精华内容
下载资源
问答
  • 近年Cache 缓存的研究论文解读汇总

    千次阅读 2020-03-21 11:33:12
    本系列收录了从2004年到2020年关于cache compression 和NVM的有关研究论文并做一个汇总 为什么写这个系列 最近在研究cache 压缩方面的有关内容,发现目前没有这方面的详细梳理,于是乎自己每两天读一篇论文,做一个...

    这个论文解读系列是什么

    本系列收录了从2004年到2020年关于cache compression 和NVM的有关研究论文并做一个汇总

    为什么写这个系列

    最近在研究cache 压缩方面的有关内容,发现目前没有这方面的详细梳理,于是乎自己每两天读一篇论文,做一个合集,供大家参考

    论文详情

    1. FVC解读
    2. FPC压缩论文解读
    3. FLIP-N-WRITE详解
    4. 计算机系统组成与GEM5
    5. BDI压缩
    6. Compression-Expansion Coding Improvements in MLC/TLC NVM论文解读
    7. Base-Victim Compression论文解读
    8. COMPRESSION ARCHITECTURE FOR BIT-WRITE REDUCTION IN NON-VOLATILE MEMORY TECHNOLOGIES论文解读
    9. DCW论文
    10. DFPC论文
    展开全文
  • 基于WiFi信号的相关研究论文整理

    千次阅读 2018-07-24 22:05:05
    最近几年关于基于WiFi信号的相关应用的研究论文,我整理了一下,放在下面网址上:https://download.csdn.net/download/guolinlin11/10561898。

    最近几年关于基于WiFi信号的相关应用的研究论文,我整理了一下,放在下面网址上:https://download.csdn.net/download/guolinlin11/10561898

     

     

    展开全文
  • 计算机研究论文发表能发的期刊有哪些 发表论文基本上是每个科研人员必须干得很溜的本事,一方面是体现自己科研能力的重要方式,一方面也是满足学校机构考评要求的手段,也是传播和交流科学思想和观点的重要途径。...

    计算机研究论文发表能发的期刊有哪些
    发表论文基本上是每个科研人员必须干得很溜的本事,一方面是体现自己科研能力的重要方式,一方面也是满足学校机构考评要求的手段,也是传播和交流科学思想和观点的重要途径。对于计算机专业的从业人员来说,不管是为了升学也好,为毕业也好,还是为了升职称,评奖金,一一个人能在专业的学术期刊上发表一篇自己的论文就足以证明自己一定程度上的专业能力,但是,发表论文不容易,不是写的不容易,而是找到一个能保证论文顺利发表的合适期刊不容易,下面是几个计算机领域类的期刊。
    录完呢
    《计算机产品与流通》:创刊于1984年,这个杂志属于省级计算类的期刊(期刊的级别,可以从杂志的主管主办单位去判断),专门刊登有关于计计算机类的文章,主要栏目有计算机技术,软件应用,网络通信,电力电子,科技信息,计算机教育等的等,在投稿难度方面一般,文章抄袭率要保持在20%以内,一个版面字符要在2500以内,想要投稿这个期刊,要控制一下文章的重复率和字数要求。

    《IT经理世界》:《it经理世界》是工业和信息化部电子科学技术情报研究所中国计算机世界出版服务公司主办的IT专业类刊物。同上述的期刊一样,属于知网全文收录计算机类的期刊,这个期刊是国家级的期刊,信息产业部电子科技情报研究所主办,杂志自1998 年创刊以来,始终如一地以“技术商业”视角,关注IT、互联网、生物等新技术发展趋势及其带来的商业和社会变革潮流,推动商业创新与变革。

    《电脑与信息技术》:这个期刊是经国家新闻出版总署正式批准,面向国内外公开发行的国家期刊,《中国核心期刊(遴选)数据库》、《中国期刊全文数据库》、《中文科技期刊数据库》、《中国期刊网》等数据库全文收录期刊,杂志集权威性、理论性与专业性于一体,具有很高的学术价值,是作者科研、晋级等方面的权威依据。
    ……

    找到期刊投稿是一个大难题,想要顺利投稿,可以关注我的账户,加上微信,就可以获知更多的详情。

    论文发表从来就不是一朝一夕就 可以完成的,在发表之前,了解期刊,了解投稿要求,了解这个杂志的具体方向是什么,同样是计算机类的期刊,这个期刊更偏向于理论还是实践,这些问题了解过之后会大大增加投稿的命中机率。

    展开全文
  • Gradient Boosting Research Papers. Machine learning NeurIPS ICML ICLR Computer vision CVPR ICCV ECCV Natural language processing ACL NAACL EMNLP Data KDD CIKM ICDM ...RECSY...

    Gradient Boosting Research Papers.

    Similar collections about graph classification, classification/regression tree, fraud detection, Monte Carlo tree search, and community detection papers with implementations.

    2019

    • Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME (AAAI 2019)

      • Farhad Shakerin, Gopal Gupta
      • [Paper]
    • Verifying Robustness of Gradient Boosted Models (AAAI 2019)

      • Gil Einziger, Maayan Goldstein, Yaniv Sa’ar, Itai Segall
      • [Paper]
    • Online Multiclass Boosting with Bandit Feedback (AISTATS 2019)

      • Daniel T. Zhang, Young Hun Jung, Ambuj Tewari
      • [Paper]
    • AdaFair: Cumulative Fairness Adaptive Boosting (CIKM 2019)

      • Vasileios Iosifidis, Eirini Ntoutsi
      • [Paper]
    • Interpretable MTL from Heterogeneous Domains using Boosted Tree (CIKM 2019)

    • Adversarial Training of Gradient-Boosted Decision Trees (CIKM 2019)

      • Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei
      • [Paper]
    • Boosted Density Estimation Remastered (ICML 2019)

    • Lossless or Quantized Boosting with Integer Arithmetic (ICML 2019)

      • Richard Nock, Robert C. Williamson
      • [Paper]
    • Optimal Minimal Margin Maximization with Boosting (ICML 2019)

      • Alexander Mathiasen, Kasper Green Larsen, Allan Grønlund
      • [Paper]
    • Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number (ICML 2019)

      • Zaiyi Chen, Yi Xu, Haoyuan Hu, Tianbao Yang
      • [Paper]
    • Boosting for Comparison-Based Learning (IJCAI 2019)

      • Michaël Perrot, Ulrike von Luxburg
      • [Paper]
    • AugBoost: Gradient Boosting Enhanced with Step-Wise Feature Augmentation (IJCAI 2019)

      • Philip Tannor, Lior Rokach
      • [Paper]
    • Gradient Boosting with Piece-Wise Linear Regression Trees (IJCAI 2019)

    • Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks (NeurIPS 2019)

    • Block-distributed Gradient Boosted Trees (SIGIR 2019)

      • Theodore Vasiloudis, Hyunsu Cho, Henrik Boström
      • [Paper]
    • Learning to Rank in Theory and Practice: From Gradient Boosting to Neural Networks and Unbiased Learning (SIGIR 2019)

      • Claudio Lucchese, Franco Maria Nardini, Rama Kumar Pasumarthi, Sebastian Bruch, Michael Bendersky, Xuanhui Wang, Harrie Oosterhuis, Rolf Jagerman, Maarten de Rijke
      • [Paper]

    2018

    • Boosted Generative Models (AAAI 2018)

    • Boosting Variational Inference: an Optimization Perspective (AISTATS 2018)

      • Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch
      • [Paper]
      • [Code]
    • Online Boosting Algorithms for Multi-label Ranking (AISTATS 2018)

    • DualBoost: Handling Missing Values with Feature Weights and Weak Classifiers that Abstain (CIKM 2018)

      • Weihong Wang, Jie Xu, Yang Wang, Chen Cai, Fang Chen
      • [Paper]
    • Functional Gradient Boosting based on Residual Network Perception (ICML 2018)

    • Finding Influential Training Samples for Gradient Boosted Decision Trees (ICML 2018)

      • Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de Rijke
      • [Paper]
    • Learning Deep ResNet Blocks Sequentially using Boosting Theory (ICML 2018)

      • Furong Huang, Jordan T. Ash, John Langford, Robert E. Schapire
      • [Paper]
      • [Code]
    • UCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits (IJCAI 2018)

      • Fang Liu, Sinong Wang, Swapna Buccapatnam, Ness B. Shroff
      • [Paper]
      • [Code]
    • Adaboost with Auto-Evaluation for Conversational Models (IJCAI 2018)

      • Juncen Li, Ping Luo, Ganbin Zhou, Fen Lin, Cheng Niu
      • [Paper]
    • Ensemble Neural Relation Extraction with Adaptive Boosting (IJCAI 2018)

      • Dongdong Yang, Senzhang Wang, Zhoujun Li
      • [Paper]
    • CatBoost: Unbiased Boosting with Categorical Features (NIPS 2018)

      • Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin
      • [Paper]
      • [Code]
    • Multitask Boosting for Survival Analysis with Competing Risks (NIPS 2018)

      • Alexis Bellot, Mihaela van der Schaar
      • [Paper]
    • Multi-Layered Gradient Boosting Decision Trees (NIPS 2018)

    • Boosted Sparse and Low-Rank Tensor Regression (NIPS 2018)

      • Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang
      • [Paper]
      • [Code]
    • Selective Gradient Boosting for Effective Learning to Rank (SIGIR 2018)

      • Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Orlando, Salvatore Trani
      • [Paper]
      • [Code]

    2017

    • Boosting for Real-Time Multivariate Time Series Classification (AAAI 2017)

