精华内容
下载资源
问答
  • 无人机飞控

    2017-02-24 21:00:37
    无人机是无人驾驶飞机的简称(Unmanned Aerial Vehicle),是利用无线电遥控设备和自备的程序控制装置的不载人飞机,包括无人直升机、固定翼机、多旋翼飞行器、无人飞艇、无人伞翼机。广义地看也包括临近空间飞行器...
    
    无人机是无人驾驶飞机的简称(Unmanned Aerial Vehicle),是利用无线电遥控设备和自备的程序控制装置的不载人飞机,包括无人直升机、固定翼机、多旋翼飞行器、无人飞艇、无人伞翼机。广义地看也包括临近空间飞行器(20-100 公里空域),如平流层飞艇、高空气球、太阳能无人机等。从某种角度来看,无人机可以在无人驾驶的条件下完成复杂空中飞行任务和各种负载任务,可以被看做是 “空中机器人”。
    飞控子系统是无人机完成起飞、空中飞行、执行任务和返场回收等整个飞行过程的核心系统,飞控对于无人机相当于驾驶员对于有人机的作用,我们认为是无人机最核心的技术之一。飞控一般包括传感器、机载计算机和伺服作动设备三大部分,实现的功能主要有无人机姿态稳定和控制、无人机任务设备管理和应急控制三大类。
    无人机飞控是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统,是无人机的大脑。
    随着智能化的发展,当今的无人机已不仅仅限于固定翼与传统直升机形式,已经涌现出四轴、六轴、单轴、矢量控制等多种形式。
    固定翼无人机飞行的控制通常包括方向、副翼、升降、油门、襟翼等控制舵面,通过舵机改变飞机的翼面,产生相应的扭矩,控制飞机转弯、爬升、俯冲、横滚等动作。
    传统直升机形式的无人机通过控制直升机的倾斜盘、油门、尾舵等,控制飞机转弯、爬升、俯冲、横滚等动作。
    多轴形式的无人机一般通过控制各轴桨叶的转速来控制无人机的姿态,以实现转弯、爬升、俯冲、横滚等动作。
    对于固定翼无人机,一般来说,在姿态平稳时,控制方向舵会改变飞机的航向,通常会造成一定角度的横滚,在稳定性好的飞机上,看起来就像汽车在地面转弯一般,可称其为测滑。方向舵是最常用做自动控制转弯的手段,方向舵转弯的缺点是转弯半径相对较大,较副翼转弯的机动性略差。 副翼的作用是进行飞机的横滚控制。固定翼飞机当产生横滚时,会向横滚方向进行转弯,同时会掉一定的高度。 升降舵的作用是进行飞机的俯仰控制,拉杆抬头,推杆低头。拉杆时飞机抬头爬升,动能朝势能的转换会使速度降低,因此在控制时要监视空速,避免因为过分拉杆而导致失速。 油门舵的作用是控制飞机发动机的转速,加大油门量会使飞机增加动力,加速或爬升,反之则减速或降低。
    了解了各舵的控制作用,我们开始讨论一下升降舵和油门的控制。固定翼飞机都有一个最低时速被称做失速速度,当低于这个速度的时候飞机将由于无法获得足够的升力而导致舵效失效,飞机失控。通过飞机的空速传感器我们可以实时获知飞机的当前空速,当空速降低时必须通过增加油门或推杆使飞机损失高度而换取空速的增加,当空速过高时减小油门或拉杆使飞机获得高度而换取空速的降低。因此固定翼飞机有两种不同的控制模式,根据实际情况的使用而供用户选择: 第一种控制方式是,根据设定好的目标空速,当实际空速高于目标空速时,控制升降舵拉杆,反之推杆;那空速的高低影响了高度的高低,于是采用油门来控制飞机的高度,当飞行高度高于目标高度时,减小油门,反之增加油门。由此我们可以来分析,当飞机飞行时,如果低于目标高度,飞控控制油门增加,导致空速增加,再导致飞控控制拉杆,于是飞机上升;当飞机高度高于目标高度,飞控控制油门减小,导致空速减小,于是飞控再控制推杆,使高度降低。这种控制方式的好处是,飞机始终以空速为第一因素来进行控制,因此保证了飞行的安全,特别是当发动机熄火等异常情况发生时,使飞机能继续保持安全,直到高度降低到地面。这种方式的缺点在于对高度的控制是间接控制,因此高度控制可能会有一定的滞后或者波动。 第二种控制方式是:设定好飞机平飞时的迎角,当飞行高度高于或低于目标高度时,在平飞迎角的基础上根据高度与目标高度的差设定一个经过PID控制器输出的限制幅度的爬升角,由飞机当前的俯仰角和爬升角的偏差来控制升降舵面,使飞机迅速达到这个爬升角,而尽快完成高度偏差的消除。但飞机的高度升高或降低后,必然造成空速的变化,因此采用油门来控制飞机的空速,即当空速低于目标空速后,在当前油门的基础上增加油门,当前空速高于目标空速后,在当前油门的基础上减小油门。这种控制方式的好处是能对高度的变化进行第一时间的反应,因此高度控制较好,缺点是当油门失效时,比如发动机熄火发生时,由于高度降低飞控将使飞机保持经过限幅的最大仰角,最终由于动力的缺乏导致失速。 因此,两种控制模式根据实际情况而选用。我们选用的是第二种控制模式,并增加了当空速低于一定速度的时候,认为异常发生,立刻转为第一种控制模式以保证飞机的安全。
    展开全文
  • 无人机飞控系统的容错控制技术研究综述
  • 以四片微处理器为核心,研制出某超低空型无人机飞控系统。给出飞控系统总体示意图,其软件设计采用5种控制模态。探讨超低空掠海飞行的关键技术,运用半实物仿真原理,通过仿真电缆对其进行实验室仿真。仿真结果表明...
  • 四旋翼无人机飞控系统设计(方案篇) 四旋翼无人机为多旋翼无人机中最经典的机型,此设计为四旋翼无人机飞控系统设计(侧重软件),这里主要涉及基于MCU的无人机飞控程序的编写,使用的无人机机架、电机、电调、锂...

