精华内容
下载资源
问答
  • mos管开关电路图大全

    2020-07-14 07:09:05
    mos管开关电路图(一) 图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,3v稳压IC输入脚得不到电压所以就不...
  • MOS管开关电路

    万次阅读 2019-01-14 15:03:51
    MOS管开关电路是利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路。因MOS管分为N沟道与P沟道,所以开关电路也主要分为两种。 一般情况下普遍用于高端驱动的MOS,导通时需要是栅极电压大于源极...

    MOS管开关电路是利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路。因MOS管分为N沟道与P沟道,所以开关电路也主要分为两种。

    一般情况下普遍用于高端驱动的MOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V.如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。(所以看手册,具体分析)

    MOS管是电压驱动,按理说只要栅极电压到到开启电压就能导通DS,栅极串多大电阻均能导通。但如果要求开关频率较高时,栅对地或VCC可以看做是一个电容,对于一个电容来说,串的电阻越大,栅极达到导通电压时间越长,MOS处于半导通状态时间也越长,在半导通状态内阻较大,发热也会增大,极易损坏MOS,所以高频时栅极栅极串的电阻不但要小,一般要加前置驱动电路的

    MOS管开关电路的特点

    MOS管种类和结构

      MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

      至于为什么不使用耗尽型的MOS管,不建议刨根问底。

      对于这两种增强型MOS管,比较常用的是NMOS.原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS.下面的介绍中,也多以NMOS为主。

    MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

    在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。可以在MOS管关断时为感性负载的电动势提供击穿通路从而避免MOS管被击穿损坏。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

    MOS管导通特性

    导通的意思是作为开关,相当于开关闭合。

    NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

    PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS.

    MOS开关管损失

    不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。

    MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

    导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

     

    MOS管驱动

    跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。

    在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

    而在进行MOSFET的选择时,因为MOSFET有两大类型:N沟道和P沟道。在功率系统中,MOSFET可被看成电气开关。当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。这就是后面介绍电路图中栅极所接电阻至地。如果栅极为悬空,器件将可能因意外的干扰导致导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS.

     

     

    第一步:选用N沟道还是P沟道

    为设计选择正确器件的第一步是决定采用N沟道还是P沟道。MOSFET.在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。

     

             N沟道                                       P沟道

    第二步:确定额定电流

    第二步是选择MOSFET的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOSFET能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。该参数以IRM2502管DATASHEET为参考,参数如图所示

     

     

    在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。

    选好额定电流后,还必须计算导通损耗。在实际情况下,MOSFET并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOSFET在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显着变化。器件的功率耗损可由Iload2&TImes;RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOSFET施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。

    第三步:确定热要求

    选择MOSFET的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOSFET的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。

    IRLML2502的结温和储存温度

    器件的结温(TJ)等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻&TImes;功率耗散])。根据这个方程可解出系统的最大功率耗散,即按定义相等于I2&TImes;RDS(ON)。由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立即升温。

    通常,一个PMOS管,会有寄生的二极管存在,该二极管的作用是防止源漏端反接,对于PMOS而言,比起NMOS的优势在于它的开启电压可以为0,而DS电压之间电压相差不大,而NMOS的导通条件要求VGS要大于阈值,这将导致控制电压必然大于所需的电压,会出现不必要的麻烦。选用PMOS作为控制开关,有下面两种应用:

    第一种应用,由PMOS来进行电压的选择,当V8V存在时,此时电压全部由V8V提供,将PMOS关闭,VBAT不提供电压给VSIN,而当V8V为低时,VSIN由8V供电。注意R120的接地,该电阻能将栅极电压稳定地拉低,确保PMOS的正常开启,这也是前文所描述的栅极高阻抗所带来的状态隐患。D9和D10的作用在于防止电压的倒灌。D9可以省略。这里要注意到实际上该电路的DS接反,这样由附生二极管导通导致了开关管的功能不能达到,实际应用要注意。

    来看这个电路,控制信号PGC控制V4.2是否给P_GPRS供电。此电路中,源漏两端没有接反,R110与R113存在的意义在于R110控制栅极电流不至于过大,R113控制栅极的常态,将R113上拉为高,截至PMOS,同时也可以看作是对控制信号的上拉,当MCU内部管脚并没有上拉时,即输出为开漏时,并不能驱动PMOS关闭,此时,就需要外部电压给予的上拉,所以电阻R113起到了两个作用。R110可以更小,到100欧姆也可。