    • Cross-Domain Sentiment Classification via Topic-Related TrAdaBoost (AAAI 2017)

      • Xingchang Huang, Yanghui Rao, Haoran Xie, Tak-Lam Wong, Fu Lee Wang
      • [Paper]
      • [Code]
    • Extreme Gradient Boosting and Behavioral Biometrics (AAAI 2017)

    • FeaBoost: Joint Feature and Label Refinement for Semantic Segmentation (AAAI 2017)

      • Yulei Niu, Zhiwu Lu, Songfang Huang, Xin Gao, Ji-Rong Wen
      • [Paper]
    • Boosting Complementary Hash Tables for Fast Nearest Neighbor Search (AAAI 2017)

      • Xianglong Liu, Cheng Deng, Yadong Mu, Zhujin Li
      • [Paper]
    • Gradient Boosting on Stochastic Data Streams (AISTATS 2017)

      • Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, J. Andrew Bagnell
      • [Paper]
    • BoostVHT: Boosting Distributed Streaming Decision Trees (CIKM 2017)

      • Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci Morales
      • [Paper]
    • Fast Boosting Based Detection Using Scale Invariant Multimodal Multiresolution Filtered Features (CVPR 2017)

      • Arthur Daniel Costea, Robert Varga, Sergiu Nedevschi
      • [Paper]
    • BIER - Boosting Independent Embeddings Robustly (ICCV 2017)

      • Michael Opitz, Georg Waltner, Horst Possegger, Horst Bischof
      • [Paper]
      • [Code]
    • An Analysis of Boosted Linear Classifiers on Noisy Data with Applications to Multiple-Instance Learning (ICDM 2017)

    • Variational Boosting: Iteratively Refining Posterior Approximations (ICML 2017)

      • Andrew C. Miller, Nicholas J. Foti, Ryan P. Adams
      • [Paper]
      • [Code]
    • Boosted Fitted Q-Iteration (ICML 2017)

      • Samuele Tosatto, Matteo Pirotta, Carlo D’Eramo, Marcello Restelli
      • [Paper]
    • A Simple Multi-Class Boosting Framework with Theoretical Guarantees and Empirical Proficiency (ICML 2017)

    • Gradient Boosted Decision Trees for High Dimensional Sparse Output (ICML 2017)

      • Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh
      • [Paper]
      • [Code]
    • Local Topic Discovery via Boosted Ensemble of Nonnegative Matrix Factorization (IJCAI 2017)

      • Sangho Suh, Jaegul Choo, Joonseok Lee, Chandan K. Reddy
      • [Paper]
      • [Code]
    • Boosted Zero-Shot Learning with Semantic Correlation Regularization (IJCAI 2017)

      • Te Pi, Xi Li, Zhongfei (Mark) Zhang
      • [Paper]
    • BDT: Gradient Boosted Decision Tables for High Accuracy and Scoring Efficiency (KDD 2017)

    • CatBoost: Gradient Boosting with Categorical Features Support (NIPS 2017)

      • Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin
      • [Paper]
      • [Code]
    • Cost Efficient Gradient Boosting (NIPS 2017)

      • Sven Peter, Ferran Diego, Fred A. Hamprecht, Boaz Nadler
      • [Paper]
      • [Code]
    • AdaGAN: Boosting Generative Models (NIPS 2017)

      • Ilya O. Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, Bernhard Schölkopf
      • [Paper]
      • [Code]
    • LightGBM: A Highly Efficient Gradient Boosting Decision Tree (NIPS 2017)

      • Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu
      • [Paper]
      • [Code]
    • Early Stopping for Kernel Boosting Algorithms: A General Analysis with Localized Complexities (NIPS 2017)

    • Online Multiclass Boosting (NIPS 2017)

      • Young Hun Jung, Jack Goetz, Ambuj Tewari
      • [Paper]
    • Stacking Bagged and Boosted Forests for Effective Automated Classification (SIGIR 2017)

      • Raphael R. Campos, Sérgio D. Canuto, Thiago Salles, Clebson C. A. de Sá, Marcos André Gonçalves
      • [Paper]
      • [Code]
    • GB-CENT: Gradient Boosted Categorical Embedding and Numerical Trees (WWW 2017)

    2016

    • Group Cost-Sensitive Boosting for Multi-Resolution Pedestrian Detection (AAAI 2016)

    • Communication Efficient Distributed Agnostic Boosting (AISTATS 2016)

      • Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau
      • [Paper]
    • Logistic Boosting Regression for Label Distribution Learning (CVPR 2016)

      • Chao Xing, Xin Geng, Hui Xue
      • [Paper]
    • Structured Regression Gradient Boosting (CVPR 2016)

      • Ferran Diego, Fred A. Hamprecht
      • [Paper]
    • L-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization (ICDM 2016)

      • Sangho Suh, Jaegul Choo, Joonseok Lee, Chandan K. Reddy
      • [Paper]
      • [Code]
    • Meta-Gradient Boosted Decision Tree Model for Weight and Target Learning (ICML 2016)

      • Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel Serdyukov
      • [Paper]
    • Generalized Dictionary for Multitask Learning with Boosting (IJCAI 2016)

    • Self-Paced Boost Learning for Classification (IJCAI 2016)

      • Te Pi, Xi Li, Zhongfei Zhang, Deyu Meng, Fei Wu, Jun Xiao, Yueting Zhuang
      • [Paper]
    • Interactive Martingale Boosting (IJCAI 2016)

      • Ashish Kulkarni, Pushpak Burange, Ganesh Ramakrishnan
      • [Paper]
    • Optimal and Adaptive Algorithms for Online Boosting (IJCAI 2016)

    • Rating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews (IJCAI 2016)

      • Yunzhi Tan, Min Zhang, Yiqun Liu, Shaoping Ma
      • [Paper]
    • XGBoost: A Scalable Tree Boosting System (KDD 2016)

    • Boosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (KDD 2016)

      • Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel Serdyukov
      • [Paper]
    • Boosting with Abstention (NIPS 2016)

      • Corinna Cortes, Giulia DeSalvo, Mehryar Mohri
      • [Paper]
    • SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques (NIPS 2016)

      • Elad Richardson, Rom Herskovitz, Boris Ginsburg, Michael Zibulevsky
      • [Paper]
      • [Code]
    • Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition (NIPS 2016)

      • Shizhong Han, Zibo Meng, Ahmed-Shehab Khan, Yan Tong
      • [Paper]
      • [Code]
    • Generalized BROOF-L2R: A General Framework for Learning to Rank Based on Boosting and Random Forests (SIGIR 2016)

      • Clebson C. A. de Sá, Marcos André Gonçalves, Daniel Xavier de Sousa, Thiago Salles
      • [Paper]

    2015

    • Online Boosting Algorithms for Anytime Transfer and Multitask Learning (AAAI 2015)

    • A Boosted Multi-Task Model for Pedestrian Detection with Occlusion Handling (AAAI 2015)

    • Efficient Second-Order Gradient Boosting for Conditional Random Fields (AISTATS 2015)

      • Tianqi Chen, Sameer Singh, Ben Taskar, Carlos Guestrin
      • [Paper]
    • Tumblr Blog Recommendation with Boosted Inductive Matrix Completion (CIKM 2015)

      • Donghyuk Shin, Suleyman Cetintas, Kuang-Chih Lee, Inderjit S. Dhillon
      • [Paper]
    • Basis mapping based boosting for object detection (CVPR 2015)

    • Tracking-by-Segmentation with Online Gradient Boosting Decision Tree (ICCV 2015)

      • Jeany Son, Ilchae Jung, Kayoung Park, Bohyung Han
      • [Paper]
      • [Code]
    • Learning to Boost Filamentary Structure Segmentation (ICCV 2015)

    • Optimal and Adaptive Algorithms for Online Boosting (ICML 2015)

    • Rademacher Observations, Private Data, and Boosting (ICML 2015)

      • Richard Nock, Giorgio Patrini, Arik Friedman
      • [Paper]
    • Boosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions (ICML 2015)

      • Taehoon Lee, Sungroh Yoon
      • [Paper]
    • A Direct Boosting Approach for Semi-supervised Classification (IJCAI 2015)

      • Shaodan Zhai, Tian Xia, Zhongliang Li, Shaojun Wang
      • [Paper]
    • A Boosting Algorithm for Item Recommendation with Implicit Feedback (IJCAI 2015)

    • Training-Time Optimization of a Budgeted Booster (IJCAI 2015)

      • Yi Huang, Brian Powers, Lev Reyzin
      • [Paper]
    • Optimal Action Extraction for Random Forests and Boosted Trees (KDD 2015)

      • Zhicheng Cui, Wenlin Chen, Yujie He, Yixin Chen
      • [Paper]
    • Online Gradient Boosting (NIPS 2015)

      • Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo
      • [Paper]
      • [Code]
    • BROOF: Exploiting Out-of-Bag Errors Boosting and Random Forests for Effective Automated Classification (SIGIR 2015)

      • Thiago Salles, Marcos André Gonçalves, Victor Rodrigues, Leonardo C. da Rocha
      • [Paper]
    • Boosting Search with Deep Understanding of Contents and Users (WSDM 2015)

    2014

    • On Boosting Sparse Parities (AAAI 2014)

    • Joint Coupled-Feature Representation and Coupled Boosting for AD Diagnosis (CVPR 2014)

      • Yinghuan Shi, Heung-Il Suk, Yang Gao, Dinggang Shen
      • [Paper]
    • From Categories to Individuals in Real Time - A Unified Boosting Approach (CVPR 2014)

    • Efficient Boosted Exemplar-Based Face Detection (CVPR 2014)