    简介

      四旋翼无人机为多旋翼无人机中最经典的机型,此设计为四旋翼无人机飞控系统设计(侧重软件),这里主要涉及基于MCU的无人机飞控程序的编写,使用的无人机机架、电机、电调、锂电池、航模遥控器、接收机等为淘宝购买并自组,新手开发无人机应先入门航模有关知识防止出现安全事故。

    方案

      使用M4内核stm32F407单片机外置姿态传感器、高度传感器、光流传感器等组成飞控系统。安卓端APP开发使用传感器监听机制读取手机陀螺仪数据,同时将调试参数等数据进行打包通过蓝牙进行传输,使用NRF转发增加距离,APP可对无人机进行调试、体感控制。

    结构框架

      飞控系统软件主要由数据接收及采集驱动、数据处理及控制算法、以及承载多任务调度及同步的RTOS–RT-Thread。使用串级PID控制作为无人机飞控的核心算法。使用高度环工作和光流控制矫正机械误差、参数优化不足等因素产生的漂移。使用的RT-Thread具有高实时性和模块性,以提高系统的稳定性、高效性,并方便程序管理。

    在这里插入图片描述

    展开全文
  • 基于STC单片机的无人机飞控系统设计基于STC单片机的无人机飞控系统设计
  • 无人机市场在2013年开始升温,但比较遗憾的是,国内专注于无人机飞控系统的企业非常少,给无人机市场的发展带来了一些局限。 但值得庆幸的是,字节科技已经发现了这个问题,并率先推出了功能全面且可以定制开发的...

     

    无人机市场在2013年开始升温,但比较遗憾的是,国内专注于无人机飞控系统的企业非常少,给无人机市场的发展带来了一些局限。
    但值得庆幸的是,字节科技已经发现了这个问题,并率先推出了功能全面且可以定制开发的无人机地面站软件、无人机飞控系统,为广大企业解决了一系列问题。



      字节科技无人机飞控系统基于Pixhawk,可根据用户具体需求,快速进行二次开发,包括植保特色、避障、光流、视觉识别等。
      而且目前,地面站定制开发相较传统地面站来说更加灵活易用,很多时候我们使用地面站的目的仅仅是想监测无人机的状态等,并不需要很多复杂的功能,这时手机端地面站APP便是最佳选择,但目前市面上可供使用的手机端地面站软件很少,或者功能上无法满足我们的需求,对此字节信息科技提供定制化手机地面站服务,可以用在android或ios等不同操作系统。
       字节科技不仅可以定制化手机地面站app,还提供多种周边工具的开发,例如wifi信号站可替代otg数据线,将电台和手机通过wifi方式进行连接,解决了otg数据线连接不稳定等问题,如果您正需要无人机地面站软件、飞控系统,不妨详细了解一下字节科技。

