精华内容
下载资源
问答
  • 概念数据模型、逻辑数据模型、物理数据模型详解
    千次阅读
    2018-12-21 15:38:40

    数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。

      1)数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。

    2)数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。

    3)数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。

    数据模型按不同的应用层次分成三种类型:分别是概念数据模型、逻辑数据模型、物理数据模型。

    1、概念数据模型(Conceptual Data Model):简称 概念模型 ,主要用来描述世界的概念化结构,它使数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系 等,与具体的数据管理系统(Database Management System,简称DBMS)无关。概念数据模型必须换成逻辑数据模型,才能在DBMS中实现。

    概念数据模型是最终用户对数据存储的看法,反映了最终用户综合性的信息需求,它以数据类的方式描述企业级的数据需求,数据类代表了在业务环境中自然聚集成的几个主要类别数据。

    概念数据模型的内容包括重要的 实体及实体之间的关系 。在概念数据模型中 不包括实体的属性 ,也 不用定义实体的主键 。这是概念数据模型和逻辑数据模型的主要区别。

    概念数据模型的目标是统一业务概念,作为业务人员和技术人员之间沟通的桥梁,确定不同实体之间的最高层次的关系。

    在有些数据模型的设计过程中,概念数据模型是和逻辑数据模型合在一起进行设计的。
    以下是概念模型图显示方式 


    2、逻辑数据模型(Logical Data Model):简称数据模型,这是用户从数据库所看到的模型,是具体的DBMS所支持的数据模型,如网状数据模型(Network Data Model)、 层次数据模型 (Hierarchical Data Model)等等。 此模型既要面向用户,又要面向系统 ,主要用于 数据库管理系统 (DBMS)的实现。

    逻辑数据模型 反映的是系统分析设计人员对数据存储的观点,是对概念数据模型进一步的分解和细化。 逻辑数据模型是根据业务规则确定的,关于业务对象、业务对象的数据项及业务对象之间关系的基本蓝图。

    逻辑数据模型的 内容包括所有的实体和关系,确定每个实体的属性,定义每个实体的主键,指定实体的外键,需要进行范式化处理。

    逻辑数据模型的目标是尽可能详细的描述数据,但并不考虑数据在物理上如何来实现。

    逻辑数据建模不仅会影响数据库设计的方向,还间接影响最终数据库的性能和管理。如果在实现逻辑数据模型时投入得足够多,那么在物理数据模型设计时就可以有许多可供选择的方法。
    逻辑模型图显示 
     
    3、物理数据模型(Physical Data Model):简称 物理模型 ,是面向计算机物理表示的模型,描述了数据在储存介质上的组织结构,它不但与具体的DBMS 有关,而且还与操作系统和硬件有关。每一种逻辑数据模型在实现时都有起对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实 现工作又系统自动完成,而设计者只设计索引、聚集等特殊结构。
    物理结构图显示
      
    在概念数据模型中最常用的是 E-R模型 、扩充的E-R模型、面向对象模型及谓词模型。在逻辑数据类型中最常用的是 层次模型 、 网状模型 、 关系模型 。    

    物理数据模型是在逻辑数据模型的基础上,考虑各种具体的技术实现因素,进行数据库体系结构设计,真正实现数据在数据库中的存放。

    物理数据模型的内容包括确定所有的表和列,定义外键用于确定表之间的关系,基于用户的需求可能进行发范式化等内容。在物理实现上的考虑,可能会导致物理数据模型和逻辑数据模型有较大的不同。

    物理数据模型的目标是指定如何用数据库模式来实现逻辑数据模型,以及真正的保存数据。

    更多相关内容
  • 概念数据模型(CDM)2.逻辑数据模型(LDM)3.物理数据模型(PDM) 1.概念数据模型(CDM)     现实世界主要涉及以下一些概念:     (1)实体(Entity)     客观存在并可相互区别的事物称为实体。...