      • Haoxiang Li, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Gang Hua
      • [Paper]
    • Facial Expression Recognition via a Boosted Deep Belief Network (CVPR 2014)

      • Ping Liu, Shizhong Han, Zibo Meng, Yan Tong
      • [Paper]
    • Confidence-Rated Multiple Instance Boosting for Object Detection (CVPR 2014)

    • The Return of AdaBoost.MH: Multi-Class Hamming Trees (ICLR 2014)

    • Deep Boosting (ICML 2014)

    • A Convergence Rate Analysis for LogitBoost, MART and Their Variant (ICML 2014)

      • Peng Sun, Tong Zhang, Jie Zhou
      • [Paper]
    • Boosting with Online Binary Learners for the Multiclass Bandit Problem (ICML 2014)

      • Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu
      • [Paper]
    • Boosting Multi-Step Autoregressive Forecasts (ICML 2014)

      • Souhaib Ben Taieb, Rob J. Hyndman
      • [Paper]
    • Dynamic Programming Boosting for Discriminative Macro-Action Discovery (ICML 2014)

      • Leonidas Lefakis, François Fleuret
      • [Paper]
    • Guess-Averse Loss Functions For Cost-Sensitive Multiclass Boosting (ICML 2014)

      • Oscar Beijbom, Mohammad J. Saberian, David J. Kriegman, Nuno Vasconcelos
      • [Paper]
    • A Multi-Class Boosting Method with Direct Optimization (KDD 2014)

      • Shaodan Zhai, Tian Xia, Shaojun Wang
      • [Paper]
    • Gradient Boosted Feature Selection (KDD 2014)

      • Zhixiang Eddie Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng
      • [Paper]
      • [Code]
    • Multi-Class Deep Boosting (NIPS 2014)

      • Vitaly Kuznetsov, Mehryar Mohri, Umar Syed
      • [Paper]
    • Deconvolution of High Dimensional Mixtures via Boosting with Application to Diffusion-Weighted MRI of Human Brain (NIPS 2014)

      • Charles Y. Zheng, Franco Pestilli, Ariel Rokem
      • [Paper]
    • A Drifting-Games Analysis for Online Learning and Applications to Boosting (NIPS 2014)

      • Haipeng Luo, Robert E. Schapire
      • [Paper]
    • A Boosting Framework on Grounds of Online Learning (NIPS 2014)

      • Tofigh Naghibi Mohamadpoor, Beat Pfister
      • [Paper]
    • Gradient Boosting Factorization Machines (RECSYS 2014)

      • Chen Cheng, Fen Xia, Tong Zhang, Irwin King, Michael R. Lyu
      • [Paper]

    2013

    • Boosting Binary Keypoint Descriptors (CVPR 2013)

      • Tomasz Trzcinski, C. Mario Christoudias, Pascal Fua, Vincent Lepetit
      • [Paper]
      • [Code]
    • PerturBoost: Practical Confidential Classifier Learning in the Cloud (ICDM 2013)

    • Multiclass Semi-Supervised Boosting Using Similarity Learning (ICDM 2013)

      • Jafar Tanha, Mohammad Javad Saberian, Maarten van Someren
      • [Paper]
    • Saving Evaluation Time for the Decision Function in Boosting: Representation and Reordering Base Learner (ICML 2013)

    • General Functional Matrix Factorization Using Gradient Boosting (ICML 2013)

      • Tianqi Chen, Hang Li, Qiang Yang, Yong Yu
      • [Paper]
    • Margins, Shrinkage, and Boosting (ICML 2013)

    • Quickly Boosting Decision Trees - Pruning Underachieving Features Early (ICML 2013)

      • Ron Appel, Thomas J. Fuchs, Piotr Dollár, Pietro Perona
      • [Paper]
      • [Code]
    • Human Boosting (ICML 2013)

      • Harsh H. Pareek, Pradeep Ravikumar
      • [Paper]
    • Collaborative Boosting for Activity Classification in Microblogs (KDD 2013)

      • Yangqiu Song, Zhengdong Lu, Cane Wing-ki Leung, Qiang Yang
      • [Paper]
    • Direct 0-1 Loss Minimization and Margin Maximization with Boosting (NIPS 2013)

      • Shaodan Zhai, Tian Xia, Ming Tan, Shaojun Wang
      • [Paper]
    • Reservoir Boosting : Between Online and Offline Ensemble Learning (NIPS 2013)

      • Leonidas Lefakis, François Fleuret
      • [Paper]
    • Non-Linear Domain Adaptation with Boosting (NIPS 2013)

      • Carlos J. Becker, C. Mario Christoudias, Pascal Fua
      • [Paper]
    • Boosting in the Presence of Label Noise (UAI 2013)

      • Jakramate Bootkrajang, Ata Kabán
      • [Paper]

    2012

    • Contextual Boost for Pedestrian Detection (CVPR 2012)

    • Shrink Boost for Selecting Multi-LBP Histogram Features in Object Detection (CVPR 2012)

      • Cher Keng Heng, Sumio Yokomitsu, Yuichi Matsumoto, Hajime Tamura
      • [Paper]
    • Boosting Bottom-Up and Top-Down Visual Features for Saliency Estimation (CVPR 2012)

    • Boosting Algorithms for Simultaneous Feature Extraction and Selection (CVPR 2012)

      • Mohammad J. Saberian, Nuno Vasconcelos
      • [Paper]
    • Sharing Features in Multi-class Boosting via Group Sparsity (CVPR 2012)

      • Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel
      • [Paper]
    • Feature Weighting and Selection Using Hypothesis Margin of Boosting (ICDM 2012)

      • Malak Alshawabkeh, Javed A. Aslam, Jennifer G. Dy, David R. Kaeli
      • [Paper]
    • An AdaBoost Algorithm for Multiclass Semi-supervised Learning (ICDM 2012)

      • Jafar Tanha, Maarten van Someren, Hamideh Afsarmanesh
      • [[Paper]]https://ieeexplore.ieee.org/document/6413799)
    • AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem (ICML 2012)

      • Peng Sun, Mark D. Reid, Jie Zhou
      • [[Paper]](AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem)
      • [Code]
    • An Online Boosting Algorithm with Theoretical Justifications (ICML 2012)

      • Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu
      • [Paper]
    • Learning Image Descriptors with the Boosting-Trick (NIPS 2012)

      • Tomasz Trzcinski, C. Mario Christoudias, Vincent Lepetit, Pascal Fua
      • [Paper]
      • [Code]
    • Accelerated Training for Matrix-norm Regularization: A Boosting Approach (NIPS 2012)

      • Xinhua Zhang, Yaoliang Yu, Dale Schuurmans
      • [Paper]
    • Learning from Heterogeneous Sources via Gradient Boosting Consensus (SDM 2012)

      • Xiaoxiao Shi, Jean-François Paiement, David Grangier, Philip S. Yu
      • [Paper]
      • [Code]

    2011

    • Selective Transfer Between Learning Tasks Using Task-Based Boosting (AAAI 2011)

      • Eric Eaton, Marie desJardins
      • [Paper]
    • Incorporating Boosted Regression Trees into Ecological Latent Variable Models (AAAI 2011)

      • Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich
      • [Paper]
    • FlowBoost - Appearance Learning from Sparsely Annotated Video (CVPR 2011)

      • Karim Ali, David Hasler, François Fleuret
      • [Paper]
    • AdaBoost on Low-Rank PSD Matrices for Metric Learning (CVPR 2011)

      • Jinbo Bi, Dijia Wu, Le Lu, Meizhu Liu, Yimo Tao, Matthias Wolf
      • [Paper]
    • Boosted Local Structured HOG-LBP for Object Localization (CVPR 2011)

      • Junge Zhang, Kaiqi Huang, Yinan Yu, Tieniu Tan
      • [Paper]
    • A Direct Formulation for Totally-Corrective Multi-Class Boosting (CVPR 2011)

    • Gated Classifiers: Boosting Under High Intra-class Variation (CVPR 2011)

      • Oscar M. Danielsson, Babak Rasolzadeh, Stefan Carlsson
      • [Paper]
    • TaylorBoost: First and Second-order Boosting Algorithms with Explicit Margin Control (CVPR 2011)

      • Mohammad J. Saberian, Hamed Masnadi-Shirazi, Nuno Vasconcelos
      • [Paper]
      • [Code]
    • Robust and Efficient Regularized Boosting Using Total Bregman Divergence (CVPR 2011)

      • Meizhu Liu, Baba C. Vemuri
      • [Paper]
    • Treat Samples differently: Object Tracking with Semi-Supervised Online CovBoost (ICCV 2011)

      • Guorong Li, Lei Qin, Qingming Huang, Junbiao Pang, Shuqiang Jiang
      • [Paper]
    • LinkBoost: A Novel Cost-Sensitive Boosting Framework for Community-Level Network Link Prediction (ICDM 2011)

      • Prakash Mandayam Comar, Pang-Ning Tan, Anil K. Jain
      • [Paper]
    • Learning Markov Logic Networks via Functional Gradient Boosting (ICDM 2011)

      • Tushar Khot, Sriraam Natarajan, Kristian Kersting, Jude W. Shavlik
      • [Paper]
      • [Code]
    • Boosting on a Budget: Sampling for Feature-Efficient Prediction (ICML 2011)

    • Multiclass Boosting with Hinge Loss based on Output Coding (ICML 2011)

    • Generalized Boosting Algorithms for Convex Optimization (ICML 2011)

      • Alexander Grubb, Drew Bagnell
      • [Paper]
    • Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach (IJCAI 2011)

      • Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik
      • [Paper]
    • Boosting with Maximum Adaptive Sampling (NIPS 2011)

      • Charles Dubout, François Fleuret
      • [Paper]
    • The Fast Convergence of Boosting (NIPS 2011)

    • ShareBoost: Efficient Multiclass Learning with Feature Sharing (NIPS 2011)

      • Shai Shalev-Shwartz, Yonatan Wexler, Amnon Shashua
      • [Paper]
    • Multiclass Boosting: Theory and Algorithms (NIPS 2011)

      • Mohammad J. Saberian, Nuno Vasconcelos
      • [Paper]
    • Variance Penalizing AdaBoost (NIPS 2011)

      • Pannagadatta K. Shivaswamy, Tony Jebara
      • [Paper]
    • MKBoost: A Framework of Multiple Kernel Boosting (SDM 2011)

      • Hao Xia, Steven C. H. Hoi
      • [Paper]
    • A Boosting Approach to Improving Pseudo-Relevance Feedback (SIGIR 2011)

      • Yuanhua Lv, ChengXiang Zhai, Wan Chen
      • [Paper]
    • Bagging Gradient-Boosted Trees for High Precision, Low Variance Ranking Models (SIGIR 2011)

      • Yasser Ganjisaffar, Rich Caruana, Cristina Videira Lopes
      • [Paper]
    • Boosting as a Product of Experts (UAI 2011)

      • Narayanan Unny Edakunni, Gary Brown, Tim Kovacs
      • [Paper]
    • Parallel Boosted Regression Trees for Web Search Ranking (WWW 2011)

      • Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer Paykin
      • [Paper]
      • [Code]

    2010

    • The Boosting Effect of Exploratory Behaviors (AAAI 2010)

      • Jivko Sinapov, Alexander Stoytchev
      • [Paper]
    • Boosting-Based System Combination for Machine Translation (ACL 2010)

      • Tong Xiao, Jingbo Zhu, Muhua Zhu, Huizhen Wang
      • [Paper]
    • BagBoo: A Scalable Hybrid Bagging-the-Boosting Model (CIKM 2010)

      • Dmitry Yurievich Pavlov, Alexey Gorodilov, Cliff A. Brunk
      • [Paper]
      • [Code]
    • Automatic Detection of Craters in Planetary Images: an Embedded Framework Using Feature Selection and Boosting (CIKM 2010)

      • Wei Ding, Tomasz F. Stepinski, Lourenço P. C. Bandeira, Ricardo Vilalta, Youxi Wu, Zhenyu Lu, Tianyu Cao
      • [Paper]
    • Facial Point Detection Using Boosted Regression and Graph Models (CVPR 2010)

      • Michel François Valstar, Brais Martínez, Xavier Binefa, Maja Pantic
      • [Paper]
    • Boosting for Transfer Learning with Multiple Sources (CVPR 2010)

      • Yi Yao, Gianfranco Doretto
      • [Paper]
    • Efficient Rotation Invariant Object Detection Using Boosted Random Ferns (CVPR 2010)

      • Michael Villamizar, Francesc Moreno-Noguer, Juan Andrade-Cetto, Alberto Sanfeliu
      • [Paper]
    • Implicit Hierarchical Boosting for Multi-view Object Detection (CVPR 2010)

      • Xavier Perrotton, Marc Sturzel, Michel Roux
      • [Paper]
    • On-Line Semi-Supervised Multiple-Instance Boosting (CVPR 2010)

      • Bernhard Zeisl, Christian Leistner, Amir Saffari, Horst Bischof
      • [Paper]
    • Online Multi-Class LPBoost (CVPR 2010)

      • Amir Saffari, Martin Godec, Thomas Pock, Christian Leistner, Horst Bischof
      • [Paper]
      • [Code]
    • Homotopy Regularization for Boosting (ICDM 2010)

      • Zheng Wang, Yangqiu Song, Changshui Zhang
      • [Paper]
    • Exploiting Local Data Uncertainty to Boost Global Outlier Detection (ICDM 2010)

      • Bo Liu, Jie Yin, Yanshan Xiao, Longbing Cao, Philip S. Yu
      • [Paper]
    • Boosting Classifiers with Tightened L0-Relaxation Penalties (ICML 2010)

      • Noam Goldberg, Jonathan Eckstein
      • [Paper]
    • Boosting for Regression Transfer (ICML 2010)

    • Boosted Backpropagation Learning for Training Deep Modular Networks (ICML 2010)

      • Alexander Grubb, J. Andrew Bagnell
      • [Paper]
    • Fast Boosting Using Adversarial Bandits (ICML 2010)

      • Róbert Busa-Fekete, Balázs Kégl
      • [Paper]
    • Boosting with Structure Information in the Functional Space: an Application to Graph Classification (KDD 2010)

    • Multi-task Learning for Boosting with Application to Web Search Ranking (KDD 2010)

      • Olivier Chapelle, Pannagadatta K. Shivaswamy, Srinivas Vadrevu, Kilian Q. Weinberger, Ya Zhang, Belle L. Tseng
      • [Paper]
    • A Theory of Multiclass Boosting (NIPS 2010)

      • Indraneel Mukherjee, Robert E. Schapire
      • [Paper]
    • Boosting Classifier Cascades (NIPS 2010)

      • Mohammad J. Saberian, Nuno Vasconcelos
      • [Paper]
    • Joint Cascade Optimization Using A Product Of Boosted Classifiers (NIPS 2010)

      • Leonidas Lefakis, François Fleuret
      • [Paper]
    • Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost (UAI 2010)

    2009

    • Feature Selection for Ranking Using Boosted Trees (CIKM 2009)

      • Feng Pan, Tim Converse, David Ahn, Franco Salvetti, Gianluca Donato
      • [Paper]
    • Boosting KNN Text Classification Accuracy by Using Supervised Term Weighting Schemes (CIKM 2009)

      • Iyad Batal, Milos Hauskrecht
      • [Paper]
    • Stochastic Gradient Boosted Distributed Decision Trees (CIKM 2009)

      • Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng
      • [Paper]
    • A General Magnitude-Preserving Boosting Algorithm for Search Ranking (CIKM 2009)

      • Chenguang Zhu, Weizhu Chen, Zeyuan Allen Zhu, Gang Wang, Dong Wang, Zheng Chen
      • [Paper]
    • Reducing Joint Boost-Based Multiclass Classification to Proximity Search (CVPR 2009)

      • Alexandra Stefan, Vassilis Athitsos, Quan Yuan, Stan Sclaroff
      • [Paper]
    • Imbalanced RankBoost for Efficiently Ranking Large-Scale Image-Video Collections (CVPR 2009)

      • Michele Merler, Rong Yan, John R. Smith
      • [Paper]
    • Regularized Multi-Class Semi-Supervised Boosting (CVPR 2009)

      • Amir Saffari, Christian Leistner, Horst Bischof
      • [Paper]
    • Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene (CVPR 2009)

      • Yuan Li, Chang Huang, Ram Nevatia
      • [Paper]
    • Boosted Multi-task Learning for Face Verification with Applications to Web Image and Video Search (CVPR 2009)

      • Xiaogang Wang, Cha Zhang, Zhengyou Zhang
      • [Paper]
    • LidarBoost: Depth Superresolution for ToF 3D Shape Scanning (CVPR 2009)

      • Sebastian Schuon, Christian Theobalt, James E. Davis, Sebastian Thrun
      • [Paper]
    • Model Adaptation via Model Interpolation and Boosting for Web Search Ranking (EMNLP 2009)

      • Jianfeng Gao, Qiang Wu, Chris Burges, Krysta Marie Svore, Yi Su, Nazan Khan, Shalin Shah, Hongyan Zhou
      • [Paper]
    • Finding Shareable Informative Patterns and Optimal Coding Matrix for Multiclass Boosting (ICCV 2009)

      • Bang Zhang, Getian Ye, Yang Wang, Jie Xu, Gunawan Herman
      • [Paper]
    • RankBoost with L1 Regularization for Facial Expression Recognition and Intensity Estimation (ICCV 2009)

      • Peng Yang, Qingshan Liu, Dimitris N. Metaxas
      • [Paper]
    • A Robust Boosting Tracker with Minimum Error Bound in a Co-Training Framework (ICCV 2009)

      • Rong Liu, Jian Cheng, Hanqing Lu
      • [Paper]
    • Tutorial Summary: Survey of Boosting from an Optimization Perspective (ICML 2009)

      • Manfred K. Warmuth, S. V. N. Vishwanathan
      • [Paper]
    • Boosting Products of Base Classifiers (ICML 2009)

      • Balázs Kégl, Róbert Busa-Fekete
      • [Paper]
    • ABC-boost: Adaptive Base Class Boost for Multi-Class Classification (ICML 2009)

    • Boosting with Structural Sparsity (ICML 2009)

      • John C. Duchi, Yoram Singer
      • [Paper]
    • Boosting Constrained Mutual Subspace Method for Robust Image-Set Based Object Recognition (IJCAI 2009)

      • Xi Li, Kazuhiro Fukui, Nanning Zheng
      • [Paper]
    • Information Theoretic Regularization for Semi-supervised Boosting (KDD 2009)

      • Lei Zheng, Shaojun Wang, Yan Liu, Chi-Hoon Lee
      • [Paper]
    • Potential-Based Agnostic Boosting (NIPS 2009)

    • Positive Semidefinite Metric Learning with Boosting (NIPS 2009)