    转载于:https://my.oschina.net/u/3637459/blog/1540543

    展开全文
  • 无人机飞控三大算法

    千次阅读 多人点赞 2018-11-16 15:37:16
    无人机飞控三大算法:捷联式惯性导航系统、卡尔曼滤波算法、飞行控制PID算法。   一、捷联式惯性导航系统 说到导航,不得不说GPS,他是接受卫星发送的信号计算出自身位置的,但是当GPS设备上方被遮挡后,GPS设备...

    无人机飞控三大算法:捷联式惯性导航系统、卡尔曼滤波算法、飞行控制PID算法。

     

    一、捷联式惯性导航系统

    说到导航,不得不说GPS,他是接受卫星发送的信号计算出自身位置的,但是当GPS设备上方被遮挡后,GPS设备无法定位了。比如在室内、隧道内、地下等场所,基本收不到GPS信号。

    语录:任何一款有缺点的产品,必然成就了另一款能克服其缺点的产品。

    另一种导航方式是不依赖外界信息的,这种导航叫做惯性导航。

    那什么是惯性导航呢?他就是利用载体上的加速度计、陀螺仪这两种惯性远见,去分别测出飞行器的角运动信息和线运动信息,与初始姿态、初始航向、初始位置一起交给计算模块,由计算模块推算出飞机的姿态、速度、航向、位置等导航参数的自主式导航方法。

    (精益求精:陀螺仪是怎么通过角运动信息再经过计算模块计算得出姿态的呢?同理加速度计又是怎样通过线运动信息再经过计算模块计算出速度的呢?)

     另外惯性导航系统分为平台式惯性导航和捷联式惯性导航。

    惯性导航系统分为平台式惯性导航和捷联式惯性导航。

    早期的惯性导航系统都是平台式的,平台式惯导有实体的物理平台,陀螺仪和加速度计置于由陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架。

    优点:直接模拟导航坐标系,计算比较简单;能隔离载体的角运动,系统精度高。

    缺点:结构复杂,体积大,制作成本高。

     

    还有另一种捷联式惯性导航,捷联的英文原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件,包括陀螺仪和加速度计,直接装在需要姿态、速度、航向等导航信息的主体上,用计算机的测量信号变换为导航参数。

    优点是没有平台,架构简单,体积小,维护方便。

    缺点:惯性元件直接装在载体上,环境恶劣,对元件要求较高;坐标变换中计算量大。

    总体来看,捷联惯导比平台式惯导优势明显。

     

    在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑

    二、卡尔曼滤波算法

    卡尔曼滤波算法采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻地观测值来更新对状态变量的估计,求出现刻的估计值。

     

    卡尔曼滤波算法是卡尔曼等 人在20世纪60年代提出的一种递推滤波算法。它的实质是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法。这套算法采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值,在惯性导航系统中有非常广泛的应用。刚才说的噪声指的是计算得出的值与实际值的误差。

    那么为什么Kalman滤波会应用到惯性导航系统中呢?这主要是因为惯性导航系统的“纯惯性”传感器不足以达到所需的导航精度,为了补偿导航系统的不足,常常使用其他导航设备来提高导航精度,以减小导航误差。所以利用Kalman滤波算法,可以将来自惯性导航系统与其他导航装置的数据(如惯性导航系统计算的位置对照GPS接收机给出的位置信息)加以混合利用,估计和校正未知的惯性导航系统误差。

    卡尔曼滤波算法广泛应用已经超过30年,包括机器人导航,控制, 传感器数据融合甚至军事方面的雷达系统以及导弹追踪等等。

    比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置最优的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。