        模型是现实世界特征的模拟和抽象。在数据库技术中,用数据模型的概念描述数据库的结构和语义,是对现实世界的数据抽象。数据模型是研究数据库技术的核心和基础。



    1.概念数据模型(CDM)

        现实世界主要涉及以下一些概念:
        (1)实体(Entity)
        客观存在并可相互区别的事物称为实体。
        可以是具体的人、事、物或抽象的概念。
        (2)属性(Attribute)
        实体所具有的某一特性称为属性。
        一个实体可以由若干个属性来刻画。
        (3)码(Key)
        唯一标识实体的属性集称为码。
        (4)实体型(Entity Type)
        用实体名及其属性名集合来抽象和刻画同类实体称为
    实体型
        (5)实体集(Entity Set)
        同一类型实体的集合称为实体集
        (6)联系(Relationship)
        现实世界中事物内部以及事物之间的联系在信息世界中反映为实体(型)内部的联系和实体(型)之间的联系。
        实体内部的联系通常是指组成实体的各属性之间的联系
        实体之间的联系通常是指不同实体集之间的联系
        实体之间的联系有一对一、一对多和多对多等多种类型

        概念数据模型是现实世界到信息世界的第一层抽象,主要是在高水平和面向业务的角度对信息的一种描述,通常作为业务人员和技术人员之间沟通的桥梁。作为现实世界的概念化结构,这种数据模型使得数据库的设计人员在最初的数据库设计阶段将精力集中在数据之间的联系上,而不用同时关注数据的底层细节(如所用的计算机系统的特性以及数据库管理系统—DBMS的特性)。

        概念数据模型主要的贡献在于分析数据之间的联系,它是用户对数据存储的一种高度抽象,反应的是用户的一种业务层面的综合信息需求。

        在这个阶段一般会形成整个数据模型或者是软件系统中的实体的概念以及实体之间的联系,为构建逻辑数据模型奠定基础。下图中描述了现实世界和信息世界以及最终转换成计算机世界信息的转换流程。

    图 1    数据的抽象以及转换流程图

        设计概念数据模型的主要工具是E-R图,扩展的E-R图。
        概念模型的表示方法最常用的是P.P.Chen于1976年提出的"实体-联系图方法(Entity-Relationship Approach),简称E-R模型"。E-R实体联系图是直观表示概念模型的工具,其中包含了实体、联系、属性三个成分,联系的方法为一对一(1:1)、一对多(1:N)、多对多(M:N)三种方式,联系属于哪种方式取决于客观实际本身。
        E-R模型图,既表示实体,也表示实体之间的联系,是现实世界的抽象,与计算机系统没有关系,是可以被用户理解的数据描述方式。通过E-R模型图可以使用户了解系统设计者对现实世界的抽象是否符合实际情况,从某种程度上说E-R模型图也是用户与系统设计者进行交流的工具,E-R模型图已成为概念模型设计的一个重要设计方法。
      在这里插入图片描述
    在这里插入图片描述



    2.逻辑数据模型(LDM)

    数据模型由三部分组成:数据结构、数据操作和数据约束。
      (1)数据结构:数据结构主要描述数据的类型、内容、性质、以及数据之间的联系,是整个数据模型的基础,而针对数据的操作和数据之间的约束都是建立在数据结构的基础上的;
      (2)数据操作:主要定义了在相应的数据结构上的操作类型和操作方式(数据库中的增删改查等);
      (3)数据约束:数据约束主要用来描述数据库中数据结构之间的语法、词义联系以及彼此之间的相互约束和制约关系(如MySQL中使用外键保证数据之间的数据完整性)

    逻辑数据模型是对概念数据模型进一步具体化,在概念数据模型定义实体的基础上定义了各个实体的属性,是用户从数据库的角度能够看到的数据的模型,是所使用的数据库管理系统(Database Management System,DBMS)所支持的数据类型(网状数据模型、层次数据模型、关系数据模型)。这种数据模型架起了用户和系统之间的桥梁,既要面向用户,同时也考虑到了所用的DBMS所支持的特性。

    逻辑数据模型反映了系统分析设计人员针对数据在特定的存储系统(如MySQL)的观点,是对概念数据模型的进一步细化和划分。逻辑数据模型是根据业务之间的规则产生的,是关于业务对象、业务对象数据以及业务对象彼此之间关系的蓝图。

