数据处理 订阅
数据(Data)是对事实、概念或指令的一种表达形式,可由人工或自动化装置进行处理。数据经过解释并赋予一定的意义之后,便成为信息。数据处理(data processing)是对数据的采集、存储、检索、加工、变换和传输。数据处理的基本目的是从大量的、可能是杂乱无章的、难以理解的数据中抽取并推导出对于某些特定的人们来说是有价值、有意义的数据。数据处理是系统工程和自动控制的基本环节。数据处理贯穿于社会生产和社会生活的各个领域。数据处理技术的发展及其应用的广度和深度,极大地影响了人类社会发展的进程。 展开全文
数据(Data)是对事实、概念或指令的一种表达形式,可由人工或自动化装置进行处理。数据经过解释并赋予一定的意义之后,便成为信息。数据处理(data processing)是对数据的采集、存储、检索、加工、变换和传输。数据处理的基本目的是从大量的、可能是杂乱无章的、难以理解的数据中抽取并推导出对于某些特定的人们来说是有价值、有意义的数据。数据处理是系统工程和自动控制的基本环节。数据处理贯穿于社会生产和社会生活的各个领域。数据处理技术的发展及其应用的广度和深度,极大地影响了人类社会发展的进程。
信息
处理软件
管理数据的文件、数据库系统等
外文名
data processing
领    域
社会生产和社会生活
中文名
数据处理
步    骤
对数据的采集、存储、检索等
目    的
转化为有用信息
数据处理基本信息
处理软件数据处理离不开软件的支持,数据处理软件包括:用以书写处理程序的各种程序设计语言及其编译程序,管理数据的文件系统和数据库系统,以及各种数据处理方法的应用软件包。为了保证数据安全可靠,还有一整套数据安全保密的技术。方式根据处理设备的结构方式、工作方式,以及数据的时间空间分布方式的不同,数据处理有不同的方式。不同的处理方式要求不同的硬件和软件支持。每种处理方式都有自己的特点,应当根据应用问题的实际环境选择合适的处理方式。数据处理主要有四种分类方式①根据处理设备的结构方式区分,有联机处理方式和脱机处理方式。②根据数据处理时间的分配方式区分,有批处理方式、分时处理方式和实时处理方式。③根据数据处理空间的分布方式区分,有集中式处理方式和分布处理方式。④根据计算机中央处理器的工作方式区分,有单道作业处理方式、多道作业处理方式和交互式处理方式。数据处理对数据(包括数值的和非数值的)进行分析和加工的技术过程。包括对各种原始数据的分析、整理、计算、编辑等的加工和处理。比数据分析含义广。随着计算机的日益普及,在计算机应用领域中,数值计算所占比重很小,通过计算机数据处理进行信息管理已成为主要的应用。如测绘制图管理、仓库管理、财会管理、交通运输管理,技术情报管理、办公室自动化等。在地理数据方面既有大量自然环境数据(土地、水、气候、生物等各类资源数据),也有大量社会经济数据(人口、交通、工农业等),常要求进行综合性数据处理。故需建立地理数据库,系统地整理和存储地理数据减少冗余,发展数据处理软件,充分利用数据库技术进行数据管理和处理。
收起全文
精华内容
下载资源
问答
  • 点云数据处理方法

    万次阅读 多人点赞 2018-09-07 10:25:02
    这篇博客主要介绍三维计算机视觉中点云数据处理面对的问题,主要方法和技术,概述其特点。这篇博客主要介绍最基本的点云数据处理技术和概念,不会有任何代码。 ICP点云配准就是我们非常熟悉的点云处理算法之一。...

