精华内容
下载资源
问答
  • waffle可以使用该pywaffle软件包创建该图表,并用于显示较大人群中各组的组成。 #! pip install pywaffle # Reference: ...
  • 可视化图表包括直方图,折线,散点,三维,二维,经纬图等 代码和示例,
  • 主要给大家介绍了关于Python数据可视化教程之利用Matplotlib实现各种图表的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起看看吧
  • 今天小编就为大家分享一篇Python数据可视化:饼状图的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  • Python数据可视化编程实战是一本使用Python实现数据...《Python数据可视化编程实战》适合那些对Python编程有一定基础的开发人员,可以帮助读者从头开始了解数据数据格式、数据可视化,并学会使用Python可视化数据
  • 一、Python可视化之matplotlib的入门技术* 学习环境:Anaconda 用到的编辑软件:Spder(Python 3.7) 学习内容: 使用matplotlib库绘制基本统计图像。 matplotlib库的图表组成元素的概念和实现方法 细化matplotlib库...
  • 第一章内容发布在(使用Python制作疫情数据分析可视化图表(一))https://blog.csdn.net/yue__yang/article/details/104538235,请自行食用。 二、时间序列与区域划分 1、数据类型转换为时间序列 在数据中,有一个...
  • 出版社: 人民邮电出版社; 第1版 (2015年5月1日) 外文书名: Python Data Visualization Cookbook 平装: 242页 语种: 简体中文 开本: 16 ISBN: 7115384398
  • PYTHON数据可视化编程实战,全文高清pdf版本 Python Data Visualization Cookbook.pdf 人民邮电出版社 掌握和使用正确的数据可视化方法
  • Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表。 2、柱状图 适用场合是二维数据集(每个数据点...
  • python 疫情数据可视化

    2020-12-21 12:29:47
    json数据转 csv import json import time import csv file = open('DXYArea-TimeSeries.json','r',encoding='utf-8') infos = json.load(file) with open('data.csv','a',newline='') as f: writer = csv....
  • Python数据图表可视化

    千人学习 2020-06-05 15:29:07
    数据分析是一门重要的技能,职场中掌握了数据分析技术往往能让人另眼相看,而数据可视化数据分析的结果展示最有效的手段,本视频是Pandas数据分析课程的后续课程,可以掌握各种图表的绘制方法,通过实际案例的讲解...
  • python数据可视化

    2019-04-27 23:58:07
    一本《python数据可视化》,中文版,pdf文件很清楚,分享给大家
  • python数据可视化编程实战(英文第二版)源代码
  • 主要介绍了Python数据可视化编程 - 词云生成并保存(jieba+WordCloud),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  • Python数据可视化编程实战 一书的示例代码,书名英文为python Data visualization cookbook
  • 项目实现知识点: Pandas库及pyecharts库...Python数据可视化:漏斗图的制作 项目实现过程: 1.导入模块 2.打开文件 3.读取数据 4.整理数据 5.创建漏斗图 6.添加组件 7.显示漏斗并设置名称 8.结果展示
  • 今天小编就为大家分享一篇Python数据可视化:幂律分布实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  • 一百万行定宽数据python数据可视化文档,python数据可视化编程实战配套文档,读取定宽数据一百万行定宽数据python数据可视化文档
  • 本人博客中数据挖掘与数据分析板块的Python数据可视化的例子的数据集 本人博客中数据挖掘与数据分析板块的Python数据可视化的例子的数据集 本人博客中数据挖掘与数据分析板块的Python数据可视化的例子的数据集 本人...
  • python+pyecharts生成网页可视化图表,同一张网页生成多个图标
  • 今天小编就为大家分享一篇Python数据分析:手把手教你用Pandas生成可视化图表的教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  • 附件为《Python数据可视化编程实战》 示例代码,利用代码方便实验。 也可以从官网下载,方法如下: 1. 注册并登录网站 https://www.packtpub.com/support/ 2. 在文本框里搜索"Python Data Visualization Cookbook" 3...
  • Matplotlib中的annotate函数可用于在图形上给数据添加文本注解,而且支持带箭头的划线工具,非常方便我们在合适的位置添加描述信息。 参数说明: s:注释文本的内容 xy:被注释的坐标点,二维元组形如(x,y) xytext:...