    逻辑数据模型的内容包括所有的实体、实体的属性、实体之间的关系以及每个实体的主键、实体的外键(用于维护数据完整性)。其主要目标是尽可能详细的描述数据,但是并不涉及这些数据的具体物理实现。逻辑数据模型不仅会最终影响数据库的设计方向,并最终会影响到数据库的性能(如主键设计、外键等都会最终影响数据库的查询性能)。

    逻辑数据模型是开发物理数据库的完整文档,逻辑数据模型主要采用的是层次模型、网状模型、关系模型,其中最常用的是关系模型,对应的数据库称之为关系型数据库,如MySQL。
      常用的结构数据模型是关系模型和面向对象模型,关系模型的理论基础是数学理论,数据的操作通过关系运算实现。在关系模型中用二维表表示实体及实体之间的联系,关系模型的实例称为关系。从数学的观点上看,关系是集合,其元素是元组(记录)。遵循一定的规则后,可以将E-R模型图转换成关系模型。


        将E-R模型图转换成关系模型的规则
    E-R模型图中的主要成分是实体及实体之间的联系,对于实体的转换方式是:
      1) 将一个实体转换成一个关系模型。实体的属性为关系模型的属性,实体的标识符为关系模型的关键字,如上图所示的E-R模式中有两个实体:学生、课程,可以分别转换学生模型和课程模型:
        学生模型(学号,姓名,性别,年龄),学号是学生模型的关键字
        课程模型(课程号,课程名,学时数),课程号是课程模型的关键字
        2) 联系转换为关系模型。联系转换成关系模型时,要根据联系方式的不同采用不同的转换方式:
        若联系的方式是一对一的(1:1),可以在两个实体关系模型中的任意一个关系模型中加入另一个关系模型的关键字和联系类型的属性。
        若联系方式是一对多的(1:N),则在N端(为多的一端)实体的关系模型中加入1端实体关系模型的关键字和联系类型的属性
        若联系方式是多对多的(M:N),则将联系也转换成关系模型,其属性是互为联系的两个实体的关键字和联系的属性
    在这里插入图片描述



    3.物理数据模型(PDM)

    物理数据模型,又称为物理模型,是概念数据模型和逻辑数据模型在计算机中的具体表示。该模型描述了数据在物理存储介质上的具体组织结构,不但与具体的数据库管理系统相关,同时还与具体的操作系统以及硬件有关,但是很多工作都是由DBMS自动完成的,用户所要做的工作其实就是添加自己的索引等结构即可。

    物理数据模型是在逻辑数据模型的基础上,综合考虑各种存储条件的限制,进行数据库的设计,从而真正实现数据在数据库中的存放。其主要的工作是根据逻辑数据模型中的实体、属性、联系转换成对应的物理模型中的元素,包括定义所有的表和列,定义外键以维持表之间的联系等,具体例子如下:

    图2 逻辑数据模型到对应的数据库之间的转换示例

    展开全文
  • 概念数据模型、逻辑数据模型、物理数据模型

    万次阅读 多人点赞 2018-04-30 10:11:33
    最近在系统的学习数据库存储方面的知识加上在公司经常听同事们说起CDM,结合前段时间对MySQL的使用的心得将概念数据模型(Concept Data Model,CDM)、逻辑数据模型(Logical Data Model,LDM)、物理数据模型...

      最近在系统的学习数据库存储方面的知识加上在公司经常听同事们说起CDM,结合前段时间对MySQL的使用的心得将概念数据模型(Concept Data Model,CDM)、逻辑数据模型(Logical Data Model,LDM)、物理数据模型(Physical Data Model,PDM)做个简单的介绍。本文将介绍这三种模型的基本概念以及他们之间的不同。

      在讨论三种数据模型之前,我们首先学习一下所谓的数据模型。数据模型由三部分组成:数据结构、数据操作和数据约束。

    1. 数据结构:数据结构主要描述数据的类型、内容、性质、以及数据之间的联系,是整个数据模型的基础,而针对数据的操作和数据之间的约束都是建立在数据结构的基础上的;
    2. 数据操作:主要定义了在相应的数据结构上的操作类型和操作方式(数据库中的增删改查等);
    3. 数据约束:数据约束主要用来描述数据库中数据结构之间的语法、词义联系以及彼此之间的相互约束和制约关系(如MySQL中使用外键保证数据之间的数据完整性);