      • Chunhua Shen, Junae Kim, Lei Wang, Anton van den Hengel
      • [Paper]
    • Boosting with Spatial Regularization (NIPS 2009)

      • Zhen James Xiang, Yongxin Taylor Xi, Uri Hasson, Peter J. Ramadge
      • [Paper]
    • Effective Boosting of Na%C3%AFve Bayesian Classifiers by Local Accuracy Estimation (PAKDD 2009)

    • Multi-resolution Boosting for Classification and Regression Problems (PAKDD 2009)

      • Chandan K. Reddy, Jin Hyeong Park
      • [Paper]
    • Efficient Active Learning with Boosting (SDM 2009)

      • Zheng Wang, Yangqiu Song, Changshui Zhang
      • [Paper]

    2008

    • Group-Based Learning: A Boosting Approach (CIKM 2008)

      • Weijian Ni, Jun Xu, Hang Li, Yalou Huang
      • [Paper]
    • Semi-Supervised Boosting Using Visual Similarity Learning (CVPR 2008)

      • Christian Leistner, Helmut Grabner, Horst Bischof
      • [Paper]
    • Mining Compositional Features for Boosting (CVPR 2008)

      • Junsong Yuan, Jiebo Luo, Ying Wu
      • [Paper]
    • Boosted Deformable Model for Human Body Alignment (CVPR 2008)

      • Xiaoming Liu, Ting Yu, Thomas Sebastian, Peter H. Tu
      • [Paper]
    • Discriminative Modeling by Boosting on Multilevel Aggregates (CVPR 2008)

    • Face Alignment via Boosted Ranking Model (CVPR 2008)

      • Hao Wu, Xiaoming Liu, Gianfranco Doretto
      • [Paper]
    • Boosting Adaptive Linear Weak Classifiers for Online Learning and Tracking (CVPR 2008)

      • Toufiq Parag, Fatih Porikli, Ahmed M. Elgammal
      • [Paper]
    • Detection with Multi-Exit Asymmetric Boosting (CVPR 2008)

      • Minh-Tri Pham, V-D. D. Hoang, Tat-Jen Cham
      • [Paper]
    • Boosting Ordinal Features for Accurate and Fast Iris Recognition (CVPR 2008)

      • Zhaofeng He, Zhenan Sun, Tieniu Tan, Xianchao Qiu, Cheng Zhong, Wenbo Dong
      • [Paper]
    • Adaptive and Compact Shape Descriptor by Progressive Feature Combination and Selection with Boosting (CVPR 2008)

      • Cheng Chen, Yueting Zhuang, Jun Xiao, Fei Wu
      • [Paper]
    • Boosting Relational Sequence Alignments (ICDM 2008)

      • Andreas Karwath, Kristian Kersting, Niels Landwehr
      • [Paper]
    • Boosting with Incomplete Information (ICML 2008)

      • Gholamreza Haffari, Yang Wang, Shaojun Wang, Greg Mori, Feng Jiao
      • [Paper]
    • ManifoldBoost: Stagewise Function Approximation for Fully-, Semi- and Un-supervised Learning (ICML 2008)

      • Nicolas Loeff, David A. Forsyth, Deepak Ramachandran
      • [Paper]
    • Random Classification Noise Defeats All Convex Potential Boosters (ICML 2008)

      • Philip M. Long, Rocco A. Servedio
      • [Paper]
    • Multi-class Cost-Sensitive Boosting with P-norm Loss Functions (KDD 2008)

      • Aurelie C. Lozano, Naoki Abe
      • [Paper]
    • MCBoost: Multiple Classifier Boosting for Perceptual Co-clustering of Images and Visual Features (NIPS 2008)

      • Tae-Kyun Kim, Roberto Cipolla
      • [Paper]
    • PSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning (NIPS 2008)

      • Chunhua Shen, Alan Welsh, Lei Wang
      • [Paper]
    • On the Design of Loss Functions for Classification: Theory, Robustness to Outliers, and SavageBoost (NIPS 2008)

      • Hamed Masnadi-Shirazi, Nuno Vasconcelos
      • [Paper]
    • Adaptive Martingale Boosting (NIPS 2008)

      • Philip M. Long, Rocco A. Servedio
      • [Paper]
    • A Boosting Algorithm for Learning Bipartite Ranking Functions with Partially Labeled Data (SIGIR 2008)

      • Massih-Reza Amini, Tuong-Vinh Truong, Cyril Goutte
      • [Paper]

    2007

    • Using Error-Correcting Output Codes with Model-Refinement to Boost Centroid Text Classifier (ACL 2007)

    • Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression (CVPR 2007)

      • Alessandro Bissacco, Ming-Hsuan Yang, Stefano Soatto
      • [Paper]
    • Generic Face Alignment using Boosted Appearance Model (CVPR 2007)

    • Eigenboosting: Combining Discriminative and Generative Information (CVPR 2007)

      • Helmut Grabner, Peter M. Roth, Horst Bischof
      • [Paper]
    • Online Learning Asymmetric Boosted Classifiers for Object Detection (CVPR 2007)

      • Minh-Tri Pham, Tat-Jen Cham
      • [Paper]
    • Improving Part based Object Detection by Unsupervised Online Boosting (CVPR 2007)

    • A Specialized Processor Suitable for AdaBoost-Based Detection with Haar-like Features (CVPR 2007)

      • Masayuki Hiromoto, Kentaro Nakahara, Hiroki Sugano, Yukihiro Nakamura, Ryusuke Miyamoto
      • [Paper]
    • Simultaneous Object Detection and Segmentation by Boosting Local Shape Feature based Classifier (CVPR 2007)

    • Compositional Boosting for Computing Hierarchical Image Structures (CVPR 2007)

      • Tianfu Wu, Gui-Song Xia, Song Chun Zhu
      • [Paper]
    • Boosting Coded Dynamic Features for Facial Action Units and Facial Expression Recognition (CVPR 2007)

      • Peng Yang, Qingshan Liu, Dimitris N. Metaxas
      • [Paper]
    • Object Classification in Visual Surveillance Using Adaboost (CVPR 2007)

      • John-Paul Renno, Dimitrios Makris, Graeme A. Jones
      • [Paper]
    • A Boosting Regression Approach to Medical Anatomy Detection (CVPR 2007)

      • Shaohua Kevin Zhou, Jinghao Zhou, Dorin Comaniciu
      • [Paper]
    • Joint Real-time Object Detection and Pose Estimation Using Probabilistic Boosting Network (CVPR 2007)

      • Jingdan Zhang, Shaohua Kevin Zhou, Leonard McMillan, Dorin Comaniciu
      • [Paper]
    • Kernel Sharing With Joint Boosting For Multi-Class Concept Detection (CVPR 2007)

      • Wei Jiang, Shih-Fu Chang, Alexander C. Loui
      • [Paper]
    • Scale-Space Based Weak Regressors for Boosting (ECML 2007)

      • Jin Hyeong Park, Chandan K. Reddy
      • [Paper]
    • Avoiding Boosting Overfitting by Removing Confusing Samples (ECML 2007)

      • Alexander Vezhnevets, Olga Barinova
      • [Paper]
    • DynamicBoost: Boosting Time Series Generated by Dynamical Systems (ICCV 2007)

      • René Vidal, Paolo Favaro
      • [Paper]
    • Incremental Learning of Boosted Face Detector (ICCV 2007)

      • Chang Huang, Haizhou Ai, Takayoshi Yamashita, Shihong Lao, Masato Kawade
      • [Paper]
    • Gradient Feature Selection for Online Boosting (ICCV 2007)

    • Fast Training and Selection of Haar Features Using Statistics in Boosting-based Face Detection (ICCV 2007)

      • Minh-Tri Pham, Tat-Jen Cham
      • [Paper]
    • Cluster Boosted Tree Classifier for Multi-View - Multi-Pose Object Detection (ICCV 2007)

    • Asymmetric Boosting (ICML 2007)

      • Hamed Masnadi-Shirazi, Nuno Vasconcelos
      • [Paper]
    • Boosting for Transfer Learning (ICML 2007)

      • Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu
      • [Paper]
    • Gradient Boosting for Kernelized Output Spaces (ICML 2007)

      • Pierre Geurts, Louis Wehenkel, Florence d’Alché-Buc
      • [Paper]
    • Boosting a Complete Technique to Find MSS and MUS Thanks to a Local Search Oracle (IJCAI 2007)

      • Éric Grégoire, Bertrand Mazure, Cédric Piette
      • [Paper]
    • Training Conditional Random Fields Using Virtual Evidence Boosting (IJCAI 2007)

      • Lin Liao, Tanzeem Choudhury, Dieter Fox, Henry A. Kautz
      • [Paper]
    • Simple Training of Dependency Parsers via Structured Boosting (IJCAI 2007)

      • Qin Iris Wang, Dekang Lin, Dale Schuurmans
      • [Paper]
    • Real Boosting a la Carte with an Application to Boosting Oblique Decision Tree (IJCAI 2007)

      • Claudia Henry, Richard Nock, Frank Nielsen
      • [Paper]
    • Managing Domain Knowledge and Multiple Models with Boosting (IJCAI 2007)

      • Peng Zang, Charles Lee Isbell Jr.
      • [Paper]
    • Model-Shared Subspace Boosting for Multi-label Classification (KDD 2007)

      • Rong Yan, Jelena Tesic, John R. Smith
      • [Paper]
    • Regularized Boost for Semi-Supervised Learning (NIPS 2007)

    • Boosting Algorithms for Maximizing the Soft Margin (NIPS 2007)