    这篇博客主要介绍三维计算机视觉中点云数据处理面对的问题,主要方法和技术,概述其特点。这篇博客主要介绍最基本的点云数据处理技术和概念,不会有任何代码。

    ICP点云配准就是我们非常熟悉的点云处理算法之一。实际上点云数据在形状检测和分类、立体视觉、运动恢复结构、多视图重建中都有广泛的使用。点云的存储、压缩、渲染等问题也是研究的热点。随着点云采集设备的普及、双目立体视觉技术、VR和AR的发展,点云数据处理技术正成为最有前景的技术之一。PCL是三维点云数据处理领域必备的工具和基本技能,这篇博客也将粗略介绍。

    三维点云数据处理技术

    1. 点云滤波(数据预处理)

    点云滤波,顾名思义,就是滤掉噪声。原始采集的点云数据往往包含大量散列点、孤立点,比如下图为滤波前后的点云效果对比。

    点云滤波的主要方法有:双边滤波、高斯滤波、条件滤波、直通滤波、随机采样一致滤波、VoxelGrid滤波等,这些算法都被封装在了PCL点云库中。

     

    2. 点云关键点

    我们都知道在二维图像上,有Harris、SIFT、SURF、KAZE这样的关键点提取算法,这种特征点的思想可以推广到三维空间。从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等对数据的处理了速度,故而,关键点技术成为在2D和3D 信息处理中非常关键的技术。

    常见的三维点云关键点提取算法有一下几种:ISS3D、Harris3D、NARF、SIFT3D

    这些算法在PCL库中都有实现,其中NARF算法是博主见过用的比较多的。

    3. 特征和特征描述

    如果要对一个三维点云进行描述,光有点云的位置是不够的,常常需要计算一些额外的参数,比如法线方向、曲率、文理特征等等。如同图像的特征一样,我们需要使用类似的方式来描述三维点云的特征。

    常用的特征描述算法有:法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image等。

    PFH:点特征直方图描述子,FPFH:跨苏点特征直方图描述子,FPFH是PFH的简化形式。这里不提供具体描述了,具体细节去谷歌吧。

    4. 点云配准

    点云配准的概念也可以类比于二维图像中的配准,只不过二维图像配准获取得到的是x,y,alpha,beta等放射变化参数,二三维点云配准可以模拟三维点云的移动和对其,也就是会获得一个旋转矩阵和一个平移向量,通常表达为一个4×3的矩阵,其中3×3是旋转矩阵,1*3是平移向量。严格说来是6个参数,因为旋转矩阵也可以通过罗格里德斯变换转变成1*3的旋转向量。

    常用的点云配准算法有两种:正太分布变换和著名的ICP点云配准,此外还有许多其它算法,列举如下:

    ICP:稳健ICP、point to plane ICP、point to line ICP、MBICP、GICP

    NDT 3D、Multil-Layer NDT

    FPCS、KFPSC、SAC-IA

    Line Segment Matching、ICL

    5. 点云分割与分类

    点云的分割与分类也算是一个大Topic了,这里因为多了一维就和二维图像比多了许多问题,点云分割又分为区域提取、线面提取、语义分割与聚类等。同样是分割问题,点云分割涉及面太广,确实是三言两语说不清楚的。只有从字面意思去理解了,遇到具体问题再具体归类。一般说来,点云分割是目标识别的基础。

    分割:区域声场、Ransac线面提取、NDT-RANSAC、K-Means、Normalize Cut、3D Hough Transform(线面提取)、连通分析

    分类:基于点的分类,基于分割的分类,监督分类与非监督分类

    6. SLAM图优化

    SLAM又是大Topic,SLAM技术中,在图像前端主要获取点云数据,而在后端优化主要就是依靠图优化工具。而SLAM技术近年来的发展也已经改变了这种技术策略。在过去的经典策略中,为了求解LandMark和Location,将它转化为一个稀疏图的优化,常常使用g2o工具来进行图优化。下面是一些常用的工具和方法。

