精华内容
下载资源
问答
  • 智能驾驶数据网络时间同步(PTP时钟服务器)分析 随着汽车电子的日益复杂化以及汽车电子电气架构(EEA)的升级,人们对于联网智能汽车的需求也在逐步上升,大量先进技术往汽车上应用,如高级驾驶辅助系统(ADAS)、自动...

    智能驾驶数据网络时间同步(PTP时钟服务器)分析

    随着汽车电子的日益复杂化以及汽车电子电气架构(EEA)的升级,人们对于联网智能汽车的需求也在逐步上升,大量先进技术往汽车上应用,如高级驾驶辅助系统(ADAS)、自动驾驶等,这些新技术也对车载网络的带宽有了更高的要求。从而使用以太网技术及中央域控制(Domain)和区域控制(Zonal)架构是下一代车载网络的发展方向。

    然而对于自动驾驶技术的实现,涉及到感知、规划、执行三个层面。由于车辆行驶在未知动态环境中,需要事先构建出环境地图并在地图中进行自我定位,这其中涉及到各传感器数据的精确时间同步。然后根据传感器捕获的原始数据和已有环境场景,规划车辆从一个位置到另一个位置的路径。最后控制系统发出信号控制车上的电机或者液压执行器执行相应的动作。

    一、传感器数据同步原理

    通过设置唯一的时钟主机给各类传感器提供相同的基准时间。但是由于各传感器设备时钟晶振及数据传输路径不同,需要根据提供的基准时间校准各自的时钟时间,实现时间同步。最后根据校准后的时间为采集数据加上时间戳信息,这样就可以保证同一时刻采集相同的环境信息。

    图1:传感器时钟同步原理
    那么,怎么解决各传感器设备由于时钟晶振及数据传输路径等不同,怎么根据基准时间校准自己的时间?可以使用PTP/gPTP协议解决各传感器设备时间同步的问题!

    二、PTP/gPTP时钟同步协议介绍

    PTP/gPTP时钟同步协议是基于数据包的时间同步协议。数据传输和时间同步使用同一网络,它描述了如何在基于数据包网络(比如以太网)上分配同步时间(相位、频率和绝对时间)的机制。时钟精度达到亚微秒级。

    三、相关名词及概念

    ▼时钟节点

    构成时间域的各节点称为时钟节点。比如自动驾驶数采套件上的各类传感器。协议定义以下三类:

    表1:时钟节点类型图2:边界时钟与透明时钟区别
    ▼时钟节点端口

    表2:端口状态
    ▼报文类型

    表3:报文类型
    ▼传输延迟机制

    协议中定义了两种机制用来测量时间节点端口之间的传输延迟。

    表4:传输延迟机制
    P2P机制优化了E2E在实际情况存在网络不对称造成的误差。那是不是我们就尽量P2P机制呢?显然不是!P2P机制要求交换节点都能支持TC或BC模式,否则无法识别和响应Pdelay报文,系统内存在大量普通交换机,采用E2E是更好的选择。

    四、时钟同步原理及传输延迟机制区

    ▼时钟同步原理

    协议的正常执行分为两个步骤:

    建立主从层次;
    所有普通时钟端口通过Announce报文和最佳主时钟(BMCA)算法来建立主从同步层次,处于从状态与处于主状态的端口进行同步。在域中,每个端口检查该端口上接收的所有“Announce”消息的内容,与普通时钟或边界时钟相关端口数据集的内容相比较,以确定时钟的每个端口的状态。
    同步时钟。
    时差修正,延迟补偿。需同步设备时间(T2) = 基准时间(T1)+链路延迟(Delay)+时钟偏差(Offset)。
    图3:延迟请求响应机制
    延迟请求响应机制步骤:

    主节点向从节点发送Sync消息,并记录发送时间t1;
    从节点收到该报文后,记录接收时间t2;
    主节点通过以下方式将时间戳t1传递给从节点;
    ▶ One-step方式:时间戳t1嵌入到Sync消息中,对硬件处理能力要求较高,快速往Sync报文嵌入时间标签,以实现高准确性和精度。
    ▶ Two-step方式:将时间戳t1嵌入到Follow_Up中。
    从节点向主节点发送Delay_Req报文,用于发起反向传输延时的计算,并记录发送时间t3;
    主节点收到Delay_Req报文之后,记录接收时间t4;
    主节点将t4嵌入到Delay_Resp消息中,从而传递给从节点。
    此时,从节点便拥有了t1~t4这四个时间戳,假设网络对称,由此可计算出从节点相对于主节点的时钟延迟:Delay=(t4-t3+t2-t1)/2,时钟偏差:Offset=(t2-t4+t3-t1)/2。
    图4:对等延迟机制
    对等延迟机制步骤:

    链路延迟测量从端口A开始,发出Pdelay_Req消息并为Pdelay_Req消息生成时间戳t1;
    端口B接收Pdelay_Req消息,并为该消息生成时间戳t2;
    端口B返回一个Pdelay_Resp消息,并为该消息生成一个时间戳t3;
    为了最小化两个端口之间的频率偏移所造成的错误,端口B在收到Pdelay_Req消息后尽快返回Pdelay_Resp消息;
    ▶ One-step方式:Pdelay_Resp嵌入的t2和t3时间戳之间的差值;
    ▶ Two-step方式:Pdelay_Resp嵌入的t2时间标签,dealy_Resp_Follow_Up嵌入t3时间标签。
    端口A生成接收Pdelay_Resp消息的时间戳t4。端口A然后使用这四个时间戳来计算平均链接延迟。Delay = [(t2–t1)+(t4–t3)]/2,时钟偏差:Offset=(t2-t4+t3-t1)/2。
    ▼E2E与P2P区别

    E2E机制只能从节点往主节点这个方向计算延迟,而P2P机制可以主从节点两端计算延迟。如图5所示。

    图5:E2E和P2P在边界时钟区别
    E2E机制报文能全部被TC转发,而P2P机制独有的报文不能被转发。P2P机制下TC能把停留时间和沿路径的链路延迟之和将报告给从站。E2E机制下TC能把沿路径的停留时间总和将报告给从站。如图6所示。

    图6:E2E和P2P在透明时钟区别
    五、应用案例—ADAS数据采集解决方案

    东信在构建精确时间同步系统方面具有丰富的经验,能够根据高清摄像头、毫米波雷达、激光雷达等各类传感器的特性,构建多种类型数据的处理分析系统,并实现数据的精确时间同步。

    图7:系统示例
    OK,今天的分享交流就到这里啦,若您还想了解更能多相关内容,欢迎给我们评论留

    展开全文
  • PTP时钟同步服务器工作原理与介绍

    千次阅读 2020-09-30 17:35:27
    PTP时钟同步服务器工作原理与介绍 1、引言  以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE,40GE,100GE正式产品...

    PTP时钟同步服务器工作原理与介绍
    1、引言
      以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE,40GE,100GE正式产品也于2009年推出。
      以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP(Network Time Protocol),简单网络时间协议SNTP(Simple Network Time Protocol)等不能达到所要求的同步精度或收敛速度。基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。本文重点介绍IEEE 1588技术及其测试实现。

    2、IEEE1588PTP介绍

    IEEE1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源消耗少等特点。IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE 1588 Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。

    IEEE 1588将整个网络内的时钟分为两种,即普通时钟(Ordinary Clock,OC)和边界时钟(Boundary Clock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP通信端口的时钟是边界时钟,每个PTP端口提供独立的PTP通信。其中,边界时钟通常用在确定性较差的网络设备(如交换机和路由器)上。从通信关系上又可把时钟分为主时钟和从时钟,理论上任何时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。根据各节点上时钟的精度和级别以及UTC(通用协调时间)的可追溯性等特性,由最佳主时钟算法(Best Master Clock)来自动选择各子网内的主时钟;在只有一个子网的系统中,主时钟就是最高级时钟GMC。每个系统只有一个GMC,且每个子网内只有一个主时钟,从时钟与主时钟保持同步。图1所示的是一个典型的主时钟、从时钟关系示意。

    主从时钟关系图
      同步的基本原理包括时间发出和接收时间信息的记录,并且对每一条信息增加一个“时间戳”。有了时间记录,接收端就可以计算出自己在网络中的时钟误差和延时。为了管理这些信息,PTP协议定义了4种多点传送的报文类型和管理报文,包括同步报文(Sync),跟随报文(Follow_up),延迟请求报文(Delay_Req),延迟应答报文(Delay_Resp)。这些报文的交互顺序如图2所示。收到的信息回应是与时钟当前的状态有关的。同步报文是从主时钟周期性发出的(一般为每两秒一次),它包含了主时钟算法所需的时钟属性。总的来说同步报文包含了一个时间戳,精确地描述了数据包发出的预计时间。