      • Manfred K. Warmuth, Karen A. Glocer, Gunnar Rätsch
      • [Paper]
    • McRank: Learning to Rank Using Multiple Classification and Gradient Boosting (NIPS 2007)

      • Ping Li, Christopher J. C. Burges, Qiang Wu
      • [Paper]
    • One-Pass Boosting (NIPS 2007)

      • Zafer Barutçuoglu, Philip M. Long, Rocco A. Servedio
      • [Paper]
    • Boosting the Area under the ROC Curve (NIPS 2007)

      • Philip M. Long, Rocco A. Servedio
      • [Paper]
    • FilterBoost: Regression and Classification on Large Datasets (NIPS 2007)

      • Joseph K. Bradley, Robert E. Schapire
      • [Paper]
    • A General Boosting Method and its Application to Learning Ranking Functions for Web Search (NIPS 2007)

      • Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen, Gordon Sun
      • [Paper]
    • Efficient Multiclass Boosting Classification with Active Learning (SDM 2007)

      • Jian Huang, Seyda Ertekin, Yang Song, Hongyuan Zha, C. Lee Giles
      • [Paper]
    • AdaRank: a Boosting Algorithm for Information Retrieval (SIGIR 2007)

    2006

    • Gradient Boosting for Sequence Alignment (AAAI 2006)

      • Charles Parker, Alan Fern, Prasad Tadepalli
      • [Paper]
    • Boosting Kernel Models for Regression (ICDM 2006)

    • Boosting for Learning Multiple Classes with Imbalanced Class Distribution (ICDM 2006)

      • Yanmin Sun, Mohamed S. Kamel, Yang Wang
      • [Paper]
    • Boosting the Feature Space: Text Classification for Unstructured Data on the Web (ICDM 2006)

      • Yang Song, Ding Zhou, Jian Huang, Isaac G. Councill, Hongyuan Zha, C. Lee Giles
      • [Paper]
    • Totally Corrective Boosting Algorithms that Maximize the Margin (ICML 2006)

      • Manfred K. Warmuth, Jun Liao, Gunnar Rätsch
      • [Paper]
    • How Boosting the Margin Can Also Boost Classifier Complexity (ICML 2006)

      • Lev Reyzin, Robert E. Schapire
      • [Paper]
    • Multiclass Boosting with Repartitioning (ICML 2006)

    • AdaBoost is Consistent (NIPS 2006)

      • Peter L. Bartlett, Mikhail Traskin
      • [Paper]
    • Boosting Structured Prediction for Imitation Learning (NIPS 2006)

      • Nathan D. Ratliff, David M. Bradley, J. Andrew Bagnell, Joel E. Chestnutt
      • [Paper]
    • Chained Boosting (NIPS 2006)

      • Christian R. Shelton, Wesley Huie, Kin Fai Kan
      • [Paper]
    • When Efficient Model Averaging Out-Performs Boosting and Bagging (PKDD 2006)

    2005

    • Semantic Place Classification of Indoor Environments with Mobile Robots Using Boosting (AAAI 2005)

      • Axel Rottmann, Óscar Martínez Mozos, Cyrill Stachniss, Wolfram Burgard
      • [Paper]
    • Boosting-based Parse Reranking with Subtree Features (ACL 2005)

      • Taku Kudo, Jun Suzuki, Hideki Isozaki
      • [Paper]
    • Using RankBoost to Compare Retrieval Systems (CIKM 2005)

      • Huyen-Trang Vu, Patrick Gallinari
      • [Paper]
    • Classifier Fusion Using Shared Sampling Distribution for Boosting (ICDM 2005)

      • Costin Barbu, Raja Tanveer Iqbal, Jing Peng
      • [Paper]
    • Semi-Supervised Mixture of Kernels via LPBoost Methods (ICDM 2005)

      • Jinbo Bi, Glenn Fung, Murat Dundar, R. Bharat Rao
      • [Paper]
    • Efficient Discriminative Learning of Bayesian Network Classifier via Boosted Augmented Naive Bayes (ICML 2005)

      • Yushi Jing, Vladimir Pavlovic, James M. Rehg
      • [Paper]
    • Unifying the Error-Correcting and Output-Code AdaBoost within the Margin Framework (ICML 2005)

      • Yijun Sun, Sinisa Todorovic, Jian Li, Dapeng Wu
      • [Paper]
    • A Smoothed Boosting Algorithm Using Probabilistic Output Codes (ICML 2005)

    • Robust Boosting and its Relation to Bagging (KDD 2005)

    • Efficient Computations via Scalable Sparse Kernel Partial Least Squares and Boosted Latent Features (KDD 2005)

    • Multiple Instance Boosting for Object Detection (NIPS 2005)

      • Paul A. Viola, John C. Platt, Cha Zhang
      • [Paper]
    • Convergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations (NIPS 2005)

      • Aurelie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire
      • [Paper]
    • Boosted decision trees for word recognition in handwritten document retrieval (SIGIR 2005)

      • Nicholas R. Howe, Toni M. Rath, R. Manmatha
      • [Paper]
    • Obtaining Calibrated Probabilities from Boosting (UAI 2005)

      • Alexandru Niculescu-Mizil, Rich Caruana
      • [Paper]

    2004

    • Online Parallel Boosting (AAAI 2004)

      • Jesse A. Reichler, Harlan D. Harris, Michael A. Savchenko
      • [Paper]
    • A Boosting Approach to Multiple Instance Learning (ECML 2004)

      • Peter Auer, Ronald Ortner
      • [Paper]
    • A Boosting Algorithm for Classification of Semi-Structured Text (EMNLP 2004)

      • Taku Kudo, Yuji Matsumoto
      • [Paper]
    • Text Classification by Boosting Weak Learners based on Terms and Concepts (ICDM 2004)

      • Stephan Bloehdorn, Andreas Hotho
      • [Paper]
    • Boosting Grammatical Inference with Confidence Oracles (ICML 2004)

      • Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier
      • [Paper]
    • Surrogate Maximization/Minimization Algorithms for AdaBoost and the Logistic Regression Model (ICML 2004)

      • Zhihua Zhang, James T. Kwok, Dit-Yan Yeung
      • [Paper]
    • Training Conditional Random Fields via Gradient Tree Boosting (ICML 2004)

      • Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov
      • [Paper]
    • Boosting Margin Based Distance Functions for Clustering (ICML 2004)

      • Tomer Hertz, Aharon Bar-Hillel, Daphna Weinshall
      • [Paper]
    • Column-Generation Boosting Methods for Mixture of Kernels (KDD 2004)

      • Jinbo Bi, Tong Zhang, Kristin P. Bennett
      • [Paper]
    • Optimal Aggregation of Classifiers and Boosting Maps in Functional Magnetic Resonance Imaging (NIPS 2004)

      • Vladimir Koltchinskii, Manel Martínez-Ramón, Stefan Posse
      • [Paper]
    • Boosting on Manifolds: Adaptive Regularization of Base Classifiers (NIPS 2004)

      • Balázs Kégl, Ligen Wang
      • [Paper]
    • Contextual Models for Object Detection Using Boosted Random Fields (NIPS 2004)

      • Antonio Torralba, Kevin P. Murphy, William T. Freeman
      • [Paper]
    • Generalization Error and Algorithmic Convergence of Median Boosting (NIPS 2004)

    • An Application of Boosting to Graph Classification (NIPS 2004)

      • Taku Kudo, Eisaku Maeda, Yuji Matsumoto
      • [Paper]
    • Logistic Regression and Boosting for Labeled Bags of Instances (PAKDD 2004)

    • Fast and Light Boosting for Adaptive Mining of Data Streams (PAKDD 2004)

    2003

    • On Boosting and the Exponential Loss (AISTATS 2003)

    • Boosting Support Vector Machines for Text Classification through Parameter-Free Threshold Relaxation (CIKM 2003)

      • James G. Shanahan, Norbert Roma
      • [Paper]
    • Learning Cross-Document Structural Relationships Using Boosting (CIKM 2003)

      • Zhu Zhang, Jahna Otterbacher, Dragomir R. Radev
      • [Paper]
    • On Boosting Improvement: Error Reduction and Convergence Speed-Up (ECML 2003)

      • Marc Sebban, Henri-Maxime Suchier
      • [Paper]
    • Boosting Lazy Decision Trees (ICML 2003)

      • Xiaoli Zhang Fern, Carla E. Brodley
      • [Paper]
    • On the Convergence of Boosting Procedures (ICML 2003)

    • Linear Programming Boosting for Uneven Datasets (ICML 2003)

      • Jure Leskovec, John Shawe-Taylor
      • [Paper]
    • Monte Carlo Theory as an Explanation of Bagging and Boosting (IJCAI 2003)

      • Roberto Esposito, Lorenza Saitta
      • [Paper]
    • On the Dynamics of Boosting (NIPS 2003)

      • Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire
      • [Paper]
    • Mutual Boosting for Contextual Inference (NIPS 2003)

      • Michael Fink, Pietro Perona
      • [Paper]
    • Boosting Versus Covering (NIPS 2003)

      • Kohei Hatano, Manfred K. Warmuth
      • [Paper]
    • Multiple-Instance Learning via Disjunctive Programming Boosting (NIPS 2003)

      • Stuart Andrews, Thomas Hofmann
      • [Paper]
    • Averaged Boosting: A Noise-Robust Ensemble Method (PAKDD 2003)

    • SMOTEBoost: Improving Prediction of the Minority Class in Boosting (PKDD 2003)

      • Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, Kevin W. Bowyer
      • [Paper]

    2002

    • Minimum Majority Classification and Boosting (AAAI 2002)