    g2o、LUM、ELCH、Toro、SPA

    SLAM方法:ICP、MBICP、IDC、likehood Field、 Cross Correlation、NDT

    7. 目标识别检索

    这是点云数据处理中一个偏应用层面的问题,简单说来就是Hausdorff距离常被用来进行深度图的目标识别和检索,现在很多三维人脸识别都是用这种技术来做的。

    8. 变化检测

    当无序点云在连续变化中,八叉树算法常常被用于检测变化,这种算法需要和关键点提取技术结合起来,八叉树算法也算是经典中的经典了。

    9. 三维重建

    我们获取到的点云数据都是一个个孤立的点,如何从一个个孤立的点得到整个曲面呢,这就是三维重建的topic。

    在玩kinectFusion时候,如果我们不懂,会发现曲面渐渐变平缓,这就是重建算法不断迭代的效果。我们采集到的点云是充满噪声和孤立点的,三维重建算法为了重构出曲面,常常要应对这种噪声,获得看上去很舒服的曲面。

    常用的三维重建算法和技术有:

    泊松重建、Delauary triangulatoins

    表面重建,人体重建,建筑物重建,输入重建

    实时重建:重建纸杯或者龙作物4D生长台式,人体姿势识别,表情识别

    10. 点云数据管理

    点云压缩,点云索引(KDtree、Octree),点云LOD(金字塔),海量点云的渲染

    PCL库简介

    点云数据处理中,不仅涉及前段数据的输入,中间数据和处理,还涉及到后端点云的渲染显示,如果这些函数都要我们亲自来实现,那么开发效率必然受到极大影响。在点云数据处理领域,有一个不可或缺的助手:PCL (Point Cloud Library)。PCL在点云数据处理中的地位犹如OpenCV在图像处理领域的地位,如果你接触三维点云数据处理,那么PCL将大大简化你的开发。

    展开全文
  • 视音频数据处理入门

    千次下载 热门讨论 2016-01-29 16:58:05
    (1)像素数据处理程序。包含RGB和YUV像素格式处理的函数。 (2)音频采样数据处理程序。包含PCM音频采样格式处理的函数。 (3)H.264码流分析程序。可以分离并解析NALU。 (4)AAC码流分析程序。可以分离并解析ADTS帧。...
  • Python空间数据处理实战

    千人学习 2019-07-31 16:10:40
       近几年,基于位置服务的应用层出不穷,如GPS车辆导航、打车、外卖、运动等,产生了大量的具有时空信息的轨迹数据,对...本课程讲述了Python对时空数据的处理,以及机器学习方法在空间数据处理上的应用。
  • Spark快速大数据处理

    万人学习 2019-04-24 19:32:53
    课程的主要内容包括: 1.ZooKeeper-分布式过程协同组件 2.Hadoop3-大数据基础组件 3.Tez-Yarn底层计算引擎 4.Hive3-大数据仓库 5.Spark2实时大数据处理 6.Oozie5-大数据流程引擎 课程特点: 1.最新API: Hadoop3/...
  • 数据处理流程

    万次阅读 多人点赞 2019-02-21 16:53:13
    数据处理流程 1. 数据处理流程 网站流量日志数据分析是一个纯粹的数据分析项目,其整体流程基本上就是依据数据的处理流程进行。有以下几个大的步骤: 1.1 数据采集     &...

    大数据处理流程

    数据处理流程
    1. 数据处理流程
    网站流量日志数据分析是一个纯粹的数据分析项目,其整体流程基本上就是依据数据的处理流程进行。有以下几个大的步骤:
    1.1 数据采集
            数据采集概念,目前行业会有两种解释:一是数据从无到有的过程(web服务器打印的日志、自定义采集的日志等)叫做数据采集;另一方面也有把通过使用Flume等工具把数据采集到指定位置的这个过程叫做数据采集。
    关于具体含义要结合语境具体分析,明白语境中具体含义即可。
    1.2 数据预处理
            通过mapreduce程序对采集到的原始日志数据进行预处理,比如清洗,格式整理,滤除脏数据等,并且梳理成点击流模型数据。
    1.3 数据入库
            将预处理之后的数据导入到HIVE仓库中相应的库和表中。
    1.4 数据分析
            项目的核心内容,即根据需求开发ETL分析语句,得出各种统计结果。
    1.5 数据展现
            将分析所得数据进行数据可视化,一般通过图表进行展示。

