签分为静态属性标签和动态属性标签,对于静态属性标签的处理相对比较简单,就不停的累加即可。但是对于动态属性标签,需要对过期标签进行降权甚至删除处理,比如:医生考试前和考试后,会影响“是否考生”这个标签的,这就需要制定更新策略。

    10.标签建设的技术架构

    标签体系的建设涉及很多环节,数据量也十分巨大,需要有一个健壮且高效的技术架构来支持数据的存储及计算,掌上医讯采用了sql数据库和no-sql数据库来满足结构化数据和非结构化数据的存储。

    使用hadoop的分布式存储技术及hive和hbase组件作为数据仓库,使用MapReduce和spark分布式计算来提高计算速度,使用kylin进行多维分析,通过BI工具和接口对外提供应用,使用sqoop和kettle进行数据的抽取及流程的调用。

    11.更多的应用场景

    用户标签建立已经基本应用在掌上医讯的内容智能推荐的学习场景中,但随着标签的完善以及智能化处理的提升,这套标签体系将有更广阔的应用场景。

    (1)智能化学习场景的构建

    通过用户学习需求的标签的分析进行用户分群,针对不同的用户群在APP的功能和内容上进行个性化展示,满足不同学习需求的用户个性化的学习服务。

    (2)精准营销推广的建立

    更细粒度的对用户进行筛选,同时能够精准预测可能存在的目标用户进行推广,从而扩大医生覆盖,提升推广的转化率。

    (3)KOL用户画像的描绘

    基于该标签模型,增加对外部数据的采集分析,更加完整的生成医生360度的用户画像,帮助企业寻找潜在的KOL用户,实现用户洞察,辅助市场决策。

    标签的建设是一个看似高大上,其实很繁琐、纠结的过程,需要对业务抽丝剥茧,还要应对运营需求的各种变化,不过对公司发展的影响也是深远的。

    End.

    作者:小牛学堂

    来源:简书

    本文均已和作者授权,如转载请与作者联系。

    展开全文
  • 电商用户标签体系建设基础步骤

    千次阅读 2020-01-09 14:28:40
    构建用户标签体系主要根据用户在历史时间内的网购行为记录,从网购时间点、内容深度剖析,针对用户的基础属性、社交行为、互动行为、消费行为、偏好习惯、财富属性、信用属性和地理属性等八大维度构建用户标签体系,...

    构建用户标签体系主要根据用户在历史时间内的网购行为记录,从网购时间点、内容深度剖析,针对用户的基础属性、社交行为、互动行为、消费行为、偏好习惯、财富属性、信用属性和地理属性等八大维度构建用户标签体系,以期综合描绘平台消费者的行为特征。
    建设的过程分为六个基本步骤:
    1、首先以业务视角梳理规划整个标签体系的架构,即上面所说的八个维度;
    2、无规矩不成方圆,在进行实际开发之前,我们要定义包括数据(指标)规范、模型设计规范、ETL规范在内的规范体系。前文也讲过,这个规范体系可以借助数栈产品帮助建立和执行;
    3、将分散在各个系统/应用的数据同步到大数据开发平台之上,包括结构化的业务数据、埋点采集的行为日志数据等;
    4、核心围绕“用户”,以唯一标识打通来自不同平台、系统、渠道的数据,基于OneData体系依次构建全域数据中心、萃取数据中心;
    5、在萃取数据中心基础上,进行各类标签的研发,例如
    事实类标签(性别、年龄段等)、业务类标签(钻石会员、普通会员等)、统计类标签(近90天下单金额等)、算法类标签(重要保持客户、高忠诚度客户等)
    6、标签/画像投入应用,或对接至下游业务系统,产生业务价值。与此同时监控各类标签的使用与效果,统计出热门标签,替换掉不合理的标签,调整业务算法和规则,添加新的标签等,来进一步推动标签体系的梳理规划,逐步沉淀一套精华版标签集合。

    这其中,除了业务的输入以及数据的支撑外,要想快速建立一套科学的标签体系,还需要丰富的技术经验以及智能的工具或平台来提供助力,如阿里云或袋鼠云的数据中台。

    展开全文
  • 用户标签体系的应用——精准营销

    千次阅读 2019-07-02 14:18:22
    数据一直是各行各业的核心资产,蕴含巨大价值待挖掘,在数据→信息→知识的转化过程中,用户标签体系是基础,它将抽象的数据转化为一个相对具象的信息中心,用户分群和用户画像都是在建立在信息中心上的综合应用手段...