    卡尔曼滤波算法是一个非常复杂的计算,我们结合飞行器来简单的讲一下它的计算过程,比如飞行器想知道自己的一个状态,这个状态可以是姿态、速度或位置等信息,我们知道飞行器的传感器是可以得到这些信息的,通过惯性导航的数学模型也可以计算出这些信息,但这两个信息的值与实际值还是有一定的差距的,把这两个值放在若干数学公式里可以得到一个最优值,通过这个最优值与传感器和数学模型的值进行对比,我们可以知道哪个值与最优值比较接近,下次的计算我们应该较多的参考接近最优值的那个值,比如传感器的值最接近最优值,那我们就把传感器的值使用较大的权重,数学模型得到的值加使用较小的权重,所得到的这个权重不是随便给的,也是通过数学公式得也来的。那我下一个时间段再计算的时候这个权重就要起作用了,传感器的值和数学模型的值会带着权重放在数学公式里得到最优值,然后我们再把这个最优值与传感器和数学模型的值进行对比,再看一下哪个值与最优值接近,如果还是传感器的值比较接近,我们还是会通过公式生成一个权重,交给下个时间段的计算使用。通过不断重复这样的计算,我们就可以得到一个相对较优的值,这就是卡尔曼滤波算法的大概过程。

    三、飞行控制PID算法

     PID控制器是一种线性控制器,它主要根据给定值和实际输出值构成控制偏差,然后利用偏差给出合理的控制量。

    目前,人们通过科学研究获得了诸多具有优异控制效果的算法和理论,但在工程应用领域,基于经典PID的控制算法仍然是最简单、最有效的控制方案。

    PID控制器是一种线性控制器,它主要根据给定值和实际输出值构成控制偏差,然后利用偏差给出合理的控制量。

    目前主流的几款开源飞控中,无一例外地都是采用PID控制算法来实现无人机的姿态和轨迹控制。

    PID里的P是Proportion的首字线,是比例的意思,I是Integral的首字线,是积分的意思,D是Differential的首字母,是微分的意思。

    那么PID控制器算法能解决什么问题呢?以多旋翼为例,在没有控制系统的情况下,直接用信号驱动电机带动螺旋桨旋转产生控制力,会出现动态响应太快,或者太慢,或者控制过冲或者不足的现象,多旋翼根本无法顺利完成起飞和悬停动作。为了解决这些问题,就需要在控制系统回路中加入PID控制器算法。在姿态信息和螺旋桨转速之间建立比例、积分和微分的关系,通过调节各个环节的参数大小,使多旋翼系统控制达到动态响应迅速、既不过冲、也不欠缺的现象。

    下面我们简单的举个例子让大家了解一下PID的作用,我们先以一个自动驾驶的小车来举例子,为什么用小车呢而不用多旋翼来举例子呢?因为用小车举例,可以看到小车的行进轨迹,根据轨迹我们可以很直观的看到PID对控制的影响,便于理解PID的作用。

    我们先讲P,比例控制。现在我们想让这个小车沿着绿线向前走,我们给P设置一个固定的值,这个值可以让离开绿线的小车向绿线的方向行驶,离的越远,方向盘打的角度越大,离的越近,方向盘打的角度越小。橙色的箭头表示小车行进的方向

    比如这个小车在这个位置,我们设置了一个中等大小的P值,想要沿着绿线走,在比例控制下路径是这样的,因为小车有一定的速度,到达绿线时因为惯性的原因又向前运动了,然后再根据中等P值向回打方向盘,当到达绿线时,同样因为惯性的原因冲过了头,因为小车越接近绿线,方向盘打的越小,所以小车每经过一次绿线,它的偏差就越来越小,所以随着小车多次的往复运动,就能离绿线越来越近,理论上最终能够行驶在绿线上面。

     

    如果我们把P值设置的比较大,它的路径是这样的,因为方向盘打的角度比较大,所以小车比中等P值的时候较早的到达绿线,但同样因为惯性的原因会多次往返绿线的两侧,也是一次比一次接近绿线,因为它方向盘角度打的比较大,所以会比中等P值往返的次数要多,最终经过多次往返,理论上它会离绿线越来越近,最终到达绿线上方。

    如果我们把P值设置的比较小,也就是方向盘打的角度比较小,它的路径是这样的,小车会较晚到达绿线,因为惯性会往返绿线两侧,但是因为方向盘角度小,小车可以在较少的往复次数下接近绿线。

    所以我们对比一下设置这三种P值的结果,在小车与绿线相同距离的情况下,P值越大,小车的反应越快,P值越小,小车的反应越慢,所以这三个小车第一次到达绿线的时间是不一样的。虽然P值大能够较快的到达绿线,但是反应比较剧烈,总是因为过快冲过了头。相反P值小的反应比较平缓,但是它反应太慢,我们有时候接受不了。