    PTP报文与交换顺序
      由于同步报文包含的是预计的发出时间而不是真实的发出时间,所以Sync报文的真实发出时间被测量后在随后的Follow_Up报文中发出。Sync报文的接收方记录下真实的接收时间。使用Follow_Up报文中的真实发出时间和接收方的真实接收时间,可以计算出从属时钟与主时钟之间的时差,并据此更正从属时钟的时间。但是此时计算出的时差包含了网络传输造成的延时,所以使Delay_Req报文来定义网络的传输延时。

    Delay_Req报文在Sync报文收到后由从属时钟发出。与Sync报文一样,发送方记录准确的发送时间,接收方记录准确的接收时间。准确的接收时间包含在Delay_Resp报文中,从而计算出网络延时和时钟误差。同步的精确度与时间戳和时间信息紧密相关。纯软件的方案可以达到毫秒的精度,软硬件结合的方案可以达到微秒的精度。PTP协议基于同步数据包被传播和接收时的最精确的匹配时间,每个从时钟通过与主时钟交换同步报文而与主时钟达到同步。这个同步过程分为漂移测量阶段和偏移测量与延迟测量阶段。

    第一阶段修正主时钟与从时钟之间的时间偏差,称为漂移测量。如图3所示,在修正漂移量的过程中,主时钟按照定义的间隔时间(缺省是2s)周期性地向相应的从时钟发出惟一的同步报文。这个同步报文包括该报文离开主时钟的时间估计值。主时钟测量传递的准确时间T0 K,从时钟测量接收的准确时间T1 K。之后主时钟发出第二条报文——跟随报文(Follow_up Message),此报文与同步报文相关联,且包含同步报文放到PTP通信路径上的更为精确的估计值。这样,对传递和接收的测量与标准时间戳的传播可以分离开来。从时钟根据同步报文和跟随报文中的信息来计算偏移量,然后按照这个偏移量来修正从时钟的时间,如果在传输路径中没有延迟,那么两个时钟就会同步。

    从时钟向主时钟发出一个“延迟请求”数据报文,在这个过程中决定该报文传递准确时间T2。主时钟对接收数据包打上一个时间戳,然后在“延迟响应”数据包中把接收时间戳B送回到从时钟。根据传递时间戳B和主时钟提供的接收时间戳D,从时钟计算与主时钟之间的延迟时间。与偏移测量不同,延迟测量是不规则进行的,其测量间隔时间(缺省值是4~60s之间的随机值)比偏移值测量间隔时间要大。这样使得网络尤其是设备终端的负荷不会太大。采用这种同步过程,可以消减PTP协议栈中的时间波动和主从时钟间的等待时间。从图4右边可以看到延迟时间D 和偏移时间数值O的计算方法。

    IEEE 1588目前的版本是v2.2,主要应用于相对本地化、网络化的系统,内部组件相对稳定,其优点是标准非常具有代表性,并且是开放式的。由于它的开放性,特别适合于以太网的网络环境。与其他常用于Ethernet TCP/IP网络的同步协议如SNTP或NTP相比,主要区别是PTP是针对更稳定和更安全的网络环境设计的,所以更为简单,占用的网络和计算资源也更少。NTP协议是针对于广泛分散在互联网上的各个独立系统的时间同步协议。GPS(基于卫星的全球定位系统)也是针对于分散广泛且各自独立的系统。PTP定义的网络结构可以使自身达到很高的精度,与SNTP和NTP相反,时间戳更容易在硬件上实现,并且不局限于应用层,这使得PTP可以达到微秒以内的精度。此外,PTP模块化的设计也使它很容易适应低端设备。

    IEEE1588标准所定义的精确网络同步协议实现了网络中的高度同步,使得在分配控制工作时无需再进行专门的同步通信,从而达到了通信时间模式与应用程序执行时间模式分开的效果。

    由于高精度的同步工作,使以太网技术所固有的数据传输时间波动降低到可以接受的,不影响控制精度的范围。

    展开全文
  • PTP网络时钟服务器是如何工作的? 1.1. PTP起源 伴随着网络技术的不断增加和发展,尤其是以太网在测量和控制系统中应用越来越广泛,计算机和网络业界也在致力于解决以太网的定时同步能力不足的问题,以减少采用其它...