    • Ranking Algorithms for Named Entity Extraction: Boosting and the Voted Perceptron (ACL 2002)

    • Boosting to Correct Inductive Bias in Text Classification (CIKM 2002)

      • Yan Liu, Yiming Yang, Jaime G. Carbonell
      • [Paper]
    • How to Make AdaBoost.M1 Work for Weak Base Classifiers by Changing Only One Line of the Code (ECML 2002)

      • Günther Eibl, Karl Peter Pfeiffer
      • [Paper]
    • Scaling Boosting by Margin-Based Inclusionof Features and Relations (ECML 2002)

      • Susanne Hoche, Stefan Wrobel
      • [Paper]
    • A Robust Boosting Algorithm (ECML 2002)

      • Richard Nock, Patrice Lefaucheur
      • [Paper]
    • iBoost: Boosting Using an instance-Based Exponential Weighting Scheme (ECML 2002)

      • Stephen Kwek, Chau Nguyen
      • [Paper]
    • Boosting Density Function Estimators (ECML 2002)

      • Franck Thollard, Marc Sebban, Philippe Ézéquel
      • [Paper]
    • Statistical Behavior and Consistency of Support Vector Machines, Boosting, and Beyond (ICML 2002)

    • A Boosted Maximum Entropy Model for Learning Text Chunking (ICML 2002)

      • Seong-Bae Park, Byoung-Tak Zhang
      • [Paper]
    • Towards Large Margin Speech Recognizers by Boosting and Discriminative Training (ICML 2002)

      • Carsten Meyer, Peter Beyerlein
      • [Paper]
    • Incorporating Prior Knowledge into Boosting (ICML 2002)

      • Robert E. Schapire, Marie Rochery, Mazin G. Rahim, Narendra K. Gupta
      • [Paper]
    • Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation (ICML 2002)

      • Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik
      • [Paper]
    • MARK: A Boosting Algorithm for Heterogeneous Kernel Models (KDD 2002)

      • Kristin P. Bennett, Michinari Momma, Mark J. Embrechts
      • [Paper]
    • Predicting rare classes: can boosting make any weak learner strong (KDD 2002)

      • Mahesh V. Joshi, Ramesh C. Agarwal, Vipin Kumar
      • [Paper]
    • Kernel Design Using Boosting (NIPS 2002)

      • Koby Crammer, Joseph Keshet, Yoram Singer
      • [Paper]
    • FloatBoost Learning for Classification (NIPS 2002)

      • Stan Z. Li, ZhenQiu Zhang, Heung-Yeung Shum, HongJiang Zhang
      • [Paper]
    • Discriminative Learning for Label Sequences via Boosting (NIPS 2002)

      • Yasemin Altun, Thomas Hofmann, Mark Johnson
      • [Paper]
    • Boosting Density Estimation (NIPS 2002)

      • Saharon Rosset, Eran Segal
      • [Paper]
    • Self Supervised Boosting (NIPS 2002)

      • Max Welling, Richard S. Zemel, Geoffrey E. Hinton
      • [Paper]
    • Boosted Dyadic Kernel Discriminants (NIPS 2002)

      • Baback Moghaddam, Gregory Shakhnarovich
      • [Paper]
    • A Method to Boost Support Vector Machines (PAKDD 2002)

      • Lili Diao, Keyun Hu, Yuchang Lu, Chunyi Shi
      • [Paper]
    • A Method to Boost Naive Bayesian Classifiers (PAKDD 2002)

      • Lili Diao, Keyun Hu, Yuchang Lu, Chunyi Shi
      • [Paper]
    • Predicting Rare Classes: Comparing Two-Phase Rule Induction to Cost-Sensitive Boosting (PKDD 2002)

      • Mahesh V. Joshi, Ramesh C. Agarwal, Vipin Kumar
      • [Paper]
    • Iterative Data Squashing for Boosting Based on a Distribution-Sensitive Distance (PKDD 2002)

      • Yuta Choki, Einoshin Suzuki
      • [Paper]
    • Staged Mixture Modelling and Boosting (UAI 2002)

      • Christopher Meek, Bo Thiesson, David Heckerman
      • [Paper]
    • Advances in Boosting (UAI 2002)

    2001

    • Is Regularization Unnecessary for Boosting? (AISTATS 2001)

    • Online Bagging and Boosting (AISTATS 2001)

      • Nikunj C. Oza, Stuart J. Russell
      • [Paper]
    • Text Categorization Using Transductive Boosting (ECML 2001)

      • Hirotoshi Taira, Masahiko Haruno
      • [Paper]
    • Improving Term Extraction by System Combination Using Boosting (ECML 2001)

      • Jordi Vivaldi, Lluís Màrquez, Horacio Rodríguez
      • [Paper]
    • Analysis of the Performance of AdaBoost.M2 for the Simulated Digit-Recognition-Example (ECML 2001)

      • Günther Eibl, Karl Peter Pfeiffer
      • [Paper]
    • On the Practice of Branching Program Boosting (ECML 2001)

      • Tapio Elomaa, Matti Kääriäinen
      • [Paper]
    • Boosting Mixture Models for Semi-supervised Learning (ICANN 2001)

      • Yves Grandvalet, Florence d’Alché-Buc, Christophe Ambroise
      • [[Paper]](https://link.springer.com/chapter/10.1007/3-540-44668-0_7
    • A Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods (ICDM 2001)

      • Bernard Zenko, Ljupco Todorovski, Saso Dzeroski
      • [Paper]
    • Using Boosting to Simplify Classification Models (ICDM 2001)

    • Evaluating Boosting Algorithms to Classify Rare Classes: Comparison and Improvements (ICDM 2001)

    • Boosting Neighborhood-Based Classifiers (ICML 2001)

      • Marc Sebban, Richard Nock, Stéphane Lallich
      • [Paper]
    • Boosting Noisy Data (ICML 2001)

      • Abba Krieger, Chuan Long, Abraham J. Wyner
      • [Paper]
    • Some Theoretical Aspects of Boosting in the Presence of Noisy Data (ICML 2001)

    • Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection (ICML 2001)

    • The Distributed Boosting Algorithm (KDD 2001)

      • Aleksandar Lazarevic, Zoran Obradovic
      • [Paper]
    • Experimental Comparisons of Online and Batch Versions of Bagging and Boosting (KDD 2001)

      • Nikunj C. Oza, Stuart J. Russell
      • [Paper]
    • Semi-supervised MarginBoost (NIPS 2001)

      • Florence d’Alché-Buc, Yves Grandvalet, Christophe Ambroise
      • [Paper]
    • Boosting and Maximum Likelihood for Exponential Models (NIPS 2001)

      • Guy Lebanon, John D. Lafferty
      • [Paper]
    • Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade (NIPS 2001)

      • Paul A. Viola, Michael J. Jones
      • [Paper]
    • Boosting Localized Classifiers in Heterogeneous Databases (SDM 2001)

      • Aleksandar Lazarevic, Zoran Obradovic
      • [Paper]

    2000

    • Boosted Wrapper Induction (AAAI 2000)

      • Dayne Freitag, Nicholas Kushmerick
      • [Paper]
    • An Improved Boosting Algorithm and its Application to Text Categorization (CIKM 2000)

      • Fabrizio Sebastiani, Alessandro Sperduti, Nicola Valdambrini
      • [Paper]
    • Boosting for Document Routing (CIKM 2000)

      • Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, Amit Singhal
      • [Paper]
    • On the Boosting Pruning Problem (ECML 2000)

      • Christino Tamon, Jie Xiang
      • [Paper]
    • Boosting Applied to Word Sense Disambiguation (ECML 2000)

      • Gerard Escudero, Lluís Màrquez, German Rigau
      • [Paper]
    • An Empirical Study of MetaCost Using Boosting Algorithms (ECML 2000)

    • FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness (ICML 2000)

      • Joseph O’Sullivan, John Langford, Rich Caruana, Avrim Blum
      • [Paper]
    • Comparing the Minimum Description Length Principle and Boosting in the Automatic Analysis of Discourse (ICML 2000)

      • Tadashi Nomoto, Yuji Matsumoto
      • [Paper]
    • A Boosting Approach to Topic Spotting on Subdialogues (ICML 2000)

      • Kary Myers, Michael J. Kearns, Satinder P. Singh, Marilyn A. Walker
      • [Paper]
    • A Comparative Study of Cost-Sensitive Boosting Algorithms (ICML 2000)

    • Boosting a Positive-Data-Only Learner (ICML 2000)

    • A Column Generation Algorithm For Boosting (ICML 2000)

      • Kristin P. Bennett, Ayhan Demiriz, John Shawe-Taylor
      • [Paper]
    • A Gradient-Based Boosting Algorithm for Regression Problems (NIPS 2000)

      • Richard S. Zemel, Toniann Pitassi
      • [Paper]
    • Weak Learners and Improved Rates of Convergence in Boosting (NIPS 2000)

    • Adaptive Boosting for Spatial Functions with Unstable Driving Attributes (PAKDD 2000)

      • Aleksandar Lazarevic, Tim Fiez, Zoran Obradovic
      • [Paper]
    • Scaling Up a Boosting-Based Learner via Adaptive Sampling (PAKDD 2000)

      • Carlos Domingo, Osamu Watanabe
      • [Paper]
    • Learning First Order Logic Time Series Classifiers: Rules and Boosting (PKDD 2000)

      • Juan J. Rodríguez Diez, Carlos Alonso González, Henrik Boström
      • [Paper]
    • Bagging and Boosting with Dynamic Integration of Classifiers (PKDD 2000)