    大数据流程

    扩展:
    1、数据处理主要技术

            Sqoop:作为一款开源的离线数据传输工具,主要用于Hadoop(Hive) 与传统数据库(MySql,PostgreSQL)间的数据传递。它可以将一个关系数据库中数据导入Hadoop的HDFS中,也可以将HDFS中的数据导入关系型数据库中。

            Flume:实时数据采集的一个开源框架,它是Cloudera提供的一个高可用用的、高可靠、分布式的海量日志采集、聚合和传输的系统。目前已经是Apache的顶级子项目。使用Flume可以收集诸如日志、时间等数据并将这些数据集中存储起来供下游使用(尤其是数据流框架,例如Storm)。和Flume类似的另一个框架是Scribe(FaceBook开源的日志收集系统,它为日志的分布式收集、统一处理提供一个可扩展的、高容错的简单方案)

            Kafka:通常来说Flume采集数据的速度和下游处理的速度通常不同步,因此实时平台架构都会用一个消息中间件来缓冲,而这方面最为流行和应用最为广泛的无疑是Kafka。它是由LinkedIn开发的一个分布式消息系统,以其可以水平扩展和高吞吐率而被广泛使用。目前主流的开源分布式处理系统(如Storm和Spark等)都支持与Kafka 集成。Kafka是一个基于分布式的消息发布-订阅系统,特点是速度快、可扩展且持久。与其他消息发布-订阅系统类似,Kafka可在主题中保存消息的信息。生产者向主题写入数据,消费者从主题中读取数据。作为一个分布式的、分区的、低延迟的、冗余的日志提交服务。和Kafka类似消息中间件开源产品还包括RabbiMQ、ActiveMQ、ZeroMQ等。

            MapReduce是Google公司的核心计算模型,它将运行于大规模集群上的复杂并行计算过程高度抽象为两个函数:map和reduce。MapReduce最伟大之处在于其将处理大数据的能力赋予了普通开发人员,以至于普通开发人员即使不会任何的分布式编程知识,也能将自己的程序运行在分布式系统上处理海量数据。

            Hive:MapReduce将处理大数据的能力赋予了普通开发人员,而Hive进一步将处理和分析大数据的能力赋予了实际的数据使用人员(数据开发工程师、数据分析师、算法工程师、和业务分析人员)。Hive是由Facebook开发并贡献给Hadoop开源社区的,是一个建立在Hadoop体系结构上的一层SQL抽象。Hive提供了一些对Hadoop文件中数据集进行处理、查询、分析的工具。它支持类似于传统RDBMS的SQL语言的查询语言,一帮助那些熟悉SQL的用户处理和查询Hodoop在的数据,该查询语言称为Hive SQL。Hive SQL实际上先被SQL解析器解析,然后被Hive框架解析成一个MapReduce可执行计划,并按照该计划生产MapReduce任务后交给Hadoop集群处理。

            Spark:尽管MapReduce和Hive能完成海量数据的大多数批处理工作,并且在打数据时代称为企业大数据处理的首选技术,但是其数据查询的延迟一直被诟病,而且也非常不适合迭代计算和DAG(有限无环图)计算。由于Spark具有可伸缩、基于内存计算能特点,且可以直接读写Hadoop上任何格式的数据,较好地满足了数据即时查询和迭代分析的需求,因此变得越来越流行。Spark是UC Berkeley AMP Lab(加州大学伯克利分校的 AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,它拥有Hadoop MapReduce所具有的优点,但不同MapReduce的是,Job中间输出结果可以保存在内存中,从而不需要再读写HDFS ,因此能更好适用于数据挖掘和机器学习等需要迭代的MapReduce算法。Spark也提供类Live的SQL接口,即Spark SQL,来方便数据人员处理和分析数据。Spark还有用于处理实时数据的流计算框架Spark Streaming,其基本原理是将实时流数据分成小的时间片段(秒或几百毫秒),以类似Spark离线批处理的方式来处理这小部分数据。