    PTP网络时钟服务器是如何工作的?
    1.1. PTP起源
    伴随着网络技术的不断增加和发展,尤其是以太网在测量和控制系统中应用越来越广泛,计算机和网络业界也在致力于解决以太网的定时同步能力不足的问题,以减少采用其它技术,例如IRIG-B等带来的额外布线开销。于是开发出一种软件方式的网络时间协议(NTP),来提高各网络设备之间的定时同步能力。1992年NTP版本的同步准确度可以达到200μs,但是仍然不能满足测量仪器和工业控制所需的准确度。为了解决这个问题,同时还要满足其它方面需求。网络精密时钟同步委员会于2001年中获得IEEE仪器和测量委员会美国标准技术研究所(NIST)的支持,该委员会起草的规范在2002年底获得IEEE标准委员会通过,作为IEEE1588标准。该标准定义的就是PTP协议(Precision Time Protocol)。
    1.2. PTP应用环境
    PTP适合用于支持单播,组播消息的分布式网络通信系统,例如Ethernet。同时提供单播消息的支持。协议支持多种传输协议,例如UPD/IPv4,UDP/IPv6,Layer-2 Ethernet,DeviceNet。协议采用短帧数据传输以减少对网络资源使用,算法简单,对网络资源使用少,对计算性能要求低,适合于在低端设备上应用。
    1.3. PTP目标
    无需时钟专线传输时钟同步信号,利用现有的数据网络传输时钟同步消息。降低组建时间同步系统的费用。在提供和GPS相同的精度情况下,不需要为每个设备安装GPS那样昂贵的组件,只需要一个高精度的本地时钟和提供高精度时间戳的部件,成本相对较低。采用硬件与软件结合设计,并对各种影响同步精度的部分进行有效矫正,以提供亚微妙级的同步精度。独立于具体的网络技术,可采用多种传输协议。
    1.4. 优势
    1.4.1. 高精度授时
    性能优化。采用硬件时间戳,背靠背授时精度优于40ns,5跳40%单向流量授时精度优于500ns。利用我司专有流量预测模型消除网络突发流量对授时精度的影响;支持IEEE1588-2008 (PTP v2)协议单点,组播授时,支持SNTP/NTP网络协议授时;更好的解决链路对称性问题。
    1.4.2. 适应性强
    确保授时精度的前提下,对时钟同步的网络条件要求更少。提供多种接口(1PPS-IN/TOD-IN/1PPS-OUT/TOD-OUT/COM/ 10/100以太网络接口),能够适应各种挑战性环境,比如有线,单跳,多跳,对称/不对称,高/中/低等背景流量状况。授时源的灵活性(50通道GPS接收装置 ,<10s热启动时间,可选北斗授时)
    1.4.3. 产品线丰富
    我司时钟产品线包括主从时钟,嵌入式主从时钟板卡,从时钟PCI板卡,能满足不同的客户需求。
    1.4.4. 自主知识产权
    我司一直专注于时钟产品的研发,经过多年的积累,产品具有性能和价格优势,是国内为数不多的1588时钟提供商。
    2. 需求分析
    我司PTP主时钟通过(光纤)网络与PTP从端(板卡)进行同步,当中经过3-4个带光口与电口的普通交换机,同步的精度要求在1us内。PTP从端同步后将1PPS信号传给采集装置。
    3. 解决方案
    3.1. 方案的设计原则
    3.1.1. 先进性
    IEEE 1588v2是新一代时间同步技术,在精度、成本、网络拓展方面都有着与传统时钟不可比拟的优势。我司IEEE 1588v2时钟源自自主知识产权,整个系统选型,软硬件设备的配置均符合国际指标。
    3.1.2. 可扩展性
    我司IEEE 1588v2 系列时钟产品采用模块化设计,具有极佳的可扩展性及灵活性。便于系统功能扩充、运行设备的替换、维护,确保系统的高效可靠运行。 可随时根据需要扩充具有其它功能的软硬件模块。
    3.1.3. 可管理性
    我司IEEE 1588v2 时钟支持网络管理配置与监控,能够使管理人员方便及时地掌握诸如网络性能统计、网络故障等信息,能简便地对网络进行统一配置和调整,确保网络工作在良好状态。
    3.1.4. 稳定性
    稳定性对系统的可用性和使用率来说至关重要,如高压力运行、复杂网络环境等,我公司设备经权威多项监测符合电力、通信、军事等专业应用的各项标准。
    3.2. 方案
    PTP主时钟HR-PTP2200通过(光纤)网络与HR-PTP2000板卡进行同步,当中经过3-4层普通交换机,距离6里内,同步的精度要求在1us内。HR-PTP2000同步后将1PPS信号传给采集器。
    拓扑图