    另外,我们再来MOS管的开关特性

    静态特性

    MOS管作为开关元件,同样是工作在截止或导通两种状态。由于MOS管是电压控制元件,所以主要由栅源电压uGS决定其工作状态。

    工作特性如下:

    ※ uGS《开启电压UT:MOS管工作在截止区,漏源电流iDS基本为0,输出电压uDS≈UDD,MOS管处于“断开”状态,其等效电路如下图所示。

    ※ uGS》开启电压UT:MOS管工作在导通区,漏源电流iDS=UDD/(RD+rDS)。其中,rDS为MOS管导通时的漏源电阻。输出电压UDS=UDD·rDS/(RD+rDS),如果rDS《RD,则uDS≈0V,MOS管处于“接通”状态,其等效电路如上图(c)所示。

    动态特性

    MOS管在导通与截止两种状态发生转换时同样存在过渡过程,但其动态特性主要取决于与电路有关的杂散电容充、放电所需的时间,而管子本身导通和截止时电荷积累和消散的时间是很小的。下图(a)和(b)分别给出了一个NMOS管组成的电路及其动态特性示意图。

    NMOS管动态特性示意图

    当输入电压ui由高变低,MOS管由导通状态转换为截止状态时,电源UDD通过RD向杂散电容CL充电,充电时间常数τ1=RDCL.所以,输出电压uo要通过一定延时才由低电平变为高电平;当输入电压ui由低变高,MOS管由截止状态转换为导通状态时,杂散电容CL上的电荷通过rDS进行放电,其放电时间常数τ2≈rDSCL.可见,输出电压Uo也要经过一定延时才能转变成低电平。但因为rDS比RD小得多,所以,由截止到导通的转换时间比由导通到截止的转换时间要短。

    由于MOS管导通时的漏源电阻rDS比晶体三极管的饱和电阻rCES要大得多,漏极外接电阻RD也比晶体管集电极电阻RC大,所以,MOS管的充、放电时间较长,使MOS管的开关速度比晶体三极管的开关速度低。不过,在CMOS电路中,由于充电电路和放电电路都是低阻电路,因此,其充、放电过程都比较快,从而使CMOS电路有较高的开关速度。(应用于CMOS电路的MOS管开关速度比较快)

     

     其他:

     

     

    Vgs_th = Gate Threshold Voltage, 指的是當一個电压施加於G-S時, D-S开始通道形成, Spec 上的最大與最小值, 只供參考, 你必須在看一下

    "Vth Vs RDSon" 曲線, 知道通道完全形成時電壓, 所謂完全形成是規格上標示如50mR , 在到達50mR時的電壓, 驱动电压只能高不能低.......

     

    VGSmax = 指的是施加於G-S的電壓最高點

    VGSop = 指的是建議操作電壓,

     

    在你的驅動端若超過或有峰值, 你就必須用稳压管進行钳位, 超過MOSFET 會擊穿, 而杂讯問題, 通常是Layout 所引起的, 通常在MOSFET G脚有一個10K落地, 產生低阻, 再加上Ciss電容效應, 要讓MOSFET誤觸發機率不高, 至於Mosfet 關斷, 試看你的操作頻率, 通常驅動端

    Low Active 不會超過1V, 而以你的Spec 最低電壓2V來看,低於2V就關斷, 不會有問題......

     

     

     

     

    vishay半导体的NMOS管si2302的Id是2.1A,Is是0.6A。当这个管子用来做开关电路时,开关电流最大以Id为准还是Is ?

     

    看你如何应用了,通常做开关应用是以Id为准

    请注意 Is电流描述后面括号里面有个“二极管导通”,特殊情况,比如用mos管做电源反接保护,以及电机等感性负载驱动反向电动势存在时,需要考虑这个Is电流。

    展开全文
  • MOS管开关电路详解

    千次阅读 2020-04-20 07:32:37
    MOS管主要是由Metal(金属)、Oxide(氧化物)、Semiconductor(半导体)通过特殊工艺制成 和三极管(电流控制电流型器件)相比,MOS管(电压控制电流型器件)具有栅极驱动基本不需要电流,损耗小、噪声低、抗辐射...