    本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

    以下文章来源于汤豆道课,作者小汤豆

    在二维坐标图中我们经常对绘制的图形进行标注。在 matplotlib 中比较常用的有text和annotate两种标注方法,其中:

    - text: 无指向型标注,仅仅包含注释的文本内容

    - annotate: 指向型注释,不仅包含注释的文本内容还包含箭头指向,能够突显细节

    plt.text()

     

    参数说明:

    • x, y 为标注文本在绘图区域中的位置
    • s 为标注文本的内容
    • fontdict 为文本属性的字典,如果 fontdict 为 None,则使用默认的文本属性
    • **kwargs 可以使用键值对的形式替换 fontdict 中的文本属性

    示例

     

    运行结果:

     

     

    plt.annotate()

    Matplotlib中的annotate函数可用于在图形上给数据添加文本注解,而且支持带箭头的划线工具,非常方便我们在合适的位置添加描述信息。

     

    参数说明:

    • s:注释文本的内容
    • xy:被注释的坐标点,二维元组形如(x,y)
    • xytext:注释文本的坐标点,也是二维元组,默认与xy相同
    • xycoords:被注释点的坐标系属性,允许输入的值如下
    • arrowprops:箭头的样式,dict(字典)型数据,如果该属性非空,则会在注释文本和被注释点之间画一个箭头。如果不设置'arrowstyle' 关键字,则允许包含以下关键字:

    示例

     

    运行结果:

    展开全文
  • Python数据可视化手册.pdf

    千次下载 热门讨论 2015-01-18 14:13:38
    Python Data Visualization Cookbook.pdf
  • Python开发 之 各种可视化图表的绘制

    万次阅读 多人点赞 2019-04-29 20:41:28
    文章目录1、简介2、用 matplotlib 绘制各种可视化图表2.1 折线图2.2 柱形图2.3 饼图2.4 绘制三维散点图2.5 散点图3、其它可视化库3.1 Seaborn3.2 ggplot3.3 Bokeh3.4 pygal3.5 Plotly3.6 geoplotlib3.7 Gleam3.8 ...

    1、简介

    最近项目中用到不少有关Python图表的知识,主要用的可视化程序库的泰斗 matplotlib 。其实还有很多相关画图表的图形库,大多数可视化图形库是基于 matplotlib 构建的并且确保一些用例更简单。本文主要讲的是 matplotlib ,在文尾将会介绍 11 种其它的数据可视化库。

    matplotlib 是Python可视化程序库的泰斗。经过十几年它任然是Python使用者最常用的画图库。它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。

    由于 matplotlib 是第一个 Python 可视化程序库,有许多别的程序库都是建立在它的基础上或者直接调用它。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。

    虽然用matplotlib可以很方便的得到数据的大致信息,但是如果要更快捷简单地制作可供发表的图表就不那么容易了。就像Chris Moffitt 在“Python可视化工具简介”中提到的一样:“功能非常强大,也非常复杂。”
    在这里插入图片描述

    官网:https://matplotlib.org/
    Github/matplotlib:https://github.com/matplotlib/matplotlib

    安装:

    pip install matplotlib
    

    2、用 matplotlib 绘制各种可视化图表

    2.1 折线图

    折线图

    # encoding: utf-8
    """
    Author: 沙振宇
    CreateTime: 2019-4-29
    UpdateTime: 2019-12-12
    Info: matplotlib 使用示例 —— 折线图
    """
    import matplotlib.pyplot as plt
    
    #折线图
    x = [5,7,11,17,19,25]#点的横坐标
    k1 = [0.82,0.91,0.93,1.26,0.97,0.95]#线1的纵坐标
    k2 = [0.89,1.22,1.94,1.57,1.43,0.93]#线2的纵坐标
    plt.plot(x,k1,'s-',color = 'r',label="红线的名字")#s-:方形
    plt.plot(x,k2,'o-',color = 'g',label="绿线的名字")#o-:圆形
    plt.xlabel("横坐标名字")
    plt.ylabel("纵坐标名字")
    plt.legend(loc = "best")#图例
    plt.rcParams['font.sans-serif']=['SimHei'] # 中文
    plt.show()
    