    方案详解
    授时网络由我司一台HR-PTP2200主时钟,和HR-PTP2000板卡,以及当中经过的交换机及网线光纤组成。主时钟从GPS卫星上得到时间信号后,通过IEEE1588v2协议包交换,将时间信号经由支持IEEE1588v2的交换网络传递给HR-PTP2000。HR-PTP2000得到精准的时间信号后,输出1pps信号给采集器。拓扑图见上。
    时间精度方面,支持IEEE1588v2的多跳局域网络贡献约+/-500ns的时间误差(具体值取决于所有IEEE1588v2交换机产生的累积时间误差),板卡1PPS信号是属于硬件触发,时间误差可忽略不计。因此能够满足客户1us的精度需求。
    经测试,我司时钟产品正常工作所需的协议交互流量约为10Kbps,即使考虑最坏情况下100个从时钟信号经由一条路径传输,需要的总带宽也仅约为1Mbps,在一个10/100Mbps级别的交换网络中产生的额外负载约为1%,不会对产生明显影响。时钟产生的所有协议包完全符合美国电子电气工程师协会制定的IEEE1588v2协议,不会对用户网络安全产生任何影响。因而本方案符合不对用户既有网络业务造成影响的需求。

    展开全文
  • PTP时钟和NTP时钟同步有什么区别

    千次阅读 2020-07-29 15:11:27
    PTP时钟 理论上任何PTP时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。根据各节点上...

    PTP时钟

    理论上任何PTP时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。根据各节点上时钟的精度和级别以及UTC(通用协调时间)的可追溯性等 特性,由最佳主时钟算法(Best MasterClock)来自动选择各子网内的主时钟;在只有一个子网的系统中,主时钟就是最高级时钟GMC。每个系统只有一个GMC,且每个子网内只有一个主时钟,从时钟与主时钟保持时钟同步。

    下图所示的是一个典型的主时钟、从时钟关系示意图:

    在这里插入图片描述

    PTP时钟同步的基本原理包括时间发出和接收时间信息的记录,并且对每一条信息增加一个“时间戳”。有了时间记录,接收端就可以计算出自己在网络中的时钟误差和延时。

    PTP域的节点设备按照一定的主从关系(Master-Slave)进行时钟同步。主从关系是相对而言的,同步时钟的节点设备称为从节点,发布时 钟的节点设备称为主节点,一台设备可能同时从上层节点设备同步时钟,然后向下层节点设备发布时钟。对于相互同步的一对时钟节点来说, 存在如下主从关系:

    发布同步时间的节点称为主节点,而接收同步时间的节点则称为从节点。

    主节点上的时钟称为主时钟,而从节点上的时钟则称为从时钟。

    发布同步时间的端口称为主端口,而接收同步时间的端口则称为从端口。

    应用了PTP协议的网络称为PTP域,网络中可能含有多个PTP域,PTP域是独立PTP时钟同步系统,一个PTP域内有且只有一个时钟源,域内的所有设备都与该时钟源保持同步。

    IEEE1588标准所定义的精确网络同步协议实现了网络中的高度同步,使得在分配控制工作时无需再进行专门的同步通信,从而达到了通信时间模式与应用程序执行时间模式分开的效果。

    由于高精度的同步工作,使以太网技术所固有的数据传输时间波动降低到可以接受的,不影响控制精度的范围。

    NTP时钟

    网络时间协议(NTP)以合适的算法以增强时钟的准确性,并且减轻多个由于同步源而产生的差错,实现了准确性低于毫秒的时间服务,以满足目前因特网中路径量测的需要。通常让局域网上的若干台主机通过因特网与其他的NTP主机同步时钟,接着再向局域网内其他客户端提供时间同步服务。

    下图所示的是一个典型的NTP时钟同步示意图:

    在这里插入图片描述

    在配置时,NTP可以利用冗余服务器和多条网络路径来获得时间的高准确性和高可靠性。实际应用中,又有确保秒级精度的简单的网络时间协议。NTP服务器可以使计算机时间同步化的一种协议,其同步时钟源不仅仅局限于网络的时间服务器,还包括时钟设备,如石英钟,原子钟, GPS接收器等。