      • Alexey Tsymbal, Seppo Puuronen
      • [Paper]
    • Text Filtering by Boosting Naive Bayes Classifiers (SIGIR 2000)

      • Yu-Hwan Kim, Shang-Yoon Hahn, Byoung-Tak Zhang
      • [Paper]

    1999

    • Boosting Methodology for Regression Problems (AISTATS 1999)

      • Greg Ridgeway, David Madigan, Thomas Richardson
      • [Paper]
    • Boosting Applied to Tagging and PP Attachment (EMNLP 1999)

      • Steven Abney, Robert E. Schapire, Yoram Singer
      • [Paper]
    • Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ICML 1999)

      • Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting
      • [Paper]
    • AdaCost: Misclassification Cost-Sensitive Boosting (ICML 1999)

      • Wei Fan, Salvatore J. Stolfo, Junxin Zhang, Philip K. Chan
      • [Paper]
    • Boosting a Strong Learner: Evidence Against the Minimum Margin (ICML 1999)

    • Boosting Algorithms as Gradient Descent (NIPS 1999)

      • Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean
      • [Paper]
    • Boosting with Multi-Way Branching in Decision Trees (NIPS 1999)

      • Yishay Mansour, David A. McAllester
      • [Paper]
    • Potential Boosters (NIPS 1999)

      • Nigel Duffy, David P. Helmbold
      • [Paper]

    1998

    • An Efficient Boosting Algorithm for Combining Preferences (ICML 1998)

      • Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer
      • [Paper]
    • Query Learning Strategies Using Boosting and Bagging (ICML 1998)

      • Naoki Abe, Hiroshi Mamitsuka
      • [Paper]
    • Regularizing AdaBoost (NIPS 1998)

      • Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller
      • [Paper]

    1997

    • Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods (ICML 1997)

      • Robert E. Schapire, Yoav Freund, Peter Barlett, Wee Sun Lee
      • [Paper]
    • Using Output Codes to Boost Multiclass Learning Problems (ICML 1997)

    • Improving Regressors Using Boosting Techniques (ICML 1997)

    • Pruning Adaptive Boosting (ICML 1997)

      • Dragos D. Margineantu, Thomas G. Dietterich
      • [Paper]
    • Training Methods for Adaptive Boosting of Neural Networks (NIPS 1997)

      • Holger Schwenk, Yoshua Bengio
      • [Paper]

    1996

    • Experiments with a New Boosting Algorithm (ICML 1996)
      • Yoav Freund, Robert E. Schapire
      • [Paper]

    1995

    • Boosting Decision Trees (NIPS 1995)
      • Harris Drucker, Corinna Cortes
      • [Paper]

    1994

    • Boosting and Other Machine Learning Algorithms (ICML 1994)
      • Harris Drucker, Corinna Cortes, Lawrence D. Jackel, Yann LeCun, Vladimir Vapnik
      • [Paper]
    展开全文
  • 怎样写出优秀的研究论文

    千次阅读 2016-05-16 10:59:18
    怎样写出优秀的研究论文? 注:此文为转载,原创作者为:whatbeg,原文链接为:http://whatbeg.com/2016/05/10/how2wtpaper.html#版权为原创所有,尊重原创。 本文译自微软剑桥研究院Simon Peyton Jones的演讲PPT...
  • 大部分研究论文缺乏相应的开源实现,在不同的库中复现研究论文的实现也是一大难题。因此,这篇论文的作者提出一种新型算法,可以自动解析论文,提取文中描述的深度学习模型设计,并生成 Keras 和 Caffe 可执行源代码...
  • 现在我们根据论文和程序源码,来学习研究一下具体过程。首要目标是我们必须要找到渲染核心算法在哪里。 程序主体是QT编写的,所以我们需要把图形界面程序和主体算法分离开。 在main 函数中找到窗口主体: // ...
  • 全部论文训练计划章节见论文训练计划 这次一次性把最后这些内容说完,具体细节还是不再讨论。 令我意外的是这篇论文和它附带的程序里面对GPU图形特性的涉及非常少,基本都是实现的通用计算,这让我感到非常惊喜。...
  • 全部论文训练计划章节见论文训练计划 我们现在来详细学习一下这个程序的内存图像的生成和拷贝流程,这个方面弄懂了以后,下一节就直接进入Render()程序去学习它的核心算法。 ...
  • 全部论文训练计划章节见论文训练计划 还是把源码放上 try { while (!m_Abort) { if (m_Pause) continue; gStatus.SetPreRenderFrame(); // CUDA time for profiling CCudaTimer TmrFps...
  • 全部论文训练计划章节见论文训练计划 先把源码贴上来: void QRenderThread::run() { if (!SetCudaDevice(gCurrentDeviceID)) return; ResetDevice(); CScene SceneCopy; gScene.m_Camera.m_...
  • 如何撰写一篇优秀的研究论文?这一份68页PPT告诉你
  • 《面向知乎的个性化推荐模型研究论文是大二暑假完成的,已投到《计算机应用与软件》中文核心期刊。论文主要对知乎提出一种基于混合算法的个性化推荐模型。论文基于用户模型、问题模型、推荐模型构建推荐系统,提出...
  • 中国的研究论文

    2008-02-15 14:49:00
    在网上搜索论文,只要是中文的,一般就被放在的维普或者万方,或者某个不知名但是却要收钱的站点。根本不像国外那样即使被IEEE收录了,在外面至少也可以下载到。中文的竟然不存在挂在某个免费站点的论文pdf版本。做...
  • 最近一份新论文提出论据,认为去...Blockchains)》”,论文作者是巴克莱大学,康奈尔大学,苏黎世联邦理工大学,新加坡国立大学和马里兰大学的研究者们,包括复式微支付途径报告 的合著者,Christian Decker,以及比
  • 作为科研工作者的我们,希望能略尽绵薄之力,为大家整理学术界最新研究成果,并进行通俗易懂、严谨客观的翻译和解读。 具体来说,我们对 2020年1月24日   发表在医学领域国际顶级期刊 《柳叶刀》 上的关于新型...
  • ROC(受试者工作特征曲线):反映敏感性和特异性这两个连续变量的综合指标。AUC代表ROC曲线下方面积大小,一般在0.5~之间,越接近1越好。AUC计算公式:AUC =(1-(FP/(FN+TN)*(FN/(TP+FP))/2))/2AUC能较好得评估...
  • 论文的最大创新点和其标题一样,是第一次把去马赛克和超分辨率结合在一起做,直接从单通道的RAW图像中挖掘尽可能多的信息,直接生成超分辨率的三通道图片。相对于先做去马赛克,再做超分辨率,这样做的好处在于一...
  • 如题。想搜索最前沿的技术的相关论文。但不知道怎么去找。请各位英雄好汉指导一下。
  • 今天早些时候,谷歌终于打破了沉默,通过一篇论文介绍了这项研究的相关技术以及与其它硬件的比较。谷歌的硬件工程师 Norm Jouppi 也第一时间在谷歌云计算博客上刊文介绍了这一研究成果。机器之心在本文中对该博客...
  • 论文的分类 数据导向型论文(Data-driven pagers) ...一篇经典的、建立在数据基础上的研究论文能为其作者带来声誉。 教学指导性论文(Tutorial pagers) 教学指导性论文是描述一种研究方法并解释如何使用这...
  • 论文翻译】聚类算法研究

    千次阅读 2020-08-18 20:02:06
    论文题目:聚类算法研究 论文来源:聚类算法研究 翻译人:BDML@CQUT实验室 聚类算法研究 孙吉贵 , 刘 杰 , 赵连宇 Clustering Algorithms Research SUN Ji-Gui, LIU Jie, ZHAO Lian-Yu 摘 要 对近年来聚类算法的研究...
  • 内容来源于: 朱大明;老师的文章《研究论文与综述型论文引文量的对比分析》 转载于:https://www.cnblogs.com/robin2ML/p/7647422.html
  • 论文阅读】研究论文学习技巧

    千次阅读 2020-08-13 09:33:39
    2.实验方案:一般是论文研究思路,所以在看论文的时候多问问自己为什么会有这样的思路,最后注意发散思维,产生自己的创新点。 3.结果和讨论:不要只看数据图的意思,而是要把重点放在理解作者的实验方案思路,...
  • 医学图像计算相关部分一、关于论文集二、Accepted MICCAI 2019 Papers三、总结 引言: 小编在MICCAI2019开完之后,浏览了并深入阅读了一些论文,闲暇之余才整理出来,欢迎读者讨论。如有不对之处,敬请批评指正。 ...
  • 论文研究假设 “研究假设(hypothesis)”,特别重要,它连接了理论和数据,是贯穿一篇文章的黄金线。读一篇实证文章的时候,哪怕什么都没看懂,也要把研究假设看懂了,看懂了研究假设也就明白了这篇文章主要是要...
  • 研究生实证论文数据经验分享

    万次阅读 热门讨论 2017-06-28 10:05:57
    最近研究生顺利毕业,值得庆幸。一年多的小论文折磨,加上半年多的毕业论文磨练,自己都熬过来了,真想给自己一个大大的赞。那些还依然处于研究生阶段,甚至博士生阶段的你们都还好吗? 总有人问我关于实证论文数据...
  • 研究生两篇论文大小论文区别发表小论文的作用写论文注意事项 大小论文区别 1、大论文是指毕业或者学位论文,这个不需要发表的,至少两到三万字,只有通过了论文答辩才有可能拿到毕业证以及学位证 2、而小论文是指...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 109,874
精华内容 43,949
关键字:

研究论文