    ​一、MOSFET介绍


    今天和同事讨论起了公司用到的一个MOS管开关电路,针对其中的几个关键点做了比较系统的分析总结。
    在这里插入图片描述
    MOS管主要是由Metal(金属)、Oxide(氧化物)、Semiconductor(半导体)通过特殊工艺制成
    和三极管(电流控制电流型器件)相比,MOS管(电压控制电流型器件)具有栅极驱动基本不需要电流,损耗小、噪声低、抗辐射能力强、输入阻抗高、结构简单、便于集成和热稳定性好等优点
    MOSFET可以被制造成P沟道和N沟道两大类,每一类又分为增强型或者耗尽型,所以MOSFET有四种:N沟道增强型MOSFET、N沟道耗尽型MOSFET、P沟道增强型MOSFET、P沟道耗尽型MOSFET
    在栅-源电压uGS=0时导电沟道不存在且漏极电流为0的管子均为增强型,在栅-源电压uGS=0时导电沟道已存在且漏极电流不为0的管子均为耗尽型

    放几张来自模拟电子线路书上面的图参考学习:
    在这里插入图片描述
    在这里插入图片描述

    二、MOS管开关电路


    如下为一张典型的N沟道增强型MOS管开关电路原理图:
    在这里插入图片描述
    D1作用:

    续流二极管

    R1作用:

    1、限流电阻,减小瞬间电流值:MOS管属于压控型器件,两两引脚之间存在寄生电容(Cgs、Cgd、Cds):
    在这里插入图片描述
    规格书中一般会标注Ciss、Coss、Crss:
    在这里插入图片描述

    • ​Ciss = Cgs + Cgd
    • Coss = Cds + Cgd
    • Crss = Cgd

    如图Ciss=587pF,假设VGs=24V,dt=Tr(上升时间)=20ns,则MOS管在开关时的瞬间电流I = Ciss * dVgs / dt = 0.7A
    当在栅极串接一个电阻(几Ω~上千Ω)时,会与Ciss形成RC充放电回路,从而减小瞬间电流值
    2、调节MOS管的通断速度,有利于控制EMI:同时,加上R1后,MOS管通断切换时间会变慢,有利于控制EMI;但是如果串接的电阻太大,会导致栅极达到导通电压的时间变长,也就是说MOS管处在半导通状态的时间太长,此时MOS管内阻较大,Rds->Rdson的时间比较长,Rds会消耗大量的功率,可能导致MOS管因发热而损坏
    3、抑制栅极振荡:
    MOS管接入电路后,引入引线寄生电感,会与寄生电容形成LC振荡电路,对于方波这种开关波形信号来说包含很多频率成分:
    在这里插入图片描述
    那么就可能在某个谐振频率相同或者相近时形成串联谐振电路,串接一个电阻后会减小振荡电路的Q值,从而使振荡快速衰减
    R2作用:
    1、G极对地电阻(一般5KΩ~数十KΩ),通过下拉为MOS管提供一个固定偏置,避免当IC驱动口处于高阻态的情况下G极受到干扰信号使MOS管意外导通
    2、泄放电阻,通过这个电阻泄放掉G-S之间的少量静电(G-S之间的电阻很大很大,少量的静电就能通过G-S之间的等效电容产生很高的电压,此时由于RGS很大,感应电荷难以释放,以致于高压将MOS管很薄的绝缘层击穿,损坏MOS管)从而保护MOS管,如果没有这个电阻,MOS管容易受到外界干扰意外导通烧坏,此外在MOS管工作不断开通关断的时候对寄生电容进行适当的放电以保护MOS管

    展开全文
  • MOS管开关设计知识-(五种MOS管开关电路图方式)

    万次阅读 多人点赞 2019-02-25 16:03:04
    在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不...