    数据一直是各行各业的核心资产,蕴含巨大价值待挖掘,在数据→信息→知识的转化过程中,用户标签体系是基础,它将抽象的数据转化为一个相对具象的信息中心,用户分群和用户画像都是在建立在信息中心上的综合应用手段,通过这些应用能更好地帮助企业构建精细化运营闭环,最终提高企业效能和用户满意度。

    当企业建立了成熟的标签体系,就能够在很多场景应用,主要有以下场景:

    用户分群,将对的人放在对的位置

    建立用户标签体系后,通过分析用户的历史行为路径、习惯、偏好等属性,加上二次加工得到的标签,能把具有一定特征的用户划分为一个群体,这样就能得到用于不同业务应用的用户分群。比如运营人员需要选择一批对 A 商品有购买意愿但并未下单的人进行优惠券的推送,就可以通过标签选择最近一个月将 A 商品加入购物车,同时未购买同品类商品的人建立一个分群推送优惠券,并在后期通过这个分群来判断它的购买情况。

    用户画像,精细+精准的个性化了解用户

    在良好的标签体系构建基础上,企业可以进行用户画像的有效应用。比如企业的产品、运营、营销人员可以根据标签抽象出用户群体中的典型用户,举个例子电商企业在做精细化运营时,运营人员需要先了解自身企业的用户群体分布,通过用户行为数据以及标签系统,从忠诚度和变现能力两方面将用户分为少有消费低频访问、有较多消费低频访问、高频活跃少有消费、最大价值用户四类,再根据筛选出来的用户的一些用户行为、所占比重、购买偏好等构建一个整体的用户画像,并根据用户画像进行定制化的运营策略。除此之外,企业还可以根据每个人在产品中的用户行为数据构建用户画像,产出描述用户的标签集合,如猜他的年龄,生活城市,乃至有什么爱好,要买什么东西等。

    前面我们介绍了标签体系的构建,以及相关的用户分群与用户画像的应用,但在我们接触的企业中,很多企业表示希望实现千人千面的智能营销,并进行了很多尝试,但出于各种原因难于实现,对此,易观方舟中,用户能够利用我们预置的指标搭建用户标签体系,通过数据驱动实现个性化智能营销闭环。

    智能化信息推送体系

    既在合适的时间,通过最佳的运营渠道,给用户传递最感兴趣的内容

    (1)渠道渠道个性化:

    基于短信,EDM,push,公众号模板消息等主流触达渠道用户的互动反馈情况,在用户偏好的渠道推送信息,提升体验的同时节约推送成本。

    (2)推送内容个性化:

    根据用户历史订单/浏览数据,实现基于用户消费/兴趣偏好的个性化推荐,并在文案中适当植入“姓名“”昵称“”星座“等个人属性显示,在千人千面的基础上增加互动亲密度。

    (3)推送时间个性化:

    基于用户历史点击/购买时间,判断用户最易被营销触动的时间点,在黄金时间点给用户发送营销信息。
    用户标签体系
    以星巴克为例,通过分析用户历史购买SKU数据,星巴克推算了用户的口味偏好,并以此为基础在APP专星送产品端上线了“每日标配”和“懂你喜欢”功能,“每日标配”使得用户在使用星巴克外卖服务的时候可以高效地做出惯性选择,有效地提升了转化。而“懂你喜欢”则可以根据用户的口味习惯引导消费升级(美式→冷萃)或糕点搭售,“优雅”地提升客单。

    个性化的营销活动配置

    在烧钱式一次性营销和0成本概念型营销的风潮褪去后,越来越多地企业开始回归理性。找到每个用户的痛点/痒点/爽点,因人而异地进行营销刺激,才是提升ROI的最佳路径,以下是4种常见的用户驱动类型及对应驱动杠杆:
    用户标签体系
    生命周期的自动化管理

    有CLV管理意识的企业通常会定期整理用户消费行为数据,并针对不同周期的用户进行对应的营销活动,这是标签体系的初级应用。但实际上,营销策略的变化永远赶不上用户兴趣迁移的速度,用户的来源,退出的节点都是动态的。因此,给用户打标的过程也应该是动态的,当我们设置一个打标条件后,所有满足条件的用户会自动打上这一标签,并进入此类标签人群的营销活动。这样的自动化管理可以确保我们对用户的认知永远是实时的,更能将运营人员从繁复的数据处理工作中解脱出来,真正释放营销创意。