      1.概念数据模型(CDM)

      概念数据模型是现实世界到信息世界的第一层抽象,主要是在高水平和面向业务的角度对信息的一种描述,通常作为业务人员和技术人员之间沟通的桥梁。作为现实世界的概念化结构,这种数据模型使得数据库的设计人员在最初的数据库设计阶段将精力集中在数据之间的联系上,而不用同时关注数据的底层细节(如所用的计算机系统的特性以及数据库管理系统---DBMS的特性)。

      概念数据模型主要的贡献在于分析数据之间的联系,它是用户对数据存储的一种高度抽象,反应的是用户的一种业务层面的综合信息需求。

      在这个阶段一般会形成整个数据模型或者是软件系统中的实体的概念以及实体之间的联系,为构建逻辑数据模型奠定基础。下图中描述了现实世界和信息世界以及最终转换成计算机世界信息的转换流程。

      

    图 1    数据的抽象以及转换流程图

      设计概念数据模型的主要工具是E-R图,扩展的E-R图。

      2.逻辑数据模型(LDM)

      逻辑数据模型是对概念数据模型进一步具体化,在概念数据模型定义实体的基础上定义了各个实体的属性,是用户数据库的角度能够看到的数据的模型,是所使用的数据库管理系统(Database Management System,DBMS)所支持的数据类型(网状数据模型、层次数据模型、关系数据模型)。这种数据模型架起了用户系统之间的桥梁,既要面向用户,同时也考虑到了所用的DBMS所支持的特性。

      逻辑数据模型反映了系统分析设计人员针对数据在特定的存储系统(如MySQL)的观点,是对概念数据模型的进一步细化和划分。逻辑数据模型是根据业务之间的规则产生的,是关于业务对象、业务对象数据以及业务对象彼此之间关系的蓝图。

      逻辑数据模型的内容包括所有的实体、实体的属性、实体之间的关系以及每个实体的主键、实体的外键(用于维护数据完整性)。其主要目标是尽可能详细的描述数据,但是并不涉及这些数据的具体物理实现。逻辑数据模型不仅会最终影响数据库的设计方向,并最终会影响到数据库的性能(如主键设计、外键等都会最终影响数据库的查询性能)。

      逻辑数据模型是开发物理数据库的完整文档,逻辑数据模型主要采用的是层次模型、网状模型、关系模型,其中最常用的是关系模型,对应的数据库称之为关系型数据库,如MySQL。

      3.物理数据模型(PDM)

      物理数据模型,又称为物理模型,是概念数据模型和逻辑数据模型在计算机中的具体表示。该模型描述了数据在物理存储介质上的具体组织结构,不但与具体的数据库管理系统相关,同时还与具体的操作系统以及硬件有关,但是很多工作都是由DBMS自动完成的,用户所要做的工作其实就是添加自己的索引等结构即可。

      物理数据模型是在逻辑数据模型的基础上,综合考虑各种存储条件的限制,进行数据库的设计,从而真正实现数据在数据库中的存放。其主要的工作是根据逻辑数据模型中的实体、属性、联系转换成对应的物理模型中的元素,包括定义所有的表和列,定义外键以维持表之间的联系等,具体例子如下:

    图2 逻辑数据模型到对应的数据库之间的转换示例

       小结:

      本篇文章只是针对刚接触的几种数据模型做一个简单的解释,接下来会详细介绍逻辑数据模型中几种数据模型、实体之间的联系、以及概念数据模型到逻辑数据模型之间的转化等内容。

    展开全文
  • 在工作中,关于概念数据模型(Concept Data Model)、逻辑数据模型(Logical Data Model)、物理数据模型(Physical Data Model)三个数据模型的探讨中,发现大家都有自己的见解,但是却没有一个人能真正的说清楚这...