    什么样的P值是合理的呢,就是设置后,小车的反应不是很剧烈,反应时间你也能够接受,那这就是一个相对合理的P值。

    那有没有一种办法让它反应再快一点,反应又不那么剧烈呢,那就要用到接下来我们要讲的微分控制了。

     

    我们为了不让这个小车冲过头,我们再给它加一个力,这个力就是D,让这个力来起一个作用,就是让小车越接近绿线的时候,接近绿线的速度越慢,小车越远离绿线的时候,接近绿线的速度相对较快,这个接近绿线的速度不是小车前进的速度,是小车与绿线平行线之间的相对速度。这个D大家可以理解为小车靠近绿线的一个阻力。

    假设我们设置了一个相对合理的P值,在P值不变的情况下,微分控制中D值的变化会有怎样的结果。比如我们设置了一个比较合适的D值,微分控制(D)让小车在靠近绿线时,接近绿线的速度比较慢,这样比例控制(P)就可以很轻松的让小车到达绿线上方行驶。

    如果D值过大,也就是小车靠近绿线的阻力过大,这样会让小车需要比较长的时间才能到达绿线上方。

    如果D值设置的过小,也就是小车靠近绿线的阻力过小,那微分控制(D)就不会对比例控制产生大的影响,所以虽然小车能够较快到达绿线,但小车需要多调整几次,在绿线的两侧往复几次后才能到达绿线上方行驶。

    那这样看来比例控制(P)和微分控制(D)的配合,貌似已经很完美了。为什么还要有积分控制(I)呢?

     

    设置合适的P值和D值,可以让小车很好的沿着绿线一直走,但路上不是很平坦,会有些坑坑包包,或者其他的一些干扰,路况不好就会让小车的行进路线发生偏移,比如小车在这里遇到了坑坑包包,它的行进路线 就会变成这样,稍微偏离了绿线一点,因为微分控制(D)让小车离绿线越近时,靠近绿线的速度越慢,比例控制(P)让小车在接近绿线时,方向盘又打的比较小,所以小车要走一段路才回到绿线上面。

    有没有办法让它更快回到绿线上面呢,所以我们再给它加一个力,这个力就是I,积分控制。我们让积分控制起这样的作用:如果P和D的调节不是很理想的话,就让I帮他俩一把,向P的方向上加一个力,这样可以让小车更快回到目的路径。

    设置了I以后,I会根据误差和误差经历的时间进行积分,然后决定施加给目标方向的力的大小,就能够让小车回到目标轨迹上。

     

    一个合适的I值,可以让小车偏离轨迹后,I可以在合适的时间给P一个合适的力,让小车快速的回到绿线上面;

    如果I值过大,积分控制(I)调整的力就会比较大,它在帮P的时候会用力过猛,会让小车冲过绿线,下次帮忙的时候还是用力过猛,P表示很无奈,毕竟I也是好心,经过几次调整后,小车终于回到绿线上面,但我们看小车的轨迹线产生了一定的振荡;

    如果I值过小,积分控制(I)调整的力就会比较小,就像有一个手无缚鸡之力的柔弱小鲜肉一样,帮不上太大的忙,所以小车回到正确轨迹的时间就会比较长。

     

    说完了PID控制对小车的影响,下面我们再说说PID控制对多旋翼的影响。比如这架多旋翼想要作的是保持机身的水平平稳。

    我们先从P开始,如果P值设置的过大,哪怕机身有那么一丁点倾斜,飞行器都会用稍大一些的力去调整,结果用力过猛,又继续向回调整,这样飞行器就会频繁的调整自己的水平状态,导至机身产生振动。

     

                上图中指向左侧的箭头写的是过大不是过人

    如果P值设置的过小,飞行器的水平调整就会显得力不从心,比如空气中的微风让飞行器发生了倾斜,飞行器向回调整的力比较小,所以需要长一点的时间才能调平,这样让我们觉得它反应有点慢。

     

    比如我们经过多次测试设置了一个比较合适的P值,可以让飞行器有一个我们能接受的反应时间,但稍有一点过冲,会有一些震荡,接下来再设置D值,让D值消除震荡,如果D值设置过大,会让飞行器恢复平衡时间过长,反应变慢,

    如果设置了一个过小的D值,会导致效果不明显,飞行器还是会有震荡。

     

