精华内容
下载资源
问答
  • 高中数学函数压轴之极值点偏移(下).pdf
  • 大家好,今天分享高中数学函数与方程关系是高中生需要重点掌握的内容。下面是我整理2019年考题函数与方程习题希望能对大家有所帮助。 一、选择题 二、填空题 好了,今天分享就到这里了,本文章有电子版和...

    本文作者:vxbomath
    大家好,今天分享高中数学函数与方程关系是高中生需要重点掌握的内容。下面是我整理2019年考题函数与方程习题希望能对大家有所帮助。

    一、选择题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    二、填空题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    好了,今天分享就到这里了,本文章有电子版和高中数学函数视频教程有需要可以私信老师。

    展开全文
  • 高中数学函数教案,高考数学函数教案.docx
  • 高中数学函数的图象教案 (文科)
  • 定义域也称之为高中函数的的灵魂,而函数又是贯穿整个高中数学的知识体系的章节,所以高中函数定义域对高中数学的重要性就不言而喻了! 今天的知识点就分享到这里需要电子版,可以联系老师,更多高质量的高中数学...

    大家知道定义域在高中函数的中的找你要位置,所以研究函数必须优先考虑定义域,今天给大家分享定义域的知识点;
    作者:vxbomath
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    定义域也称之为高中函数的的灵魂,而函数又是贯穿整个高中数学的知识体系的章节,所以高中函数定义域对高中数学的重要性就不言而喻了!
    今天的知识点就分享到这里需要电子版,可以联系老师,更多高质量的高中数学解题技巧分享!

    展开全文
  • 高中数学函数压轴之极值点偏移(上).pdf
  • 高中数学函数是非常重要的知识点,高中数学大部分的知识点都是与函数有关系的,所以函数高中数学的知识是很重要的!今天就来了解一下高中数学函数知识! 一般的,在一个变化过程中,假设有两个变量x、y,如果...

    在这里插入图片描述作者:vxbomath
    高中数学的函数是非常重要的知识点,高中数学大部分的知识点都是与函数有关系的,所以函数在高中数学的知识是很重要的!今天就来了解一下高中数学的函数知识!
    一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。下面是高三网小编整理的高中数学函数知识点归纳总结,供参考。
    一、一次函数定义与定义式:
    自变量x和因变量y有如下关系:
    y=kx+b
    则此时称y是x的一次函数。
    特别地,当b=0时,y是x的正比例函数。
    即:y=kx(k为常数,k≠0)
    二、一次函数的性质:
    1.y的变化值与对应的x的变化值成正比例,比值为k
    即:y=kx+b(k为任意不为零的实数b取任何实数)
    2.当x=0时,b为函数在y轴上的截距。
    三、一次函数的图像及性质:
    1.作法与图形:通过如下3个步骤
    (1)列表;
    (2)描点;
    (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
    2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
    3.k,b与函数图像所在象限:
    当k>0时,直线必通过一、三象限,y随x的增大而增大;
    当k<0时,直线必通过二、四象限,y随x的增大而减小。
    当b>0时,直线必通过一、二象限;
    当b=0时,直线通过原点
    当b<0时,直线必通过三、四象限。
    特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
    这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
    四、确定一次函数的表达式:
    已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
    (1)设一次函数的表达式(也叫解析式)为y=kx+b。
    (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
    (3)解这个二元一次方程,得到k,b的值。
    (4)最后得到一次函数的表达式。
    五、一次函数在生活中的应用:
    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    六、常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:|x1-x2|/2
    3.求与y轴平行线段的中点:|y1-y2|/2
    4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)
    二次函数
    I.定义与定义表达式
    一般地,自变量x和因变量y之间存在如下关系:
    y=ax’2+bx+c
    (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
    则称y为x的二次函数。
    二次函数表达式的右边通常为二次三项式。
    II.二次函数的三种表达式
    一般式:y=ax’2+bx+c(a,b,c为常数,a≠0)
    顶点式:y=a(x-h)’2+k[抛物线的顶点P(h,k)]
    交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
    注:在3种形式的互相转化中,有如下关系:
    h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a
    III.二次函数的图像
    在平面直角坐标系中作出二次函数y=x’2的图像,
    可以看出,二次函数的图像是一条抛物线。
    IV.抛物线的性质
    1.抛物线是轴对称图形。对称轴为直线
    x=-b/2a。
    对称轴与抛物线唯一的交点为抛物线的顶点P。
    特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
    2.抛物线有一个顶点P,坐标为
    P(-b/2a,(4ac-b’2)/4a)
    当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。
    3.二次项系数a决定抛物线的开口方向和大小。
    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
    |a|越大,则抛物线的开口越小。
    4.一次项系数b和二次项系数a共同决定对称轴的位置。
    当a与b同号时(即ab>0),对称轴在y轴左;
    当a与b异号时(即ab<0),对称轴在y轴右。
    5.常数项c决定抛物线与y轴交点。
    抛物线与y轴交于(0,c)
    6.抛物线与x轴交点个数
    Δ=b’2-4ac>0时,抛物线与x轴有2个交点。
    Δ=b’2-4ac=0时,抛物线与x轴有1个交点。
    Δ=b’2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b’2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
    V.二次函数与一元二次方程
    特别地,二次函数(以下称函数)y=ax’2+bx+c,
    当y=0时,二次函数为关于x的一元二次方程(以下称方程),
    即ax’2+bx+c=0
    此时,函数图像与x轴有无交点即方程有无实数根。
    函数与x轴交点的横坐标即为方程的根。
    1.二次函数y=ax’2,y=a(x-h)’2,y=a(x-h)’2+k,y=ax’2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
    在这里插入图片描述
    当h>0时,y=a(x-h)’2的图象可由抛物线y=ax’2向右平行移动h个单位得到,
    当h<0时,则向左平行移动|h|个单位得到.
    当h>0,k>0时,将抛物线y=ax’2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)’2+k的图象;
    当h>0,k<0时,将抛物线y=ax’2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)’2+k的图象;
    当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)’2+k的图象;
    当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)’2+k的图象;
    因此,研究抛物线y=ax’2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)’2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
    2.抛物线y=ax’2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b’2]/4a).
    3.抛物线y=ax’2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
    4.抛物线y=ax’2+bx+c的图象与坐标轴的交点:
    (1)图象与y轴一定相交,交点坐标为(0,c);
    (2)当△=b’2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax’2+bx+c=0
    (a≠0)的两根.这两点间的距离AB=|x?-x?|
    当△=0.图象与x轴只有一个交点;
    当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
    5.抛物线y=ax’2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b’2)/4a.
    顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
    6.用待定系数法求二次函数的解析式
    (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
    y=ax’2+bx+c(a≠0).
    (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)’2+k(a≠0).
    (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
    7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
    反比例函数
    形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
    自变量x的取值范围是不等于0的一切实数。
    反比例函数图像性质:
    反比例函数的图像为双曲线。
    由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
    另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
    如图,上面给出了k分别为正和负(2和-2)时的函数图像。
    当K>0时,反比例函数图像经过一,三象限,是减函数
    当K<0时,反比例函数图像经过二,四象限,是增函数
    反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
    知识点:
    1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
    2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
    对数函数
    对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
    右图给出对于不同大小a所表示的函数图形:
    可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
    (1)对数函数的定义域为大于0的实数集合。
    (2)对数函数的值域为全部实数集合。
    (3)函数总是通过(1,0)这点。
    (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
    (5)显然对数函数无界。
    指数函数
    指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
    如图所示为a的不同大小影响函数图形的情况。
    可以看到:
    (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
    (2)指数函数的值域为大于0的实数集合。
    (3)函数图形都是下凹的。
    (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
    (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
    (6)函数总是在某一个方向上无限趋向于X轴,永不相交。
    (7)函数总是通过(0,1)这点。
    (8)显然指数函数无界。
    奇偶性
    注图:(1)为奇函数(2)为偶函数
    1.定义
    一般地,对于函数f(x)
    (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
    (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
    (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
    (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
    说明:①奇、偶性是函数的整体性质,对整个定义域而言
    ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
    (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
    ③判断或证明函数是否具有奇偶性的根据是定义
    2.奇偶函数图像的特征:
    定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
    f(x)为奇函数《==》f(x)的图像关于原点对称
    点(x,y)→(-x,-y)
    奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
    偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
    3.奇偶函数运算
    (1).两个偶函数相加所得的和为偶函数.
    (2).两个奇函数相加所得的和为奇函数.
    (3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
    (4).两个偶函数相乘所得的积为偶函数.
    (5).两个奇函数相乘所得的积为偶函数.
    (6).一个偶函数与一个奇函数相乘所得的积为奇函数.