    转载自: https://zhuanlan.zhihu.com/p/30899382

    在工作中,关于概念数据模型(Concept Data Model)、逻辑数据模型(Logical Data Model)、物理数据模型(Physical Data Model)三个数据模型的探讨中,发现大家都有自己的见解,但是却没有一个人能真正的说清楚这三个模型的涵义与差异。

    虽说由于这三个模型在软件开发的过程中,由于其功能与作用的差异,结合项目规模等实际情况,不一定会全部使用以节省项目时间(有时候直接设计物理模型),但我认为不应该被冠以“大家对这个概念的理解不同”不同之名而歪曲数据模型的定义。事实上,这三个模型的概念是清晰的、标准化的。

    1.2 约定

    本文中讨论的概念模型、逻辑模型和物理模型,主要是针对数据模型而言,也就是概念数据模型、逻辑数据模型和物理数据模型,而不是系统分析与设计中泛义的概念模型、逻辑模型和物理模型。

    2 数据模型的定义与分析

    2.1 概念模型

    2.1.1 定义

    概念模型,是面向数据库用户的真实世界的模型,主要用来描述真实世界中的概念化结构,它使数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等,与具体的数据管理系统(Database
    Management System,简称DBMS)无关。概念数据模型必须换成逻辑数据模型,才能在DBMS中实现。 ——百度百科

    概念数据模型是最终用户对数据存储的看法,反映了最终用户综合性的信息需求,它以数据类的方式描述企业级的数据需求,数据类代表了在业务环境中自然聚集成的几个主要类别数据。——Jerome’s
    BI BLOG

    我简单化归纳一下:概念模型,就是利用自然语言对真实世界的业务数据的抽象化描述,是面向终端用户的数据架构。

    2.1.2 作用

    概念数据模型的目标是统一业务概念,作为业务人员和技术人员之间沟通的桥梁,确定不同实体之间的最高层次的关系。

    2.1.3 实例分析

    下面举两个例子来说。

    例一:

    先进行一番业务描述:我们的项目计划,一般包括年计划和月计划,年计划可分解为月计划。

    我们来理解一下这句业务上的描述,可以把它分解为两部分:“计划包括年计划和月计划”和“年计划可分解为月计划”。我们从业务层面上,可以抽象出两个数据对象:年计划和月计划。

    再用概念模型E-R图表示如下:

    概念数据模型一:

    在这里插入图片描述

    概念数据模型二:

    在这里插入图片描述

    概念数据模型一是不完整的概念模型,概念数据模型二就是完整的概念模型。

    原因:从概念数据模型一里面无法判断其中有多少隐藏的信息,当然你可以在另一个地方描述存在年计划或月计划这种业务情景,但是在这里你没有描述出来,所以至少在这里它是不完整的?我想问:此时不说,更待何时?

    例二:

    对于概念模型有一种典型的情况。例如,下面是一组关于财务审计系统中的概念数据模型:

    在这里插入图片描述

    姑且勿论这个概念模型是否正确,至少它是粒度很粗很不完整的。

    对于“财务数据”来说,它并不能做为一个实体,而是其中包含了多个实体(包括账套,凭证,科目等相关实体),把它们(财务数据、审计数据与结果数据)定义为数据域(财务数据域、审计数据域与结果数据域)也许更加准确,而不是把它定义为一个数据(实体)。

    “财务数据”域完整的概念模型,应该如下图:

    在这里插入图片描述

    (这里我假设这个概念模型里的实体是完整的,实际的财务系统当然不止这三个实体。)

    这里也许有个疑问:这没问题啊,先系统性,再结构化嘛。

    在此,我也真的很纠结,想想还是先不对这一句话解释太多,我们先进入概念模型的设计原则的讨论。完了之后,希望大家能找到“先系统性,再结构化”这句话的真谛。

    2.1.4 设计原则

    我们先来引用一下数据库设计范式里面第三范式的描述:第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。

    在系统分析中对于数据架构的分析,一般原则是以数据实体为基本元素,即每个实体不可再分解为止。这也正符合数据库设计三范式里面第三范式的定义。

    如果在分析阶段数据对象没有细化到最小粒度的数据实体,那么相当于把系统分析的工作留给了下一阶段的设计人员,从某种角度上来讲,这是不符合系统分析与设计的原则的。因为系统设计人员的工作是根据分析结果进行设计,而不是还要进行系统分析。

    一:分析阶段要清楚问题的所有内容,即系统做什么。也就是:What to do.