            Storm:MapReduce、Hive和Spark是离线和准实时数据处理的主要工具,而Storm是实时处理数据的。Storm是Twitter开源的一个类似于Hadoop的实时数据处理框架。Storm对于实时计算的意义相当于Hadoop对于批处理的意义。Hadoop提供了Map和Reduce原语,使对数据进行批处理变得非常简单和优美。同样,Storm也对数据的实时计算提供了简单的Spout和Bolt原语。Storm集群表面上和Hadoop集群非常像,但是在Hadoop上面运行的是MapReduce的Job,而在Storm上面运行的是Topology(拓扑)。Storm拓扑任务和Hadoop MapReduce任务一个非常关键的区别在于:1个MapReduce Job最终会结束,而1一个Topology永远运行(除非显示的杀掉它,),所以实际上Storm等实时任务的资源使用相比离线MapReduce任务等要大很多,因为离线任务运行完就释放掉所使用的计算、内存等资源,而Storm等实时任务必须一直占有直到被显式的杀掉。Storm具有低延迟、分布式、可扩展、高容错等特性,可以保证消息不丢失,目前Storm, 类Storm或基于Storm抽象的框架技术是实时处理、流处理领域主要采用的技术。

            Flink:在数据处理领域,批处理任务和实时流计算任务一般被认为是两种不同的任务,一个数据项目一般会被设计为只能处理其中一种任务,例如Storm只支持流处理任务,而MapReduce, Hive只支持批处理任务。Apache Flink是一个同时面向分布式实时流处理和批量数据处理的开源数据平台,它能基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能。Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来。Flink完全支持流处理,批处理被作为一种特殊的流处理,只是它的数据流被定义为有界的而已。基于同一个Flink运行时,Flink分别提供了流处理和批处理API,而这两种API也是实现上层面向流处理、批处理类型应用框架的基础。

    2、数据存储主要技术

            HDFS:Hadoop Distributed File System,简称FDFS,是一个分布式文件系统。它有一定高度的容错性和高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS提供了一个高容错性和高吞吐量的海量数据存储解决方案。在Hadoop的整个架构中,HDFS在MapReduce任务处理过程在中提供了对文件操作的和存储的的支持,MapReduce在HDFS基础上实现了任务的分发、跟踪和执行等工作,并收集结果,两者相互作用,共同完成了Hadoop分布式集群的主要任务。

            HBase:HBase是一种构建在HDFS之上的分布式、面向列族的存储系统。在需要实时读写并随机访问超大规模数据集等场景下,HBase目前是市场上主流的技术选择。
    HBase技术来源于Google论文《Bigtable :一个结构化数据的分布式存储系统》。如同Bigtable利用了Google File System提供的分布式数据存储方式一样,HBase在HDFS之上提供了类似于Bigtable的能力。

            HBase解决了传递数据库的单点性能极限。实际上,传统的数据库解决方案,尤其是关系型数据库也可以通过复制和分区的方法来提高单点性能极限,但这些都是后知后觉的,安装和维护都非常复杂。
    而HBase从另一个角度处理伸缩性的问题,即通过线性方式从下到上增加节点来进行扩展。

                 HBase 不是关系型数据库,也不支持SQL,它的特性如下:

    1、大:一个表可以有上亿上,上百万列。
    2、面向列:面向列表(簇)的存储和权限控制,列(簇)独立检索。
    3、稀疏:为空(null)的列不占用存储空间,因此表可以设计的非常稀疏。
    4、无模式::每一行都有一个可以排序的主键和任意多的列。列可以根据需求动态增加,同一张表中不同的行可以有截然不同的列。
    5、数据多版本:每个单元的数据可以有多个版本,默认情况下,版本号字段分开,它是单元格插入时的时间戳。
    6、数据类型单一:HBase中数据都是字符串,没有类型。

    展开全文
  • 1. 大数据处理之一:采集 大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL...