    接下来,看一下学霸的总结的解题技巧:

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    今天高中数学函数的知识我就分享到到这里,更多高中数学知识与高质量解题技巧视频资料需要的的可以私聊老师,可以领取!

    展开全文
  • 今天分享高中数学函数奇偶性的知识点技巧一例题讲解;通过老师的的分享希望能给同学们带来帮助! 知识点: 函数的奇偶性一、函数奇偶性的定义: (1)如果对于函数f(x)定义域内的任意一个x,都有f(一x)=-f(x...

    高中数学奇偶性
    作者:vxbomath
    今天分享高中数学函数奇偶性的知识点技巧一例题讲解;通过老师的的分享希望能给同学们带来帮助!

    知识点:
    函数的奇偶性一、函数奇偶性的定义:
    (1)如果对于函数f(x)定义域内的任意一个x,都有f(一x)=-f(x),那么函数f(x)叫做奇函数。
    (2)如果对于函数f(x)定义域内的任意一个x,都有f(x)=-f(一x),那么函数f(x)叫做偶函数。
    二、奇、偶函数的性质:
    (1)函数f(x)是奇函数或偶函数的必要条件是定义域关于原点对称。
    (2)奇函数f(x)的图象关于原点对称,偶函数g(x)的图象关于y轴对称。
    (3)在公共定义域内,两奇函数之积(商)为偶函数,两个偶函数之积(商)也为偶函数;一奇一偶函数之积(商)为奇函数(取商时分母不为零)。
    (4)若f(x)是具有奇偶性的单调函数,则奇函数在正负对称区间上的单调性相同,偶函数在正负对称区间上的单调性相反。
    (5)若函数f(x)的定义域关于原点对称,则f(x)既是奇函数又是偶函数的充要条件是f(x)=0
    经典题型:高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    高中函数
    今天高中数学函数奇偶性知识就分型到这里了,更多高质量的解题技巧视频,需要的可以联系老师。也可以评论在下方,老师看到会第一时间回复大家的!

    展开全文
  • 高中数学函数总结大全.doc
  • 高中数学函数知识点.doc
  • 高中数学函数基础练习.doc
  • 高中数学函数常用函数图形及其基本性质.pdf
  • 高中数学函数知识点总结.doc
  • 高中数学函数解题技巧..doc
  • 高中数学函数基础训练@.doc
  • 高中数学函数图像的总结.doc
  • 高中数学函数:题型分类.doc
  • 高中数学函数的概念PPT课件.pptx
  • 浅谈如何学习高中数学函数.doc
  • 高中数学函数知识点总结大全.doc
  • 高中数学函数导学案

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 17,897
精华内容 7,158
关键字:

高中数学函数