    在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

    下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。

    1、MOS管种类和结构

    MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

    至于为什么不使用耗尽型的MOS管,不建议刨根问底。

    对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。

    MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

    在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

    2、MOS管导通特性

    导通的意思是作为开关,相当于开关闭合。

    NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

    PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

    3、MOS开关管损失

    不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。

    MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

    导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

    4、MOS管驱动

    跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。

    在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

    第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

    上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。

    MOS管的驱动电路及其损失,可以参考Microchip公司的AN799MatchingMOSFETDriverstoMOSFETs。讲述得很详细,所以不打算多写了。

    5、MOS管应用电路

    MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。

    5种常用开关电源MOSFET驱动电路解析

    在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。

    当电源IC与MOS管选定之后, 选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。

    一个好的MOSFET驱动电路有以下几点要求:

    (1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。

    (2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。

    (3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。

    (4)驱动电路结构简单可靠、损耗小。

    (5)根据情况施加隔离。

    下面介绍几个模块电源中常用的MOSFET驱动电路。

    1、电源IC直接驱动MOSFET

    在这里插入图片描述

    电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式,使用这种驱动方式,应该注意几个参数以及这些参数的影响。第一,查看一下电源IC手册,其最大驱动峰值电流,因为不同芯片,驱动能力很多时候是不一样的。第二,了解一下MOSFET的寄生电容,如图 1中C1、C2的值。如果C1、C2的值比较大,MOS管导通的需要的能量就比较大,如果电源IC没有比较大的驱动峰值电流,那么管子导通的速度就比较慢。如果驱动能力不足,上升沿可能出现高频振荡,即使把图 1中Rg减小,也不能解决问题! IC驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择,所以Rg并不能无限减小。

    2、电源IC驱动能力不足时

    如果选择MOS管寄生电容比较大,电源IC内部的驱动能力又不足时,需要在驱动电路上增强驱动能力,常使用图腾柱电路增加电源IC驱动能力,其电路图 2虚线框所示。

    在这里插入图片描述

    这种驱动电路作用在于,提升电流提供能力,迅速完成对于栅极输入电容电荷的充电过程。这种拓扑增加了导通所需要的时间,但是减少了关断时间,开关管能快速开通且避免上升沿的高频振荡。

    3、驱动电路加速MOS管关断时间

    在这里插入图片描述

    关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压快速泄放,保证开关管能快速关断。为使栅源极间电容电压的快速泄放,常在驱动电阻上并联一个电阻和一个二极管,如图 3所示,其中D1常用的是快恢复二极管。这使关断时间减小,同时减小关断时的损耗。Rg2是防止关断的时电流过大,把电源IC给烧掉。

    在这里插入图片描述

    在第二点介绍的图腾柱电路也有加快关断作用。当电源IC的驱动能力足够时,对图 2中电路改进可以加速MOS管关断时间,得到如图 4所示电路。用三极管来泄放栅源极间电容电压是比较常见的。如果Q1的发射极没有电阻,当PNP三极管导通时,栅源极间电容短接,达到最短时间内把电荷放完,最大限度减小关断时的交叉损耗。与图 3拓扑相比较,还有一个好处,就是栅源极间电容上的电荷泄放时电流不经过电源IC,提高了可靠性。

    4、驱动电路加速MOS管关断时间

    在这里插入图片描述

    为了满足如图 5所示高端MOS管的驱动,经常会采用变压器驱动,有时为了满足安全隔离也使用变压器驱动。其中R1目的是抑制PCB板上寄生的电感与C1形成LC振荡,C1的目的是隔开直流,通过交流,同时也能防止磁芯饱和。

    5、当源极输出为高电压时的驱动

    当源极输出为高电压的情况时,我们需要采用偏置电路达到电路工作的目的,既我们以源极为参考点,搭建偏置电路,驱动电压在两个电压之间波动,驱动电压偏差由低电压提供,如下图6所示。

    在这里插入图片描述

    除了以上驱动电路之外,还有很多其它形式的驱动电路。对于各种各样的驱动电路并没有一种驱动电路是最好的,只有结合具体应用,选择最合适的驱动。

    展开全文
  • 1、MOS管基本原理及分类1.1、MOS管分类1.2、MOS管导通原理1.3、MOS管输出特性曲线1.4、MOS管的转移特性1.5、MOS管的寄生二极管:2、NMOS管简单开关电路:3、PMOS管简单开关电路:4、给MOS管开关电路加软启动5、常用...