    二:设计阶段的设计工作是根据系统分析的结果而进行的,不完整的系统分析结果无法得到一个完整的系统设计结果。I don’t know what to do, I don’t know how to do.

    对于结构化的分析我们一般的原则是:

    一、使用一个总体结构图来描述各个数据域之间的关系,然后对数据域里面的所有数据实体进行结构化的分析与设计。

    二、对于同一个数据域的结构化层次最多不超过三层结构,最好不超过两层;对于不同数据域由于系统规模较大,如果在同一个篇幅里面无法完全描述出来,则可以切片分章节对不同的数据域进行结构化的描述。

    2.1.5 小结

    概念模型设计阶段,主要处于系统分析的阶段,属性可以不完全描述,但也可以描述一些主要的属性。如果你在E-R图上不给出属性,可以选择一个专门的表格来描述。另一方面,同一个实体的详细信息,在一个地方描述就好了,不要每一个涉及该实体的地方都描述一番。因为如果实体有变化的时候,我想有些实体会在几百上千个点上,你也不会每一个地方都去维护一次。

    下面引用Jerome’s BI BLOG里面的一句,这一句话很重要,也是理解概念模型与逻辑模型之间的区别的关键。

    概念数据模型的内容包括重要的实体及实体之间的关系。在概念数据模型中不包括实体的属性,也不用定义实体的主键。这是概念数据模型和逻辑数据模型的主要区别。——Jerome’s BI BLOG

    2.2 逻辑模型

    2.2.1 定义

    逻辑模型,是用户从数据库所看到的模型,是具体的DBMS所支持的数据模型,如网状数据模型(Network
    Data Model)、层次数据模型(Hierarchical Data
    Model)等等。此模型既要面向用户,又要面向系统,主要用于数据库管理系统(DBMS)的实现。——百度百科

    2.2.2 作用

    逻辑模型是概念模型从真实世界向计算机世界的转换,加入了系统设计的相关内容。

    逻辑数据建模不仅会影响数据库设计的方向,还间接影响最终数据库的性能和管理。如果在实现逻辑数据模型时投入得足够多,那么在物理数据模型设计时就可以有许多可供选择的方法。

    2.2.3 实例分析

    例如:接着上面“计划表”的设计,“计划表”的逻辑结构,如下图所示。

    在这里插入图片描述

    其中:

    1.计划标识:这是由于系统设计的需要而加进来的,与业务无关的属性。

    2.计划类型:0:年计划;1:月计划;2:季度计划。(这里使用整型表示,当然可以是字符、字符串或其他自定义类型,这完全是设计上的事,一般不要在系统分析阶段啰嗦这些,客户不关心的事儿。)

    虽然计划在业务概念上来讲,存在年计划、月计划,甚至于季度计划,但是在计算机世界中,计划的类型除了在概念上不一样之外,其他属性都是一样的,那么逻辑模型设计的时候可以把计划数据定义为一个实体,而使用其中的一个字段来标识某一份计划是年计划、月计划,还是季度计划。

    2.2.4 设计原则

    逻辑数据模型反映的是系统分析设计人员对数据存储的观点,是对概念数据模型进一步的分解和细化。逻辑数据模型是根据业务规则确定的,关于业务对象、业务对象的数据项及业务对象之间关系的基本蓝图。

    逻辑数据模型的内容包括所有的实体和关系,确定每个实体的属性,定义每个实体的主键,指定实体的外键,需要进行范式化处理。

    例如,在“计划表”逻辑模型中可能加入了由于系统设计需要的一些字段(属性),这些字段可能是在业务概念上不存在或不需要的。

    2.2.5 小结

    逻辑数据模型的目标是尽可能详细的描述数据,但并不考虑数据在物理上如何来实现。——这一句话很重要,也是理解逻辑模型与物理模型之间区别性的关键。

    2.3 物理模型

    2.3.1 定义

    物理模型,是面向计算机物理表示的模型,描述了数据在储存介质上的组织结构,它不但与具体的DBMS有关,而且还与操作系统和硬件有关。每一种逻辑数据模型在实现时都有起对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实现工作由系统自动完成,而设计者只设计索引、聚集等特殊结构。
    ——百度百科