    NTP是网络时间协议(NetworkTime Protocol),它是用来同步网络中各个计算机的时间的协议。在计算机的世界里,时间非常地重要,例如 对于火箭发射这种科研活动,对时间的统一性和准确性要求就非常地高,是按照A这台计算机的时间,还是按照B这台计算机的时间?NTP就是用 来解决这个问题的,NTP(Network Time Protocol,网络时间协议)是用来使网络中的各个计算机时间同步的一种协议。它的用途是把计算机 的时钟同步到世界协调时UTC,其精度在局域网内可达0.1ms,在互联网上绝大多数的地方其精度可以达到1-50ms。以上为广义的对PTP和NTP的 说明,下面主要说明PTP时钟和NTP时钟的关联性特点。

    展开全文
  • 一种PTP时钟同步设备(ptp服务器)技术应用 一种PTP时钟同步设备(ptp服务器)技术应用 【关键词】IEEE1588;时间同步;PTP 一、电力系统时间同步基本概况  随着对IEC 61850标准研究的不断深入,国内外学者提出基于...
  • NTP时钟服务器(PTP服务器)无法同步的排查方法 NTP时钟服务器(PTP服务器)无法同步的排查方法 NTP系统是典型的C-S模型,一般将整个系统分为服务器,网络和客户端三个区域,因NTP时间服务器一般在出厂时已经测试,并...
  • IEEE1588精密时钟(PTP网络时钟服务器)在数字化变电站时钟同步方面的应用 IEEE1588精密时钟(PTP网络时钟服务器)在数字化变电站时钟同步方面的应用 本文由安徽京准公司提供,未经授权请勿转载@@@ 【摘要】本文介绍...
  • stm32f107ptp时钟同步

    2021-01-22 13:13:12
    这是stm32f107ptp时钟同步程序,官方库,经过移植有用,精度300ns左右,建议使用v2版本,主从机修改一下ip 什么的就可以使用了,注意你自己使用的是和哪块评估板类似就在mdk里面选择对应版本,否则会移植不成功 ...
  • 1588v2PTP网络时间服务器引入背景 产生背景 传统的时间同步链路是采用NTP协议传送方式实现,该协议只能满足ms级别的时间传递精度,这对于无线时间同步基站所需的us级时间精度是远远不够的。 基站侧可采用GPS解决频率...
  • IEEE1588精密网络同步时钟协议(PTP)-v2.0协议浅析 本文由安徽京准科技公司提供请勿转载! 1 引言  以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度...
  • PTP授时服务器技术详解让你从小白到砖家 PTP授时服务器技术详解让你从小白到砖家 概述 1.1. PTP起源 伴随着网络技术的不断增加和发展,尤其是以太网在测量和控制系统中应用越来越广泛,计算机和网络业界也在致力于...
  • 这篇文章介绍一下两个时钟同步的网络协议:NTP和PTP。 这里不涉及协议的原理和具体实现(想了解的可自行Google),重点是如何搭建起这两个服务。 1. NTP及PTP简介 NTP(Network Time Protocol)是用于不同计算机之间...
  • GPS同步时钟(NTP时钟服务器)常见故障解决与价格差异分析 GPS同步时钟(NTP时钟服务器)常见故障解决与价格差异分析 微软从Windows2000开始,系统就支持使用NTP同步的方式获取时间,Windows系统默认的时间源都来自...
  • 1588v2时钟服务器简介