    硬件基础-MOS管原理、使用、开关电路应用

    0、写在前面:

    最后更新日期:2021年4月30日
    因水平有限,本文章主要作为个人技术笔记使用,方便自己查阅,可能会有纰漏。仅供参考,仅供参考,仅供参考
    这里主要讲述MOS管的一些基础知识及相关应用,还会记录一些常用的MOS开关电路。部分素材来源于网上,主要参考的链接如下:
    http://www.kiaic.com/article/detail/1378.html
    https://wenku.baidu.com/view/719bf797c3c708a1284ac850ad02de80d5d8066f.html
    http://www.kiaic.com/article/detail/1444
    https://wenku.baidu.com/view/4e9f9f9cde80d4d8d05a4f68.html

    1、MOS管基本原理及分类

    1.1、MOS管分类

    MOS管是金属(metal)、氧化物(oxide)、半导体(semiconductor)场效应晶体管。FET是场效应管。合在一起是金属氧化物半导体场效应管(MOSFET)。
    MOS管分为N沟道和P沟道,又可分为增强型和耗尽型。其分类如下图:
    在这里插入图片描述
    其示意图和电路符号如下:
    N和PMOS
    上图是NMOS和PMOS的符号,衬底一般和源极连接起来,连接起来后电路符号如下:
    P沟道MOSFET
    N沟道MOSFET
    上图中2个都是虚线,虚线代表是增强型(Vgs=0时,DS无导电沟道),实线是耗尽型(Vgs=0时,DS有导电沟道)。电极 D(Drain) 称为漏极,电极 G(Gate) 称为栅极,电极 S(Source)称为源极。电路符号中的箭头可以理解为一个二极管。例如NMOS,沟道是N,衬底是P型,所以衬底到沟道形成一个二极管,二极管方向就是这个箭头方向。实际上这个箭头的确就是衬底的极性的含义,当它一旦接到源极,就形成了MOS管的寄生二极管了。
    在实际应用中,一般都是增强型MOS管居多,因此这里不介绍耗尽型MOS管。
    下面是NMOS和PMOS的结构示意图:
    NMOS
    PMOS

    1.2、MOS管导通原理

    对于MOS管导通的原理,以NMOS管为例,介绍如下:
    在这里插入图片描述

    1.3、MOS管输出特性曲线

    当Vgs大于开启电压时,漏极电流id和漏源电压Vds之间的关系为输出特性曲线。可分为线性区OA,过渡区AB,线性区和过渡区统称为非饱和区。饱和区BC和击穿区CD。
    在这里插入图片描述
    对于不同的Vgs,可以得到以下输出特性曲线:
    在这里插入图片描述

    1.4、MOS管的转移特性

    当Vds一定时,Vgs可以控制电流Id,叫做转移特性。
    在这里插入图片描述

    4种类型的MOS管的特性曲线和转移特性曲线如下:
    在这里插入图片描述

    1.5、MOS管的寄生二极管:

    关于MOS管的寄生二极管:
    1、mos管本身自带有寄生二极管,作用是防止VDD过压的情况下,烧坏mos管,因为在过压对MOS管造成破坏之前,二极管先反向击穿,将大电流直接到地,从而避免MOS管被烧坏。
    2、防止管子的源极和漏极反接时烧坏MOS管,也可以在电路有反向感生电压时,为反向感生电压提供通路,避免反向感生电压击穿MOS管。
    对于寄生二极管的方向判断,方法如下:
    在这里插入图片描述
    因此,从最开始简单的电路符号,我们把衬底和源极连接起来,再加上寄生二极管的符号,就得到了接近实际应用中的MOS管符号。实际使用的MOS管,一般都是带寄生二极管的,比如我们在立创商城随便搜索一个MOS管,比如直流电机驱动桥上常用的NCE6075,手册上截图如下:
    在这里插入图片描述
    到这里,我们就能看懂手册上MOS管的符号了。下面开始介绍下MOS关常用的2种简单的开关电路。

    2、NMOS管简单开关电路:

    下图是在proteus上进行仿真的NMOS开关电路:
    在这里插入图片描述
    因NMOS导通的条件是Vgs电压大于MOS管的开启电压,因此我们直接把NMOS管的S极直接接地,保证S极电压为0V,这样只需要G极电压高于开启电压,MOS管即会导通。
    电阻R2的作用是保证在未接负载时MOS管D极的电压,因为当MOS管导通时,要保证V DS > 0V才可以在漏源极间形成电流。
    而如果把电阻R2去掉,当外负载压降较大时,电源电压经外负载到达MOS管的D极后,D极电压可能就会接近0V,和S极电压相差不多,就无法保证形成漏源电流Ids > 0。
    分析此电路图特性我们发现,此时外负载的正极是直接连接电源正极,外负载的负极处经MOS管作为开关再接回了GND。那能不能电源的正极接到NMOS管的D极上,把MOS管的S极作为输出接到外负载的正极,当MOS管导通时,S极电压等于D极电压等于电源电压,这样貌似也是可行的。但实际是不可行的,理由如下:

    如上图,我们按照我们的设想搭了一个电路,NMOS的S极接外负载,D极接电源正极。当G极电压为正时,MOS管导通,理论上MOS管的D极和S极电压应该相近,但我们发现此时并非如下。当MOS管导通时,D极电压为5V,S极电压却为0.9V,这是为什么呢?
    这是因为我们把NMOS管的S极作为外负载的正极输出接在了外负载1K电阻上。而外负载肯定是需要压降的,则实际MOS管的S极电压必须高于0V才可以带动外负载。但如果S极电压高于0V,又会导致压差 V gs小于MOS管的开启电压,造成MOS管断开,因此MOS管不能正常工作在一直开启的状态。
    综上,我们得知NMOS管用作开关电路时,必须D极接外负载,S极不要接负载直接接GND,这样才能保证Vgs 大于MOS管的开启电压。并且D极只能接外负载的负极,外负载的正极直接接电源。
    因此,也就有了我们常说的:低端驱动(外负载的正极直接接电源正极,负极接MOS管回GND)用NMOS,高端驱动(外负载的正极接MOS管的D极,负极直接接回GND)用PMOS

    3、PMOS管简单开关电路:

    类似于NMOS开关电路,我们在proteus仿真如下:
    在这里插入图片描述
    此时,外负载的GND直接接GND,而外负载的正极接PMOS的D极,相当于在外负载的正极上加了个开关。为了验证我们之前的总结,我们看能不能用PMOS当做外负载负极端的开关。
    我们建仿真电路如下:
    在这里插入图片描述
    因为PMOS的S极接了外负载的负极,此时无法保证S极电压为电源电压,而是接近了外负载的负极电压0V,因此V gs也就不能保证是PMOS处于导通状态了。

    4、给MOS管开关电路加软启动


    如上图所示,在MOS管的GS之间加上电容和电阻,可以上电缓启动,防止上电时的浪涌冲击。具体详细介绍如下:
    http://m.elecfans.com/article/1194017.html

    5、常用MOS管的型号推荐

    因为常用的一般都是增强型MOS管,因此只需要找到增强型NMOS和增强型PMOS两种即可。

    5.1、电机驱动MOS管:功率100W

    5.1.1:NMOS

    MOS管功率一般比较大,对于嵌入式控制的外设,一般是12V电机或者24V电机,对于驱动电机的MOS管,推荐使用NCE6075K,是N沟道增强型MOS管,峰值电流75A,扇热功率可以达到110W。
    参数如下:
    在这里插入图片描述
    NCE6075K的电路符号如下:
    在这里插入图片描述

    5.1.2:PMOS:

    NCE60P50K,是一个P沟道增强型MOS管,电流可达50A,参数和电路符号如下:
    在这里插入图片描述
    在这里插入图片描述

    5.1.3、NCE公司:

    NCE是无锡新洁能公司,专业从事半导体功率器件的研发与销售。因为是国内公司,因此其产品价格较友好、稳定,并且其生产的MOS管型号齐全,功率大。如果需要其他的mos管,可以直接到NCE公司官网上去选型。
    其官网地址如下: http://www.ncepower.com/

    5.2、小功率MOS管:2W

    对于比较小的功率的MOS管,可以选用IRF7106TRPBF。其内部有一个NMOS和一个PMOS,对于小功率使用比较方便,不需要再单独选NMOS和PMOS了。
    电路符号如下:
    在这里插入图片描述

    展开全文
  • 对于MOS管的选型,注意4个参数:漏源电压(D、S两端承受的电压)、工作电流(经过MOS管电路)、开启电压(让MOS管导通的G、S电压)、工作频率(最大的开关频率)。下面我们看一下MOS管的引脚,如下图所示: 有3个...
  • P型MOS管开关电路图 PMOS是指n型衬底、p沟道,靠空穴的流动运送电流的MOS管。 P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。此外,...
  • 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路
  • MOS管开关电路设计