    比如我们又设置了一个合适的D值,可以让飞行器反应不是很慢,也不会有明显的震荡。接下来我们再设置一下I值。

    这里的I我们可以这么理解,I根据飞行器的反应时间,适当的帮忙,如果飞行器反应慢了,他就会帮一下,能让它的反应快一点。但是如果值设置的过大,这个帮忙可能会用力过猛,导致过冲。

     

    如果I值设置过小,它的帮忙就没有太大的作用,还是不会让飞行器反应更快。所以设置一个合适的I值需要多次的测试,让它的帮忙起作用,又不会用力过猛。

    有些人怕麻烦就不设置I值了,其实也没有太大的影响,只不过离完美还差那么一点。

    PID的设置是一个非常复杂的过程,对于一般的使用者来说是非常难的。所以有些厂商也想出了一些办法。

     

    比如3DR的开源飞控APM和PIXHWAK,咱们看它的调参软件中,PID部分有这么多要调的地方,对于一般的用户来说是比较有难度的,所以它加了一个自动调参的功能,就是这个AutoTune[‘ɔ:toʊtən],可以把遥控器上的一个开关设置成自动调参,找一片开阔地让飞行器起飞,然后把遥控器上的自动调参开关打开,飞控就开始自己控制飞行器进行飞行测试,然后根据测试情况自动设置一个比较合适的PID参数。

     

    有些厂商作的就更简单了,直接在调参软件里加了一个感度的配置,这个感度大家可以理解为敏感度 ,数值越大,敏感度越高,不同的轴距都有不同的推荐感度设置。

    左面的这个是大疆NAZA飞控的调参软件,调参软件说明书里就有一个不同轴距的推荐感度值,右面的拓攻更简单,直接选择轴距,就能自动设置推荐的感度值。

    这些厂商的调参软件里一般都会有姿态感度和基本感度,或者叫稳定感度。姿态感度是指飞行器对遥控指令的敏感程度,基本感度或稳定感度是指飞行器对于外界干扰反应的敏感程度。这样就比PID理解起来要简单的多了

    展开全文
  • 笔者在大学本科上的第一门课叫“自动化导论”,记忆深刻,上课开始教授就给出一张图,一个典型的闭环控制系统(包含控制目标,控制器,反馈信息,执行机构),这个也很准备地概括出了早期无人机飞控系统。...
  • 在进行多旋翼无人机飞控系统设计之前,有必要列写一份详细的设计方案书;这是飞控系统设计的基石,并且在一定程度上指导了后续的研发工作。本篇博文列写了之前笔者在进行无人机飞控开发过程中所撰写的精简版本的设计...
  • 无人机飞控--科普贴

    2019-03-15 09:24:00
    详细解析无人机飞控技术 原贴地址: http://www.elecfans.com/d/719442.html 飞控是什么? 飞行控制系统(Flight control system)简称飞控,可以看作飞行器的大脑。多轴飞行器的飞行、悬停,姿态变化等等...
  • 谈谈自己对无人机飞控的理解 首先,关于无人机。是由有人机发展而来,我们可以认为是将有人机操纵内容迁移到地面操控上来。根据飞行原理,一般将无人机分为固定翼、旋翼和扑翼。不同的飞行原理反映了不同的飞行结构...
  • 无人机飞控三大算法汇总

    千次阅读 2020-10-18 23:35:45
    无人机飞控三大算法:捷联式惯性导航系统、卡尔曼滤波算法、飞行控制PID算法。 一、捷联式惯性导航系统 说到导航,不得不说GPS,他是接受卫星发送的信号计算出自身位置的,但是当GPS设备上方被遮挡后,GPS设备...
  • 无人机飞控技术最详细解读_宇辰网_让世界读懂无人机_全球专业无人机资讯|电商|大数据服务平台 转载于:https://www.cnblogs.com/gitwow/p/10870664.html
  • 作为无人机飞控系统的核心,飞控计算机通常采用基于嵌入式系统的实现方案; ARM 嵌入式处理器及Linux 嵌入式操作系统以其一系列优点在飞控计算机中具有广泛的应用前景; 研究了基于ARM- Linux 的某型无人机飞控...
  • 无人机飞控算法-姿态估计(EKF卡尔曼滤波) 此系列记录了我理解的卡尔曼滤波从0到1的过程,从姿态估计到位置估计,我们从核心点一个个出发,并结合实际模块的应用来一一揭开卡尔曼滤波的神秘面纱。 提示:在系列文章...
  • 姿态传感器可以说是整个无人机飞控系统的核心部件,我们在使用姿态传感器的时候mpu6050时通过I2C对模块的相对寄存器进行初始化和读取,根据精度设置对读取出来的各个轴电压值进行单位转换便可以得到各个轴的角速度和...
  • 原链接在http://ardupilot.org/dev/docs/apmcopter-code-overview.html 无人机飞控平台源码入门教程
  • UP无人机飞控系统地面站操作说明 对于已经完成PID调整的飞机可以按照下面的步骤来进行飞行操作: ⑴ 安装连接地面站; ⑵ 安装飞机,连接电源,连接空速管; ⑶ 飞机飞控开机稳定工作5~10分钟。由于温度会对飞控产生...
  • 无人机飞控姿态解析