    2.3.2 作用

    物理数据模型的目标是指定如何用具体的数据库模式来实现逻辑数据模型,以及真正的保存数据。

    2.3.3 实例分析

    例如:对于计划表,基于SQL Server数据库管理系统为存储介质的物理模型结构。如下图所示:

    在这里插入图片描述

    字段对照表:

    数据表名:Plan(计划表)

    在这里插入图片描述

    当基于Oracle数据库模式的时候,这个物理模型则是不一样的。

    例如:字符串,在Oracle上为varchar2,在Sql
    Server上为varchar等。

    2.3.4 设计原则

    物理数据模型是在逻辑数据模型的基础上,考虑各种具体的技术实现因素,进行数据库体系结构设计,真正实现数据在数据库中的存储。

    物理数据模型的内容包括确定所有的表和列,定义外键用于确定表之间的关系,基于用户的需求可能进行范式化等内容。在物理实现上的考虑,可能会导致物理数据模型和逻辑数据模型有较大的不同。

    2.3.5 小结

    物理模型跟逻辑模型的区别就是,逻辑模型并不指出特定的数据存储,仅限于系统逻辑上的描述。物理模型是逻辑模型在具体存储介质上的表现,直接与具体的数据库管理系统或存储介质相关的数据模型。例如:Oracle、SQL
    Server、XML File或文件文件等。

    物理模型给出了在数据库系统的字段名称,与具体数据库管理系统相关的数据类型的定义。而逻辑模型与具体的数据库管理系统或存储介质无关,仅为使用计算机系统概念中的一种逻辑结构。

    2.4 总结

    概念模型是对真实世界的一种概念结构的描述;

    逻辑模型是计算机系统上一种逻辑结构的描述;

    物理模型则是与具体的计算机物理介质直接关联的一种结构化的表达。

    总的来说,我的理解是:概念模型、逻辑模型和物理模型是系统分析与设计中同一类型工具中三个不同层面的工具,一般应用于对同一个对象面向不同层面的用户而做不同的描述。

    展开全文
  • 数据库数据模型思维导图: 数据库的理解 数据库可以理解为存储数据的仓库,每个数据项在数据仓库中都有编号,通过编号就可以找到该数据项。例如,图书馆就是存储图书的仓库,在图书馆存储的每本图书都有一个编号,...
  • 前面的两篇博客分别介绍了概念数据模型、逻辑数据模型以及物理数据模型和逻辑数据模型经常使用的三种数据模型,这篇博客介绍在数据库的设计过程中将概念数据模型转化为逻辑数据模型的方法,以及涉及的一些基本的概念...
  • PowerDesigner–创建概念数据模型 Conceptual Data Model 概念数据模型(CDM)帮助您分析信息系统的概念结构,以识别要表示的主要实体、它们的属性以及它们之间的关系。 CDM比逻辑(LDM)或物理(PDM)数据模型更抽象。 ...
  • PowerDesigne 建立概念数据模型

    千次阅读 2018-08-13 18:51:00
    本文主要介绍PowerDesigner概念数据模型以及实体、属性创建。一、新建概念数据模型1)选择File-->New,弹出如图所示对话框,选择CDM模型(即概念数据模型)建立模型。2)完成概念数据模型的创建。以下图示...
  • 概念数据模型(CDM)

    千次阅读 2018-08-23 11:36:01
    New Model ,从Model type创建概念数据模型conceptual data model,选择概念图Conceptual Diagram,点击OK, 方法2:如果已有概念数据模型,则: • 在对象浏览窗口中,在概念数据模型上右键选择New > Conceptual...
  • 概念数据模型(conceptual data model)独立于计算机系统,完全不涉及信息在计算机系统的表示,只关心用来描述某个特定组织所关心的信息结构。是用户和数据库设计人员之间进行交流的工具。可以看成是现实世界大牌...
  • 1.概念数据模型E-R图 2.设计E-R图,过程,例子 3.逻辑数据模型,分类
  • 版权声明吧:呵呵,这个是从我的网友QQ空间里复制过来的,感觉有用就保存喽。...一、概念数据模型概述 数据模型是现实世界中数据特征的抽象。数据模型应该满足三个方面的要求: 1)能够比较真实地模拟现实世
  • 数据模型 数据模型是由数据结构、数据操作和数据完整性约束条件组成的。...数据模型按不同的应用层次分成三种类型:分别是概念数据模型、逻辑数据模型、物理数据模型。 1、概念模型(Conceptual Data Model):是一
  • 概念数据模型概述