    千次阅读 2020-01-21 09:20:28
    1588v2时钟作为一种主从同步系统,在系统的同步过程中,主时钟周期性发布1588v2时间同步协议及时间信息,从时钟端口接收主时钟端口发来的时间戳信息,系统据此计算出主从线路时间延迟及主从时间差,并利用该时间差...
  • NTP时钟服务器原理及误差简析 1、引言 作为数字通信网的基础支撑技术,时钟同步技术的发展演进始终受到通信网技术发展的驱动。在网络方面,通信网从模拟发展到数字,从TDM网络为主发展到以分组网络为主;在业务方面...
  • 基于PON的NTP时钟同步服务器技术 基于PON的NTP时钟同步服务器技术 1、引言 无线业务对于回传网络(Wireless Backhaul,基站和无线交换设备之间的链路)的带宽需求,随着无线业务的飞速发展而快速增加。过去,由于...
  • 北斗授时设备(PTP时钟)模块化设计原理 北斗授时设备(PTP时钟)模块化设计原理  利用网络时间服务器同步电脑和其它设备  可编程串行讯息兼容几乎任何时间显示  基于浏览器的用户界面,易于安装  紧凑...
  • PTP域中的节点称为时钟节点,PTP协议定义了以下三种类型的基本时钟节点: OC(Ordinary Clock,普通时钟):只有一个PTP通信端口的时钟是普通时钟。 BC(Boundary Clock,边界时钟):有一个以上PTP通信端口的时钟。...
  • 工业级IEEE1588精密主时钟(从时钟)模块技术详解 工业级IEEE1588精密主时钟(从时钟)模块技术详解 本文由安徽京准公司提供请勿转载! 1 引言  以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛...
  • 北斗对时装置(北斗时钟服务器)应用及介绍 北斗对时装置(北斗时钟服务器)应用及介绍 随着网络技术的不断进步和发展,NTP网络时间协议已经满不了一些精密设备和仪器的精度要求,这时就需要精度更高的PTP协议,PTP...
  • NTP校时服务器(NTP时钟服务器-NTP时钟服务器) NTP校时服务器(NTP时钟服务器-NTP时钟服务器) 技术交流:岳峰 15901092122;QQ-522508213 NTP时钟服务器是针对计算机、自动化装置等进行校时而研发的高科技产品...
  • 一、什么是PTP PTP 是一种高精度时间同步协议,可以到达亚微秒级精度,有资料说可达到30纳秒左右的偏差精度,但需要网络的节点(交换机)支持PTP协议,才能实现纳秒量级的同步。 一般在实际使用中,现有的NTP可以...
  • NTP/PTP/卫星授时您的自动化系统会选哪个? NTP/PTP/卫星授时您的自动化系统会选哪个? 随着数字网络的不断发展,基于网络协议(IP)的技术不断涌现,因为它足够的方便、灵活和可扩展性。局域网(LANs)、广域网(WANs...
  • SDH通信网络时钟同步服务(NTP/PTP精密网络时钟源)精度分析 SDH通信网络时钟同步服务(NTP/PTP精密网络时钟源)精度分析 安徽京准公司提供原创资料!! 3) 从站时钟要从高一级设备或同一级设备获得基准。 4) 应从...
  • PTP(Precision Time Protocol) 是一个通过网络同步时钟的一个协议。当硬件支持时,PTP 精度能达到亚微秒,比 NTP(Network Time Protocol)精度更高。 2:ptp应用场景 1)数据中心 数据中心需要NTP/PTP同步,以确保...
  • centos时钟同步

    千次阅读 2019-08-28 13:38:10
    #指定时间服务器 timeserver=ntp.sjtu.edu.cn #设定时区 timedatectl set-timezone Asia/Shanghai #编辑配置文件 sed -i 's/0.centos.pool.ntp.org/$timeserver/g' /etc/chrony.conf #重启时钟服务 systemctl ...
  • 北斗GPS授时系统技术及ntp时钟服务器PTP)在电力系统中的应用 北斗GPS授时系统技术及ntp时钟服务器PTP)在电力系统中的应用 技术交流:岳峰 15901092122 bjhrkc@126.com 对于一个进入信息社会的现代化...
  • NTP/PTP时间同步入门

    千次阅读 2020-11-12 15:51:29
    时间同步是指以中心控制系统的标准时钟作为基准使各分布系统和终设备的时钟与中心控制系统时钟进行同步的过程。随着5G和工业5.0的到来,网络终端设备和网络业务的飞速增长,时间同步已成为现代通信,电力,军事,...
  • PTP4L命令手册(谷歌翻译)

    千次阅读 2020-08-25 12:02:00
    ptp4l-PTP边界/普通时钟 概要 ptp4l [-AEP246HSLmqsv] [-f config] [-p phc-device] [-l打印级别] [-i接口] … 描述 ptp4l是根据Linux的IEEE标准1588的精确时间协议(PTP)的实现。它实现了边界时钟(BC)和普通时钟...
  • NTP网络时钟同步系统技术发展前景 1、引言 作为数字通信网的基础支撑技术,时钟同步技术的发展演进始终受到通信网技术发展的驱动。在网络方面,通信网从模拟发展到数字,从TDM网络为主发展到以分组网络为主;在业务...

空空如也

空空如也

1 2 3 4 5 ... 19
收藏数 361
精华内容 144
关键字:

PTP时钟服务器