    1. 大数据处理之一:采集

    大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

    在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。

    2. 大数据处理之二:导入/预处理

    虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

    导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

    3. 大数据处理之三:统计/分析

    统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

    统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

    4. 大数据处理之四:挖掘

    与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

    在这里我还是要推荐下我自己建的大数据学习交流qq裙:522189307 , 裙 里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴。上述资料加群可以领取

    展开全文
  • Python数据处理与特征工程

    千人学习 2020-10-11 16:58:28
    CSDN全站首发——Python数据处理与特征工程 课程聚焦数据科学中,数据清洗与分析前的特征提取过程,解决数据科学中最重要的原始数据清洗和特征提取。 【定制课程 精准扫除学习盲点】 课程充分考虑各类实际问题...
  • Spark快速数据处理

    千次下载 热门讨论 2014-04-24 14:08:54
    Spark快速数据处理文档~ Spark集群 1.1 单机运行Spark 1.2 在EC2上运行Spark 1.3 在ElasticMapReduce上部署Spark 1.4 用Chef(opscode)部署Spark 1.5 在Mesos上部署Spark 1.6 在Yarn上部署Spark 1.7 通过SSH...
  • 大数据Storm实时数据处理视频培训课程:Strom是一个老牌的实时数据处理框架,在Spark Streaming流行前,Storm统治者整个流式计算的江湖。更详细的说,Storm是一个实时数据处理框架,具有低延迟/高可用/易扩展/数据不...
  • 【spark论文翻译】An Architecture for Fast and General Data Processing on Large Cluster 大型集群上的快速和通用数据处理架构。CSDN CODE翻译社区出品。 之前上传的版本图表有问题,这版已经修复。请更新谢谢。
  • 从EXCEL到PowerBI。 本套餐包含三门课程,分别是:《EXCEL拨云见日》、...该系列课程能够帮助您快速入门数据处理,并掌握数据处理的基本思路和方法。课程注重强调数据处理的内在逻辑分析,不仅仅关注于解决具体问题。
  • 数据处理之标准化/归一化方法

    万次阅读 2016-07-10 16:48:44
    数据处理之标准化/归一化方法归一化方法(Normalization Method)1.把数变为(0,1)之间的小数 主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。2.把...

    数据处理之标准化/归一化方法

    归一化方法(Normalization Method)

    1.把数变为(0,1)之间的小数

          主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。

    2.把有量纲表达式变为无量纲表达式

          归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。

          比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。

          另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

    常见的归一化公式

    1.线性函数转换

          表达式如下:

          y=(x-MinValue)/(MaxValue-MinValue)

         说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

    2.对数函数转换

          表达式如下:

         y=log10(x)

         说明:以10为底的对数函数转换。

    3.反余切函数转换

          表达式如下:

         y=atan(x)*2/PI

    标准化方法(Normalization Method)

          数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。由于信用指标体系的各个指标度量单位是不同的,为了能够将指标参与评价计算,需要对指标进行规范化处理,通过函数变换将其数值映射到某个数值区间。

    美文美图

     

    展开全文
  • Matlab数据处理(一):归一化处理

    万次阅读 多人点赞 2019-03-09 20:06:46
    最近在做毕业设计,涉及了不少关于实验数据处理的方法。这里介绍一下数据归一化处理。 其中:ax是实验采集的加速度值,是关于时间变化的离散数值;读取数据之后利用巴特沃斯滤波器滤去高频信号,最后进行可视化和...
  • 数据处理的四大步骤