    万次阅读 2012-10-17 19:10:35
    一、概念数据模型概述 概念数据模型也称信息模型,它以实体-联系(Entity-RelationShip,简称E-R)理论为基础,并对这一理论进行了扩充。它从用户的观点出发对信息进行建模,主要用于数据库的概念级设计。 通常...
  • 在Powerdesigner中创建概念数据模型

    千次阅读 2016-05-05 15:07:27
     系统将出现一个工具栏如下,用于在设计面板中设计模型 单击Entity图标,然后在主面板中单击一次便可添加一个实体 切换回一般鼠标模式,双击已经添加的实体,弹出设置属性的对话框 在General选项卡中可以...
  • PowerDesigner 概念数据模型(CDM) 说明

    万次阅读 2011-10-13 20:02:08
    关于PowerDesigner的说明参考:PowerDesigner 15 概述http://blog.csdn.net/tianlesoftware/article/details/6869279 这篇主要了解一下CDM 模型及使用。 一、概念数据模型(CDM)概述 Conce
  • 概念数据模型设计与逻辑数据模型设计、物理数据模型设计是数据库及数据仓库模型设计的三个主要步骤。  在数据仓库领域有一个概念叫conceptual data model,中文一般翻译为“概念数据模型”。  概念数据模型是...
  • 数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。 1)数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据...
  • 业务模型;UML类图
  • PowerDesigner(五)-概念数据模型(CDM生成LDM,PDM和OOM)

    万次阅读 多人点赞 2012-09-08 12:15:35
    概念数据模型  概念数据模型(Conceptual Data Model,CDM):表达的是数据整体逻辑结构,该结构独立于任何软件和数据存储结构,即它只是系统分析人员,应用程序设计人员,维护人员和用户之间相互理解的共同语言,并...
  • 数据模型概念2.两大类数据模型客观对象的抽象过程---两步抽象3.数据模型的组成要素(1)数据结构(2)数据操作(3)数据的完整性约束条件4.概念模型(1)用途与基本要求(2) 信息世界中的基本概念(3)两个实体型之间的联系①...
  • ***************** 花有...一、创建概念模型:CDM(如果想要加备注,请看另外字段备注文章注意一下CDM这的Name与Code字段) 1.powerdesigner中模型介绍: -- 概念模型(CDM Conceptual Data Model) -- 物理模型(...
  • 使用PowerDesigner建立概念模型 1.打开PowerDesigner ​ File——>New Model——>Model types——>Conceptual Data Model——>Conceptual Diagram 2.将Model name换为:(目的名称)CDM 3.建立项目后,...
  • 概念数据模型设计与逻辑数据模型设计、物理数据模型设计是数据库及数据仓库模型设计的三个主要步骤。 在数据仓库领域有一个概念叫conceptual data model,中文一般翻译为“概念数据模型”。 概念数据模型是最终用户...
  • 一般地讲,数据模型是严格定义的概念的集合。这些概念精确描述了系统的静态特性,动态特性和完整性约束条件。因此数据模型通常由数据结构,数据操作和完整性约束三部分组成 (1)数据结构 是研究的对象类型的...
  • 数据模型的目的在于可视化呈现、设计业务/系统的数据交互/存储的结构和方式,识别实体及其属性、关系,方便业务人员和技术人员沟通和承接。数据结构按照信息细节度和技术性划分概念模型(Conceptual Data Model)、...
  • 概念模型向逻辑模型的转换

    千次阅读 2021-03-27 13:43:17
    概念模型向逻辑模型的转换 1.实体的转换 2. 联系的转换 1:1联系的转换 1:n联系转换 n:m联系的转换

空空如也

空空如也

1 2 3 4 5 ... 20
收藏数 702,356
精华内容 280,942
关键字:

概念数据模型

友情链接: 01.Basics.rar