    2.2 柱形图

    柱形图

    # encoding: utf-8
    """
    Author: 沙振宇
    CreateTime: 2019-4-29
    UpdateTime: 2019-12-12
    Info: matplotlib 使用示例 —— 柱形图
    """
    import numpy as np
    import matplotlib.pyplot as plt
    #柱状图
    A1 = [0.88,0.81,0.85]
    A2 = [0.89,0.86,0.84]
    A3 = [0.88,0.83,0.89]
    A4 = [0.86,0.86,0.88]
    A5 = [0.90,0.83,0.83]
    x = np.arange(3) #总共有几组,就设置成几,我们这里有三组,所以设置为3
    total_width, n = 0.6, 5    # n有多少个类型
    width = total_width / n
    x = x - (total_width - width) / 2
    plt.bar(x, A1, color = "r",width=width,label='a1 ')
    plt.bar(x + width, A2, color = "y",width=width,label='a2')
    plt.bar(x + 2 * width, A3 , color = "c",width=width,label='a3')
    plt.bar(x + 3 * width, A4 , color = "g",width=width,label='a4')
    plt.bar(x + 4 * width, A5 , color = "b",width=width,label='a5')
    plt.xlabel("横轴的名字")
    plt.ylabel("纵轴的名字")
    plt.legend(loc = "best")
    plt.xticks([0,1,2],['左边','中间','右边'])
    plt.ylim((0.8, 0.95))
    my_y_ticks = np.arange(0.8, 0.95, 0.02)
    plt.yticks(my_y_ticks)
    plt.rcParams['font.sans-serif']=['SimHei']  # 中文
    plt.show()
    

    2.3 饼图

    饼图

    # encoding: utf-8
    """
    Author: 沙振宇
    CreateTime: 2019-4-29
    UpdateTime: 2019-12-12
    Info: matplotlib 使用示例 —— 饼图
    """
    import matplotlib.pyplot as plt
    
    # 饼图
    data = {
        '中国': (130, '#7199cf'),
        '美国': (115, '#4fc4aa'),
        '日本': (60, '#ffff10'),
    }
    # 设置绘图对象的大小
    fig = plt.figure(figsize=(8, 8))
    cities = data.keys()
    values = [x[0] for x in data.values()]
    colors = [x[1] for x in data.values()]
    ax1 = fig.add_subplot(111)
    ax1.set_title('饼图')
    labels = ['{}:{}'.format(city, value) for city, value in zip(cities, values)]
    
    explode = [0.05, 0, 0] # 设置饼图的凸出显示
    ax1.pie(values, labels=labels, colors=colors, explode=explode, shadow=True) # 画饼状图, 并且指定标签和对应的颜色  指定阴影效果
    
    # plt.savefig('pie.jpg') # 保存成图片
    plt.rcParams['font.sans-serif']=['SimHei']  # 中文
    plt.show()
    

    2.4 三维散点图

    三维散点图

    # encoding: utf-8
    """
    Author: 沙振宇
    CreateTime: 2019-4-29
    UpdateTime: 2019-12-12
    Info: matplotlib 使用示例 —— 三维散点图
    """
    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    
    
    data = np.random.randint(0, 255, size=[50, 50, 50])
    x, y, z = data[0], data[1], data[2]
    ax = plt.subplot(111, projection='3d') # 创建一个三维的绘图工程
    # 将数据点分成三部分画,在颜色上有区分度
    ax.scatter(x[:10], y[:10], z[:10], c='y') # 绘制数据点
    ax.scatter(x[10:20], y[10:20], z[10:20], c='r')
    ax.scatter(x[30:40], y[30:40], z[40:50], c='g')
    ax.set_zlabel('Z') # 坐标轴
    ax.set_ylabel('Y')
    ax.set_xlabel('X')
    plt.rcParams['font.sans-serif']=['SimHei']  # 中文
    plt.show()
    

    2.5 散点图

    散点图

    # encoding: utf-8
    """
    Author: 沙振宇
    CreateTime: 2019-4-29
    UpdateTime: 2019-12-12
    Info: matplotlib 使用示例 —— 散点图
    """
    import numpy as np
    import matplotlib.pyplot as plt
    
    x = np.arange(0., 5., 0.2)
    plt.xlabel('横轴名字')
    plt.ylabel('纵轴名字')
    plt.rcParams['font.sans-serif']=['SimHei']  # 中文
    plt.plot(x, x, 'r--', x, x ** 2, 'bs', x, x ** 3, 'g^')
    plt.show()
    

    3、其它可视化库

    3.1 Seaborn

    Seaborn利用了matplotlib,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。由于Seaborn是构建在matplotlib的基础上的,你需要了解matplotlib从而来调整Seaborn的默认参数。
    官网: http://seaborn.pydata.org/index.html

    3.2 ggplot

    ggplot 基于R的一个作图包 ggplot2, 同时利用了源于 《图像语法》(The Grammar of Graphics)中的概念。ggplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图。比如你可以从轴开始,然后加上点,加上线,趋势线等等。虽然《图像语法》得到了“接近思维过程”的作图方法的好评,但是习惯了matplotlib的用户可能需要一些时间来适应这个新思维方式。ggplot的作者提到 ggplot 并不适用于制作非常个性化的图像。它为了操作的简洁而牺牲了图像复杂度。ggplot跟pandas的整合度非常高,所以当你使用它的时候,最好将你的数据读成 DataFrame。
    官网: http://ggplot.yhathq.com/