    万次阅读 2017-09-14 10:47:06
    原文摘录:MOS管基本知识 http://www.51hei.com/bbs/dpj-31879-1.html (出处: 单片机论坛) 一直以来模拟电路就学的不好,好不容易把三极管了解完了,就一直没敢碰MOSFET了,没想到两年后还是会遇到,不过有一句话倒是...
  • 基于光耦控制N沟道MOS管控制电路电路采用低导通,基于STM32引脚设计-------原理图文件
  • MOS管电路工作原理。详解介绍PMOS、NMOS的开关条件,MOS管的工作原理。具体电路用哪种MOS管更合理
  • 作为一名电源研发工程师,自然经常与各种芯片... LM2675-5.0的典型应用电路 打开LM2675的DataSheet,首先看看框图 这个图包含了电源芯片的内部全部单元模块,BUCK结构我们已经很理解了,这个芯片的主要功能是实现对
  • MOS管开关电路中的使用

    万次阅读 多人点赞 2018-09-17 00:10:59
    MOS管也就是常说的场效应管(FET),有结型场效应管、绝缘... 场效应管的作用主要有信号的转换、控制电路的通断,这里我们讲解的是MOS管作为开关管的使用。对于MOS管的选型,注意4个参数:漏源电压(D、S两端承受的...
  • MOS管电压开关电路原理-KIA MOS管

    千次阅读 2020-05-19 14:56:31
    关键词:电压MOS管开关电路 MOS管开关电路是利用一种电路,是利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路。MOS管分为N沟道与P沟道,所以开关电路也主要分为两种。 PMOS的特性,Vgs小于...
  • 三极管和MOS管开关电路分析

    万次阅读 2018-03-06 13:50:24
    个人博客:http://brainware360.cn/  上面两篇文章我们通过对三极管和MOS管的学习,对其有了一个基本的认识,下面来分析一个简单的数字电路学习如何在数字电路中使用三极管和MOS管。 效果一:S2闭合,则无论S1...
  • 一、mos关断电路知识基础 1、PMOS PMOS是栅极高电平(|Vgs| >Vt)导通,低电平断开,可以用来控制与地之间的导通。对于PMOS来说,一般是源极接电源正极,而栅极接在电源负极。 2、NMOS NMOS是栅极低电平(|Vgs| &...
  • 做硬件,堆经验。分享一个案例:MOS管电源开关电路,遇到上电冲击电流超标,怎么解决的呢?下面是正文部分。—— 正文——最近有一颗用了挺久的MOSFET发了停产通知,供应链部门找到我们研发...
  • MOS管用作开关时在电路中的连接方法 反证: NMOS管正确接法: PMOS管正确接法: D极接输入;S极接输出。 S极接输入;D极接输出。 假如: 假如反接: S接输入,D接输出呢? D接输入,S接输出。 由于寄生...
  • N沟道和P沟道MOS FET开关电路

    千次阅读 2020-03-06 22:55:16
    电路中常见到使用MOS FET场效应作为开关管使用。下面举例进行说明。 如图1所示,使用了P沟道的内置二极管的电路,此处二极管的主要作用是续流作用,电路是Li电池充放电电路,当外部电源断开时采用Li电池...
  • MOS管的判断与测量,MOS管开关与隔离作用,常见的MOS管电路
  • MOS管电路工作原理及详解pdf,MOS管工作原理图电源开关电路详解 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS的工作原理图。 它一般有耗尽型和增强型两种
  • MOS管开关的基础知识

    2021-01-20 00:30:12
    一般情况下普遍用于高端驱动的MOS,导通时需要是栅极电压大于源极电压,而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要...
  • 下图是两种MOS管的典型应用:其中第一种NMOS管为高电平导通,低电平截断,Drain端接后面电路的接地端;第二种为PMOS管典型开关电路,为高电平断开,低电平导通,Drain端接后面电路的VCC端。 本文转自...
  • 三极管和MOS管作为开关管时,有很多相似之处,也有不同之处,那么在电路设计时,两者之间该如何选择呢? 三极管有NPN型和PNP型,同理MOS管也有N沟道和P沟道的,三极管的三个引脚分别是基极B、集电极C和发射极E,而...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 5,865
精华内容 2,346
关键字:

mos管开关电路