    万次阅读 2019-06-12 21:59:41
    具体的大数据处理方法确实有很多,但是根据笔者长时间的实践,总结了一个普遍适用的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入...
  • Java关于大批量数据处理

    千次阅读 2018-07-09 14:36:35
    在工作中,有时候会遇到大批量的数据处理,为了节省时间,一般会用线程批量处理,先举例几个方案。1.批量查询,单条处理 (利用线程池处理,线程池最大值:10) 优势:查询速度快; 出现异常影响数量小; 事务...
  • 数据处理和特征工程

    2020-08-11 11:14:50
    该套餐是专门针对Python基础,Python数据分析和Python数据清洗和处理的全新系列课程
  • 数据处理技术的总结与分析

    万次阅读 2019-05-26 17:29:55
    在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。 一数据分析处理需求分类 1 事务型处理 在我们实际生活中,事务型...
  • 物联网-物联网智能数据处理技术

    万次阅读 2019-01-20 11:53:12
    物联网数据处理技术的基本概念 物联网数据的特点 海量 动态 多态 关联 从无线传感器网络TinyDB数据库结构中可以清晰地看到物联网数据“海量、动态、多态、关联”的特点 物联网中的数据、信息与知识 ...
  • 数据处理环节下的需求大数据环节下的数据来源是非常多,而且类型也很多花样,存储和数据处理的需求量很大,对于数据展现也非常的高,并且很看重数据处理的高效性和可用性。大数据环境下的数据处理需求大数据环境下...
  • 数据处理的主要内容包括数据清洗、数据抽取、数据交换和数据计算等。 数据清洗 数据清洗是数据价值链中最关键的一步。垃圾数据即使是通过最好的分析也可能会产生错误的结果,并造成较大的误导。 数据清洗就是...
  • 数据处理的基本流程是什么?

    千次阅读 2019-01-02 15:11:52
    很多事情在执行的时候都是有一定的流程的,那么大数据的处理也不例外,这是因为有关程序都是需要逻辑的,而大数据处理也需要逻辑,这也就需要流程了。那么大数据处理的基本流程是什么呢?下面就由小编为大家解答一下...
  • 哨兵2号(Sentinel2)卫星数据处理

    万次阅读 2019-06-28 13:35:57
    哨兵数据处理人家ESA有自己的SNAP处理软件,非常好的软件。RSD也来凑凑热闹,也加了处理哨兵2号卫星数据的功能。 介绍RSD处理哨兵数据之前先夸夸这数据,数据质量真好。但是最让我感动的还是人家的元数据,写的那是...
  • 学习过GDPR的同学都知道,GDPR条文中不仅有数据控制者,还有数据处理者,很多人疑惑,这两个名词在法律上是指同一个角色吗?两者之间的法律责任一样吗?GDPR分别对他们有什么要求?事实上,数据控制者和数据处理者的...
  • 海量数据处理分析

    万次阅读 热门讨论 2006-12-06 15:37:00
    海量数据处理分析 北京迈思奇科技有限公司 戴子良 笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面:一、数据量过大,数据中什么情况都可能存在。如果...
  •  通过本章课程的学习,以项目角度出发,从数据采集、特征提取、算法选择、参数调优一步一步的完成真实企业中海量数据挖掘项目实战,帮助学员走向高级数据分析工程师岗位。
  • 数据处理基本过程

    万次阅读 多人点赞 2018-05-06 08:48:14
    把一些基本知识,总体架构记录一下,感觉坑很多,要学习的东西也很多,先简单了解一下基本知识什么是大数据:大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理数据集合,是需要新...
  • 搭建高可用的、高可靠的Flume数据采集通道,运用阿里云DateHub构建中间缓冲队列并担任数据分发枢纽将数据推送至阿里自主研发的DataWorks对数据进行分层处理,采用MaxCompute作为处理海量数据的方案,将计算结果保存...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 6,081,443
精华内容 2,432,577
关键字:

数据处理