    3.3 Bokeh

    跟ggplot一样, Bokeh 也是基于《图形语法》的概念。但是跟ggplot不一样的是,它完全基于Python而不是从R引用过来的。它的长处在于它能用于制作可交互,可直接用于网络的图表。图表可以输出为JSON对象,HTML文档或者可交互的网络应用。Boken也支持数据流和实时数据。
    Bokeh为不同的用户提供了三种控制水平。最高的控制水平用于快速制图,主要用于制作常用图像, 例如柱状图,盒状图,直方图。中等控制水平跟matplotlib一样允许你控制图像的基本元素(例如分布图中的点)。最低的控制水平主要面向开发人员和软件工程师。它没有默认值,你得定义图表的每一个元素。
    官网: https://bokeh.pydata.org/en/latest/

    3.4 pygal

    pygal 跟 Bokeh 和 Plotly 一样,提供可直接嵌入网络浏览器的可交互图像。跟其他两者的主要区别在于它可以将图表输出为SVG格式。如果你的数据量相对小,SVG就够用了。但是如果你有成百上千的数据点,SVG的渲染过程会变得很慢。由于所有的图表都被封装成了方法,而且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
    官网: http://www.pygal.org/en/latest/index.html

    3.5 Plotly

    在线制图工具Plotly,但是你知道你可以通过Python notebook使用它么?Plotly 跟 Bokeh 一样致力于交互图表的制作,但是它提供在别的库中很难找到的几种图表类型,比如等值线图,树形图和三维图表。
    官网: https://plot.ly/python/

    3.6 geoplotlib

    geoplotlib 是一个用于制作地图和地理相关数据的工具箱。你可以用它来制作多种地图,比如等值区域图, 热度图,点密度图。你必须安装 Pyglet (一个面向对象编程接口)来使用geoplotlib。 不过因为大部分Python的可视化工具不提供地图,有一个专职画地图的工具也是挺方便的。
    Github:https://github.com/andrea-cuttone/geoplotlib

    3.7 Gleam

    Gleam 借用了R中 Shiny 的灵感。 它允许你只利用 Python 程序将你的分析变成可交互的网络应用,你不需要会用HTML CSS 或者 JaveScript。Gleam 可以使用任何一种 Python 的可视化库。当你创建一个图表的时候,你可以在上面加上一个域,这样用户可以用它来对数据排序和过滤了。
    Github:https://github.com/dgrtwo/gleam

    3.8 missingno

    缺失数据是永远的痛。missingno 用图像的方式让你能够快速评估数据缺失的情况,而不是在数据表里面步履维艰。你可以根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图来考虑对数据进行修正。
    Github: https://github.com/ResidentMario/missingno

    3.9 Leather

    Leather的最佳定义来自它的作者 Christopher Groskopf:“Leather 适用于现在就需要一个图表并且对图表是不是完美并不在乎的人。”它可以用于所以的数据类型然后生成SVG图像,这样在你调整图像大小的时候就不会损失图像质量。这个库很新,一些文档还没有最后完成。图像成品非常基础——但是这就是设计目标。
    官网:https://leather.readthedocs.io/en/latest/index.html

    3.10 pastalog

    面向训练神经网络的简单实时可视化服务器。 Lasagne。Keras。Tensorflow。Torch。Theano和基本所有其他内容一起使用。
    Github: https://github.com/rewonc/pastalog

    3.11 GazeParser

    GazeParser是眼动研究的一个包。 对于录制,该软件包提供了一个模块来控制来自VisionEgg和PsychoPy的基于视频的开源眼动追踪应用程序SimpleGazeTracker。 对于数据分析,该软件包提供各种功能,例如检测扫视和固定,绘制和比较扫描路径,计算扫视轨迹曲率等。
    pypi:https://pypi.org/project/GazeParser/0.11.1/

    4、此项目Github源码分享

    https://github.com/ShaShiDiZhuanLan/Demo_Matplotlib_Python

    展开全文
  • 今天小编就为大家分享一篇Python数据可视化:泊松分布详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  • 本课程介绍了Python数据可视化库——Matplotlib和Seaborn,其中包括了:Matplotlib库:图表基本构成要素、绘制线图、显示图形、显示中文和负号、设置线条颜色和风格、保存图片、绘制柱状图、绘制饼状图、绘制散点图...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 29,287
精华内容 11,714
关键字:

python数据可视化图表

python 订阅