    展开全文
  • 于是,“用户标签体系”的概念应运而生。 如图所示,个体由标签组成,谁来打这些标签?用什么维度来打标签?怎样建立成熟的标签体系,都是品牌关注的重点。 一、用户标签是什么 用户标签,就是企业...
  • 如何在ZB级的海量数据中获取并筛选有价值的信息,是对IT企业的一大挑战,通过构建客户标签,支撑精准营销服务,是应对上述挑战的有效解决方案,但是怎么设计一个完善的用户标签体系?怎么打标签?打哪些标签?谁来打...
  • 随着越来越多的企业开始追求对用户的精细化运营。用各种手段延长用户的生命周期,促进用户的活跃与转化,并尽一切可能产生商业价值,已经是运营的核心。...一、业务梳理 搭建用户标签体系需要考虑到后期标签的...
  • 随着越来越多的企业开始追求对用户的精细化运营。用各种手段延长用户的生命周期,促进用户的活跃与转化,并尽一切可能产生商业价值,已经是运营的核心。...一、业务梳理 搭建用户标签体系需要考虑到后期标签的...
  • [0.0.1]用户标签体系与画像

    千次阅读 2016-07-17 23:14:54
    场景一、 用户标签体系的建立 分别从素质(员工的基本信息)、能力、状态(工作行为)、效率(工作的饱和度)与绩效(结果)共五个维度建立用户的行为标签体系。具体包括: 标签体系的建立 按照五个维度将标签分为...
  • 通过给用户建立标签,可以实施更精准的运营,本文作者就教你用3分钟看懂用户标签体系。随着越来越多的企业开始追求对用户的精细化运营,用各种手段延长用户的生命周期,促进用户的活跃与转化,并尽一切可能产生商业...
  • 对用户标签的理解不够透彻?用户标签体系创建的方法论总是三头两绪?具体业务场景中,经常找不到数据分析的思路?本文根据神策数据业务咨询师钟秉哲以《构建用户标签体系,助力企业精细化运营》为主题...
  • 如何在ZB级的海量数据中获取并筛选有价值的信息,是对IT企业的一大挑战,通过构建客户标签,支撑精准营销服务,是应对上述挑战的有效解决方案,但是怎么设计一个完善的用户标签体系?怎么打标签?打哪些标签?谁来打...
  • 如上图所示,一个用户标签表里面包括常见的字段如:用户id、用户姓名、标签id、标签名称、用户与该标签发生行为的次数(如搜索了两次“大数据”这个关键词)、行为类型(不同的行为类型对应用户对商品不同的意愿强度,...
  • 一、用户标签是什么用户标签是构成用户画像的核心因素,是将用户在平台内所产生的行为数据,分析提炼后生成具有差异性特征的形容词。即用户通过平台,在什么时间什么场景下做了什么行为,平台将用户所有行为数据提炼...
  • 本文根据 2020 神策数据分析芒种训练营第一课《玩转用户标签体系,打造精细化运营底层能力》课程整理所得。作者介绍本次课程主要分为三部分内容:用户标签画像的价值如何构建可落地的用户标签体...
  • 一、用户标签是什么用户标签是构成用户画像的核心因素,是将用户在平台内所产生的行为数据,分析提炼后生成具有差异性特征的形容词。即用户通过平台,在什么时间什么场景下做了什么行为,平台将用户所有...
  • 标签(Tag)对某一类特定群体或对象的某项特征进行的抽象分类和概括,其值(标签值)具备可分类性。例:对于“人”这类群体,可将“男”、“女”这类特征进行抽象概括,统称为“性别”,“性别”即一个标签;对于“手机...
  • 2012对于用户 u ,令 R(u) 为给用户 u 的长度为 N的推荐列表,里面包含我们认为用户会打标签的物品。令 T(u) 是测试集中用户 u 实际上打过标签的物品集合。然后,我们利用准确率( precision )和召回率( recall )...
  • 导读:目前基于用户画像的标签体系在各行各业开始得到应用,对于涉及范围广,专业知识深的互联网招聘领域来说,建立标签体系的难点是什么呢?应该如何建立标签体系?怎么验证标签体系的准确性?文章对这三个问题展开...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 914
精华内容 365
关键字:

用户标签体系