    千次阅读 2018-05-22 14:06:29
    博主:UAV声明:尊重版权,转载请注明出处。... 通过加速度计,陀螺仪,磁罗盘,GPS等姿态传感器采集当前无人姿态,并进行姿态解析。2. 通过地面站或者遥控...4. 计算无人机动作,算出目标电机输出,传达输出命令 ...
  • 无人机飞控三大算法:捷联式惯性导航系统、卡尔曼滤波算法、飞行控制PID算法。一、捷联式惯性导航系统说到导航,不得不说GPS,他是接受卫星发送的信号计算出自身位置的,但是当GPS设备上方被遮挡后,GPS设备无法定位...
  • 无人机能够飞行主要是依靠传感器系统获取位姿信息并反馈到微处理器进行控制系统的运算。所以飞控软件设计主要负责搭建合理软件流程,使各功能模块协调有效的工作。 一个飞控系统的基本工作主要有: 1、CPU接收遥控器...
  • 根据微型无人机飞控计算机与外围多个设备进行通信的需要,介绍了由TL16C554A 芯片组成的多路异步串行通信系统的设计与实现,包括扩展异步串行接口的方案选择、硬件电路设 计、时序逻辑实现及软件实现。
  • 无人机飞控之光流知识小结 原创 across超越者 across说 2019-11-17 要完成飞行器的定位,则必须要有位置的反馈数据。在户外,我们一般使用GPS作为位置传感器,然而,在室内,GPS无法使用,要完成定位功能,可以...
  • 摘要:无人机(UAV)是无人驾驶飞机的简称,是指利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。无人机最初诞生在一战时期,作为靶机使用。而经过几十年的发展,由于通信技术的飞速发展,无人机不再...
  • 无人机飞控种类整理

    2017-11-15 14:18:00
    1. FPGA baed platforms(Field-...1)Phenix Pro(RobSense Tech公司开发, 固件开源为:基于自主定制的无人机实时操作系统(UOS)) It is built on reconfigurable (可重构) System on a Chip (SoC) designed...
  • 以前,搞无人机的十个人有八个是航空、气动、机械出身,更多考虑的是如何让飞机稳定飞起来、飞得更快、飞得更高。如今,随着芯片、人工智能、大数据技术的发展,无人机开始了智能化、...不可否认,飞控技术的发...
  • 无人机飞控二次开发

    2017-12-07 17:35:00
    目前,国外的无人机市场正火,国内关于地面站飞控系统的专业公司却寥寥无几,对于看准无人机市场的企业有很大的局限性,字节科技作为科技界的新星,率先推出了可定制开发的地面站飞控系统,并提供多种定制开发方案供...
  • 匿名无人机飞控代码整理

    千次阅读 2019-07-31 09:53:48
    (虽然还不是很清楚,但在飞控程序中有滤波和解算等步骤,暂且认为我们并没有用这些计算模块,而是处理了原始数据,或者只是简单滤波) 接下来开始直接对定位任务进行分析(仅有光流的情况): loc_ctrl_1.exp[X...
  • 无人机飞控三大算法:捷联式惯性导航系统、卡尔曼滤波算法、飞行控制PID算法。 一、捷联式惯性导航系统 说到导航,不得不说GPS,他是接受卫星发送的信号计算出自身位置的,但是当GPS设备上方被遮挡后,GPS设备无法...

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 665
精华内容 266
关键字:

无人机飞控